摘要:為了研究R134a在螺旋套管冷凝器換熱性能及其對(duì)熱泵運(yùn)行性能的影響,論文采用實(shí)驗(yàn)手段,在以水為冷卻介質(zhì)進(jìn)行循環(huán)加熱和直流穩(wěn)態(tài)2種條件下,測(cè)試了不同進(jìn)水流量和入口水溫狀態(tài)時(shí)R134a在螺旋套管冷凝器內(nèi)的換熱性能和熱泵的運(yùn)行性能。結(jié)果表明:循環(huán)加熱時(shí),同一進(jìn)水流量隨入口水溫的升高,冷凝器總換熱量、系統(tǒng)制熱量和制熱性能系數(shù)COP減小,而總換熱系數(shù)和系統(tǒng)輸入功率增大;進(jìn)水流量從119 m3/h增大到216 m3/h,入口水溫從30 ℃升高到60 ℃時(shí),系統(tǒng)輸入功率的增大范圍為750~900 W,制熱量的減小范圍為600~750 W,COP的減小范圍為28~32,同時(shí)流量216 m3/h的總換熱量的減小量是流量119 m3/h的25倍,總換熱系數(shù)的增大量是流量119 m3/h的2倍。直流穩(wěn)態(tài)時(shí),進(jìn)水流量從026 m3/h增大到071 m3/h,總換熱量和總換熱系數(shù)分別增加了15%和41%;壓縮機(jī)的排氣功力和系統(tǒng)輸入功率分別下降了26%和12%,而吸氣功力變化較小。關(guān)鍵詞:R134a;熱泵熱水器;螺旋套管冷凝器;換熱性能中圖分類號(hào):TB 6W文獻(xiàn)標(biāo)志碼: A
Heat transfer performance of spiral casing condenser
and the runnability of heat pump based on R134a
ZHANG Xiaoyan,LIU Meng
(College of Energy Science and Engineering,Xi’an University of Science and Technology,Xi’an 710054,China)Abstract:In order
to study the influence of R134a on the heat transfer performance of spiral casing condenser and the runnability of heat pump.This paper used water as the medium,and different inflow discharge and inlet water temperature of the condenser in the case of cyclic heating and steady state were tested.The results indicate that in the case of cyclic heating,with the inlet water temperature increase,the total heat transfer rate,the heat output and COP
decrease,and the total heat transfer coefficient and the input power increase.When the inlet water temperature increases from 30 ℃ to 60 ℃ and the inflow discharge increases from 1.19 m3/h to 2.16 m3/h,the input power increases from 750W to 900W,the heat output decreases from 600 W to 750 W,COP decreases from 28 to 32.The decrement of the total heat transfer rate of 216 m3/h water inflow is 25 times as much as that of 119 m3/h water inflow.The increment of the total heat transfer coefficient is 2 times as much as that of 119 m3/h water inflow.At the steady state condition,when the inflow discharges increase from 026 m3/h to 071 m3/h,the total heat transfer rate and the total heat transfer coefficient increase by 15% and 41%,respectively.The exhaust and the input power decrease by 26% and 12%,respectively,and the suction pressure change less.Key words:R134a;heat pump water heater;spiral casing condenser;heat transfer performance
0引言
近年來,熱泵熱水器[1-2]因其高效節(jié)能,安全可靠的優(yōu)勢(shì),在熱水器市場(chǎng)占的份額越來越大,而R134a[3]制冷劑由于其環(huán)保性能顯著,倍受各大空調(diào)制造商的青睞[4-5]。然而,冷凝器的結(jié)構(gòu)對(duì)制冷劑的換熱性能和熱泵的運(yùn)行性能都有很大影響[6-7]。目前,國(guó)內(nèi)外學(xué)者對(duì)制冷劑和冷凝器做了大量研究。Zaki[8]、邵莉[9]等對(duì)螺旋管和直管內(nèi)的凝結(jié)傳熱系數(shù)進(jìn)行了對(duì)比,認(rèn)為螺旋管內(nèi)的平均凝結(jié)傳熱系數(shù)比直管內(nèi)要大。韓吉田[10]等對(duì)R134a在螺旋管內(nèi)的凝結(jié)傳熱特性進(jìn)行了一系列的研究,分析了質(zhì)量流速、干度、冷凝壓力以及蒸汽過熱對(duì)凝結(jié)傳熱特性的影響,并指出螺旋管的不同放置方式對(duì)傳熱特性有明顯的影響。崔文智[11]對(duì)R134a在螺旋管內(nèi)的傳熱系數(shù)進(jìn)行了研究,認(rèn)為螺旋管對(duì)流動(dòng)沸騰傳熱具有強(qiáng)化作用。張小艷[12]研究了R22在螺旋管內(nèi)的換熱性能和凝結(jié)換熱系數(shù),給出了它們與進(jìn)水量和進(jìn)水溫度的關(guān)系。然而對(duì)目前R134a在螺旋套管內(nèi)的換熱性能和熱泵的運(yùn)行性能研究較少。文中以R134a為工質(zhì),采用實(shí)驗(yàn)手段,對(duì)冷凝器的總換熱量和總換熱系數(shù)以及熱泵的壓縮機(jī)吸、排氣壓力和系統(tǒng)輸入功率、制熱系數(shù)進(jìn)行研究,為工質(zhì)替代中換熱器的優(yōu)化設(shè)計(jì)及熱泵系統(tǒng)的節(jié)能運(yùn)行提供參考。
1實(shí)驗(yàn)裝置實(shí)驗(yàn)采用全封閉渦旋式壓縮機(jī)。整個(gè)實(shí)驗(yàn)裝置分為2段:實(shí)驗(yàn)段和準(zhǔn)備段,如圖1所示。實(shí)驗(yàn)系統(tǒng)主要包含制冷劑環(huán)路,冷卻水環(huán)路,壓力傳感器,制冷劑流量計(jì),水表等相關(guān)測(cè)試裝置以及多功能數(shù)據(jù)采集儀器。螺旋套管冷凝器參數(shù)如圖2所示,冷凝器上溫度測(cè)點(diǎn)布置如圖3所示。實(shí)驗(yàn)在循環(huán)加熱和直流穩(wěn)態(tài)2種不同進(jìn)水方式下進(jìn)行。
1 壓縮機(jī)2 套管冷凝器3 儲(chǔ)液器4 過濾器5 渦輪流量計(jì)6 膨脹閥7 蒸發(fā)器8 水泵9 轉(zhuǎn)子流量計(jì)10 水箱
2實(shí)驗(yàn)數(shù)據(jù)處理螺旋套管冷凝器的換熱量Q按下式計(jì)算
Q=qmcp(T1-T2),
(1)
其中qm,cp為流體的質(zhì)量流量和比熱,kg/s,J/(kg·K);T1,T2分別為螺旋套管冷凝器熱流體的進(jìn)出口溫度,℃.螺旋套管的總換熱系數(shù)K計(jì)算公式如下
K=QAΔtm
=qwρwcw(Tw,out-Tw,in)
AΔtm
.
(2)
其中qw,ρw,cw,Tw,out和Tw,in分別為冷卻水的體積流量、密度、比熱和進(jìn)出口溫度,
m3/h,kg/m3,J/(kg·K),℃
;A和Δtm分別為換熱面積和對(duì)數(shù)平均溫差,m2,℃.對(duì)數(shù)平均溫差計(jì)算公式如下
Δtm=Δt2-Δt1
ln(Δt2/Δt1)
,(3)本實(shí)驗(yàn)所選用的螺旋套管冷凝器內(nèi)管是由螺紋銅管制成,表面不光滑,需對(duì)其外表面積進(jìn)行修正[7],修生系數(shù)取13.
螺旋套管冷凝器的制熱量計(jì)算公式如下
Q1=ρwcV(tw2-tw1)
Δt
,
(4)
其中c為熱水的定壓比熱,J/(kg·K);V為儲(chǔ)水箱的容積,m3;Δt為單位時(shí)間間隔,s;tw1,tw2分別為單位時(shí)間間隔內(nèi)加熱前、后的水溫,℃.系統(tǒng)的制熱系數(shù)COP計(jì)算公式如下
COP=Q1W0=
ρcV(tw2-tw1)
ΔtΔP
.
(5)
式中W0為單位時(shí)間內(nèi)消耗的電功量,
kW;ΔP為單位時(shí)間間隔內(nèi)的平均功率,kW.雷諾數(shù)(Re)[10]按下式求得
Re=vdiμ.
(6)
其中v為內(nèi)管中水的流速,m/s;di為內(nèi)管內(nèi)徑,m;μ為內(nèi)管中水的運(yùn)動(dòng)粘度,m2/s.
3循環(huán)加熱結(jié)果分析
3.1對(duì)冷凝器換熱性能的影響
由于實(shí)驗(yàn)條件為水流循環(huán)加熱,所以冷凝器入口水溫隨實(shí)驗(yàn)進(jìn)行而不斷增加。水流量為119 m3/h,入口水溫從252 ℃升高到600 ℃時(shí),冷凝器的總換熱量由5 74179 W減小至2 84739 W,如圖4(a)所示;總換熱系數(shù)從1 18412 W/(m2·K)增大至1 64321 W/(m2·K),如圖4(b)所示。
當(dāng)進(jìn)水流量一定時(shí),隨入口水溫不斷升高,冷凝器總換熱量不斷下降,而總換熱系數(shù)增大。
不同進(jìn)水流量,入口水溫從30 ℃升高到55 ℃時(shí),水流量119 m3/h的總換熱量減小了近3 000 W,總換熱系數(shù)增大了近
400 W/(m2·K);水流量171 m3/h的總換熱量減小了近3 500 W,總換熱系數(shù)增大了近700 W/(m2·K);水流量216 m3/h的總換熱量減小了近7 500 W;總換熱系數(shù)增大了近800 W/(m2·K)。隨溫度的升高,進(jìn)水流量越大,總換熱量下降越快,而總換熱系數(shù)增大不明顯。
3.2對(duì)熱泵運(yùn)行性能的影響系統(tǒng)的輸入功率、制熱量和制熱性能系數(shù)(COP)能反映出熱泵的運(yùn)行性能。如圖5所示,當(dāng)進(jìn)水流量為119 m3/h時(shí),溫度從252 ℃升高到60 ℃,系統(tǒng)的輸入功率從984 W增大到1 880 W,而制熱量卻從1 390 W減小到701 W,同時(shí)COP從44減小到12.也就是說,進(jìn)水流量一定時(shí),隨溫度的升高,系統(tǒng)輸入功率增大,制熱量和COP則明顯減小。
不同進(jìn)水流量,入口水溫從30 ℃升高到60 ℃時(shí),水流量119 m3/h的系統(tǒng)輸入功率增大了約900 W,制熱量減少了約630 W,COP減少了約32;水流量171 m3/h的系統(tǒng)輸入功率增大了約750 W,制熱量減少了約750 W,COP減少了約28;水流量216 m3/h的系統(tǒng)輸入功率增大了約800 W,制熱量減少了約600 W,COP減少了約3.綜合來說,不同進(jìn)水流量,入口水溫升高相同溫度時(shí),制熱量和COP的減小幅度相當(dāng),系統(tǒng)輸入功率增大幅度相當(dāng)。
4直流穩(wěn)態(tài)結(jié)果分析
4.1對(duì)冷凝器換熱性能的影響將冷凝器入口水溫保持在22 ℃,不同進(jìn)水流量與總換熱量和總換熱系數(shù)的關(guān)系如圖6所示。以進(jìn)水流量為橫坐標(biāo),分別以總換熱量和總換熱系數(shù)為縱坐標(biāo),從左到右的點(diǎn)分別為026,044,053和071 m3/h的流量。可以看出,當(dāng)進(jìn)水流量由026增加到071 m3/h時(shí),總換熱量由3 61424 W增大到4 16596 W,總換熱系數(shù)由1 99903 W/(m2·K)增大至2 83592 W/(m2·K)。即入口水溫一定,隨著進(jìn)水流量的增加,總換熱量和總換熱系數(shù)明顯增加。
4.2對(duì)熱泵運(yùn)行性能的影響實(shí)驗(yàn)進(jìn)行時(shí),壓縮機(jī)的吸、排氣壓力也可以反映出熱泵的運(yùn)行性能。如圖7所示,進(jìn)水量從026 m3/h增加到071 m3/h時(shí),吸氣壓力變化不明顯,由032 MPa減小到030 MPa,排氣壓力明顯下降,由084 MPa減小到062 MPa;系統(tǒng)輸入功率由1 040 W減小到920 W.即入口水溫一定時(shí),隨進(jìn)水流量的增大,壓縮機(jī)的排氣功力和系統(tǒng)輸入功率明顯下降,而壓縮機(jī)吸氣功力下降幅度較小。
5結(jié)論
1)循環(huán)加熱條件下,同一進(jìn)水流量隨入口水溫的升高,冷凝器總換熱量、系統(tǒng)制熱量和COP明顯減小,而總換熱系數(shù)和系統(tǒng)輸入功率增大。進(jìn)水流量為119 m3/h,入口水溫從252 ℃升高到60 ℃時(shí),冷凝器總換熱量由5 74179 W減小至2 84739 W,總換熱系數(shù)從1 18412 W/(m2·K)增大至1 64321 W/(m2·K),系統(tǒng)輸入功率從984 W增大到1 880 W,制熱量從1 390 W減小到701 W,COP從44減小到12;
2)循環(huán)加熱條件下,入口水溫升高相同溫度時(shí),進(jìn)水流量越大,總換熱量下降越快,而總換熱系數(shù)增大不明顯;制熱量和COP減小的幅度相當(dāng),系統(tǒng)輸入功率增大幅度相當(dāng)。入口水溫從30 ℃升高到60 ℃時(shí),水流量119,171和216 m3/h的總換熱量分別減小了3 000,3 500,7 500 W,總換熱系數(shù)分別增大了400,700,800 W/(m2·K);系統(tǒng)輸入功率分別增大了900,750,800 W;制熱量分別減少了630,750,600 W;COP分別減小了32,28,3;
3)直流穩(wěn)態(tài)條件下,同一入口水溫隨著進(jìn)水流量的增加,總換熱量和總換熱系數(shù)增加,壓縮機(jī)排氣功力和系統(tǒng)輸入功率明顯下降,而壓縮機(jī)吸氣功力下降幅度較小。入口水溫為22 ℃,進(jìn)水流量由026 m3/h增加到071 m3/h時(shí),總換熱量由3 61424 W增大到4 16596 W,總換熱系數(shù)由1 99903 W/(m2·K)增大到2 83592 W/(m2·K),吸氣壓力由032 MPa減小到030 MPa,排氣壓力由084 MPa減小到062 MPa,系統(tǒng)輸入功率由1 040 W減小到920 W.
參考文獻(xiàn)References
[1]郝吉波,王志華,姜宇光,等.空氣源熱泵熱水器系統(tǒng)性能分析[J].制冷與空調(diào),2013,13(1):59-62.
HAO Jibo,WANG Zhihua,JIANG Yuguang,et al.Analysis of system performance of air source heat pump water heater[J].Refrigeration and Air Conditioning,2013,13(1):59-62.
[2]張小艷,赫琳潔.空氣源熱泵熱水器螺旋套管冷凝器換熱性能的實(shí)驗(yàn)研究[J].環(huán)境工程,2015,33(S1):824-828.
ZHANG Xiaoyan,HE Linjie.Experimental study on heat transfer performance of spiral sleeve condenser with airsource heat pump water heater[J].Environmental Engineering,2015,33(S1):824-828.[3]王志華,鄭煜鑫,郝吉波,等.R134a空氣源熱泵熱水器實(shí)驗(yàn)研究與性能分析[J].制冷學(xué)報(bào),2014,35(3):71-76.
WANG Zhihua,ZHENG Yuxin,HAO Jibo,et al.Experimental investigation and performance analysis on R134a air source heat pump water heater[J].Journal of Refrigeration,2014,35(3):71-76.[4]張小艷,姜芳芳.螺旋管換熱技術(shù)的研究現(xiàn)狀綜述[J].制冷與空調(diào),2014,28(1):75-80.
ZHANG Xiaoyan,JIANG Fangfang.Present situation of the technical research on spiral tube[J].Refrigeration and Air Conditioning,2014,28(1):75-80.[5]HAN Xiaohong,QIU Yu,XIU Yingjie,et al.Cycle performance studies on a new HFC-161/125/143a mixture as an alternative refrigerant to R404A[J].
Journal of Zhejiang University Science A:
Application Physical and Engineering,2012,13(2):132-139.[6]孔令健,韓吉田,陳常念,等.臥式螺旋管內(nèi)過冷沸騰起始點(diǎn)的實(shí)驗(yàn)研究[J].工程熱物理學(xué)報(bào),2014,35(7):1 405-1 409.
KONG Lingjian,HAN Jitian,CHEN Changnian,et al.An experimental investigation of the onset subcooled boiling in horizontal helical coils[J].Journal of Engineering Thermophysics,2014,35(7):1 405-1 409.[7]張小艷,趙珊媛,洪珊瑚.水在螺旋盤管內(nèi)的換熱及壓降特性研究[J].西安科技大學(xué)學(xué)報(bào),2014,34(2):174-179.
ZHANG Xiaoyan,ZHAO Shanyuan,HONG Shanhu.Heat transfer and pressure drop characteristics for water flowing in spiral coil[J].Journal of Xi’an University of Science and Technology,2014,34(2):174-179.[8]Zaki M,Liu Y Z,Dong Z F,et al.Condensation heat transfer of R134a in helicoidal pipe[C]//Proceedings of the ASME Heat Transfer Division,Baltimore,MD,USA,HTD-351,1997:141-148.[9]邵莉,韓吉田,潘繼紅.R-134a在水平直管和螺旋管內(nèi)凝結(jié)換熱特性的實(shí)驗(yàn)研究[J].制冷學(xué)報(bào),2007,28(2):23-26.
SHAO Li,HAN Jitian,PAN Jihong.Condensation heat transfer of R134a in horizontal straight and helically cooled tubes[J].Journal of Refrigeration,2007,28(2):23-26.[10]韓吉田,蘇國(guó)萍.制冷劑R-134a在螺旋環(huán)形通道內(nèi)凝結(jié)換熱的實(shí)驗(yàn)研究[J].熱能動(dòng)力工程,2005,20(2):134-137.
HAN Jitian,SU Guoping.Experimental investigation of the condensation heat exchange of refrigerant R-134a in a spiral ringshaped channel[J].Journal of Engineering for Thermal Energy and Power,2005,20(2):134-137.[11]崔文智,廖全,辛明道.R134a 在螺旋管內(nèi)的流動(dòng)沸騰傳熱[J].重慶大學(xué)學(xué)報(bào),2001,24(4):118-121.
CUI Wenzhi,LIAO Quan,XIN Mingdao.Flow boiling heat transfer of R134a in a helical coiled tube[J].Journal of Chongqing University,2001,24(4):118-121.[12]張小艷,洪珊瑚.熱泵熱水器螺旋套管冷凝器中R22的凝結(jié)換熱性能[J].西安科技大學(xué)學(xué)報(bào),2015,35(5):585-590.
ZHANG Xiaoyan,HONG Shanhu.Condensation heat transfer performance for R22 flowing in spiral tubeintube condenser of heat pump water heater[J].Journal of Xi’an University of Science and Technology,2015,35(5):585-590.