999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

循環腫瘤DNA及其在癌癥液體活檢中的應用

2017-05-04 05:38:18李泰伯美國哈佛大學醫學院遺傳系馬薩諸塞州波士頓05美國伯德研究所馬薩諸塞州堪布里奇04
轉化醫學電子雜志 2017年3期
關鍵詞:基因突變檢測

李 君,李泰伯(美國哈佛大學醫學院遺傳系,馬薩諸塞州波士頓05;美國伯德研究所,馬薩諸塞州堪布里奇04)

·專家述評·

循環腫瘤DNA及其在癌癥液體活檢中的應用

李 君1,李泰伯2(1美國哈佛大學醫學院遺傳系,馬薩諸塞州波士頓02115;2美國伯德研究所,馬薩諸塞州堪布里奇02142)

目前對癌癥組織進行基因分型仍舊是癌癥臨床診斷和治療的黃金依據.然而癌癥組織往往很難獲取,并且無法體現癌癥組織的異質性和組織各個部位基因突變的情況,因此出現了許多腫瘤治療方式,甚至包括分子靶向藥的失效.非侵入性的血液液體活檢為解決癌癥異質性檢測帶來了新的機遇.血液中的循環腫瘤DNA(ctDNA)作為生物標記具有對整個腫瘤組織進行基因分型的潛力.本綜述主要闡述ctDNA的如下幾個方面:ctDNA的生物學特性;腫瘤特異性ctDNA突變;ctDNA的表觀遺傳學改變;ctDNA的檢驗方法;ctDNA在腫瘤診斷、治療和預后中的潛在應用.

循環腫瘤DNA;液體活檢;診斷、治療和預后

0 引言

癌癥是世界范圍內導致死亡的主要疾病之一.目前在癌癥診斷的一系列病理檢測中,組織活檢具有重要的地位.癌癥基因分型的材料一般取自組織活檢,分型結果可以輔助靶向藥物使用的診斷.但是組織活檢仍存在很大的局限性,例如取樣困難,無法反應癌癥組織的異質性,同時對癌癥早篩、轉移、用藥劑量和預后等作用有限[1-2].循環腫瘤DNA(circulating tumor DNA,ctDNA)由腫瘤細胞釋放到血液中,往往帶有腫瘤組織的基因突變信息[3].近年來基于ctDNA的液體活檢為癌癥的分子診斷和監控提供了新的契機.用ctDNA進行基因突變檢測可以進行癌癥的早期篩查,實時監控癌癥的發展、轉移和預后,幫助癌癥用藥的判斷[4-8],因而極大地改進了目前的癌癥診斷方法.

1 ctDNA的生物學特性

ctDNA存在于細胞質或血清之中,為單鏈或雙鏈DNA,長度約為150~200 bp,半衰期短,約為15分鐘至數小時(平均約2 h)[9].早期研究表明,ctDNA具有許多同癌癥相關聯的特性,比如單核苷酸突變[10-14]、甲基化改變[15-18]以及癌癥引起的病毒序列[19-21],因此被認為是從腫瘤組織中衍生而來.目前認為有三種可能的ctDNA來源:①凋亡或壞死的腫瘤細胞;②活腫瘤細胞;③循環腫瘤細胞[22-25].實際上,ctDNA極可能有多種而非一種來源.ctDNA攜帶著腫瘤細胞中的基因突變和表觀遺傳學改變,諸如點突變、完整度、序列重排、拷貝數差異、微衛星序列不穩定、雜合性缺失和DNA甲基化等[26].

2 腫瘤特異性ctDNA突變

2.1 胰腺癌胰腺癌是第一個在ctDNA中發現特異性突變的實體瘤,其中一個重要原因是KRAS基因經常突變且容易檢測.Sorenson等[3]使用了等位基因特異性擴增的方法,在胰腺癌患者的血漿或血清中測定KRAS第12位密碼子的突變.根據ctDNA檢測原發性胰腺癌的靈敏度一般為30%~50%,而特異度則會更高,約為90%[27].大部分胰腺癌研究側重于KRAS突變,因為這種突變發生率較高.同時,胰管腺癌相較于其它惡性腫瘤而言含有更多的ctDNA,并且轉移性病變較非轉移性病變含有更多的ctDNA.據此可見,從生物學和臨床角度,胰腺癌都是使用ctDNA作診斷和預后的理想選擇[28].

2.2 肺癌非小細胞肺癌(non?small cell lung cancer,NSCLC)攜帶的基因突變常存在于EGFR、KRAS、ALK、HER2、BRAF、ROS1和RET中[29-34].血漿中KRAS基因突變的狀態可以作為NSCLC患者對EGFR?TKI耐藥的一個預測性標志物.研究[35]表明,血漿KRAS基因突變狀態與腫瘤組織的一致性為76.7%,KRAS突變可能導致NSCLC患者對EGFR?TKI療效不佳,這可能成為NSCLC患者靶向治療的一個篩選指標.另外,約50%的NSCLC患者因EGFR的突變T790M的出現而出現耐藥[36].這些結果首先從對EGFR耐藥的NSCLC患者腫瘤組織中發現,隨后從ctDNA中得到驗證,首次提出了可以在患者血液中無創性地檢測實體瘤靶向藥物治療后出現的耐藥性[37].

2.3 結腸直腸癌KRAS、APC和TP53在結腸直腸癌中有很高的突變頻率.這些基因在血清或血漿中的變異狀態與結腸直腸癌的診斷、預后和治療反應有關[38-39].在結腸直腸癌患者的血清或血漿中,KRAS突變的總體檢測率為25%~50%[39].晚期患者的ctDNA中則檢測到更多KRAS突變[40].同時,ctDNA中的KRAS突變也與術后復發的風險呈正相關[41-42].對于循環中突變DNA的分析可以同時監測結腸直腸癌患者對于單克隆抗體療法的反應,而這使得療程中反復監測患者成為可能[43].對ctDNA中APC基因突變的研究主要集中于外顯子15.外顯子15是結腸直腸癌中APC突變的熱點.在原發性結腸直腸癌中,APC的突變頻率約為45%.而對于TP53而言,約40%的患者樣本被測定出具有這一基因的突變.大部分研究集中在TP53的外顯子4和外顯子8,這也是TP53在結腸直腸癌中最常見的突變區域[39].針對KRAS、TP53和APC的基因突變檢測能夠在大約75%的結腸直腸癌組織樣本中檢測到至少一個基因突變,然而這些突變只能在約45%的患者的血清中檢測到[44].

3 ctDNA甲基化和表觀遺傳學改變

在DNA突變之外,甲基化同樣可以影響基因的表達,并在ctDNA中被檢測到.腫瘤發生不僅受基因調控,也受到表觀遺傳學的調控[45].DNA甲基化傾向于發生在腫瘤抑制基因啟動子區域的CpG二核苷酸處,從而導致基因沉默[46].ctDNA甲基化檢測主要集中在結腸直腸癌、肺癌、乳腺癌、胰腺癌,以及其它種類的癌癥.同基因突變相比,DNA甲基化的一致性使得它成為了一個能夠指導診斷、分期、監測反應以及患者預后的有前景的生物標記.因此,近些年來甲基化的ctDNA逐漸成為液體活檢的新型目標,并且取得了一些有前景的成果.

3.1 結腸直腸癌結腸直腸癌對于男性和女性來說都是全球范圍內第三大常見的癌癥[47].結腸直腸癌的早期診斷依賴于簡單有效的篩查實驗.研究發現,SEPT9基因的啟動子高甲基化與結腸直腸癌的發展高度相關.基于針對SEPT9啟動子甲基化的PCR的回顧性實驗發現,SEPT9啟動子甲基化對結直腸癌檢測的靈敏度為72%~90%,特異度為88%~90%[48-51].另一項來自美國的研究[50]表明血漿中甲基化的SEPT9 DNA可以篩查72%的結腸直腸癌,并且實現了93%的特異度.另外,SEPT9的甲基化也在結腸直腸癌的癌前病變中被發現.其它與結腸直腸癌有關的生物標記有APC、RASSF1A和E?鈣黏蛋白[52-53],以及血漿中其它新標記.一項來自德國的研究[54]發現,血清中HLTF和HPP1的甲基化與腫瘤的大小、階段和轉移狀態顯著相關,這兩個基因也可以在轉移性結腸直腸癌患者中作為預后標記.

3.2 乳腺癌乳腺癌在發達地區和發展中地區的女性中都是最為常見的癌癥.許多研究使用了候選基因測試來分析乳腺癌中生物標記基因的甲基化狀態,并評估可能的臨床價值.這意味著大多數標記都是研究較多的基因,比如細胞周期蛋白D2、RARβ2[55]、ESR1[56]等.Dulaimi等[57]發現在94%的乳腺癌患者血清樣本里,APC、RASSFIA或DAP?激酶中至少有一個存在超甲基化.來自全印度醫學科學研究所的研究人員也對100例侵入性導管乳腺癌患者進行了一系列前瞻性研究.他們測試了MDR1、Stratifin、ERα和PR,以及DNA修復基因BRCA1、MGMT和GSTP1的甲基化狀態.以上基因啟動子的甲基化狀態可以顯著區分腫瘤組織和對照血清.然而這些基因的敏感度并不高(MDR1 50%,Stratifin 56%,ERα 55%,PRB 55%,BCRA1 22%,MGMT 26%,GSTP1 22%)[58-60].

3.3 肺癌肺癌是癌癥相關死亡的主要原因,部分原因是缺乏早期檢測方法[61].DNA甲基化的變化可能發生在其早期階段.DNA甲基化檢測預計將是肺癌早期診斷中的一種重要方法.目前已知有超過80個與肺癌相關的高甲基化基因,比如APC[62-63]、RARb[64-65]、RASSF1A[66]、CDH13[62-65]、SHOX2[67]、SHP?1[68].除早期診斷外,部分研究側重于甲基化狀態與患者存活的相關性,并證實CHFR甲基化狀態與366例患者中179例的二線化療或EGFR TKIs的結果相關[69].

總而言之,ctDNA的甲基化檢驗是一項很有希望的診斷或監測腫瘤的方法.目前由于不具備足夠特異度和靈敏度的單一生物標記,故可以使用同時檢測多個基因的測試方法.

4 ctDNA的檢測方法

4.1 ctDNA基因突變的檢測方法ctDNA在外周血中總細胞游離DNA所占比例較小(有時<0.01%)[2].最初,研究人員使用Sanger測序來檢測血漿ctDNA.然而,基于Sanger測序的ctDNA檢測存在許多缺點,例如低通量、步驟繁復、高成本和PCR方法引入的潛在偏差[4].基因芯片(microarray)的方法無法進行準確定量,信噪比低,因此在ctDNA的檢測上也有較大缺點.在過去十年中,二代測序(next generation sequencing,NGS)技術的進步使研究人員能夠開發出許多有效和方便的Sanger測序替代方法.Diehl等[9]開發了一種稱為BEAMing的技術來檢測血液中的ctDNA.該技術使用含有已知標簽序列的引物擴增目標DNA片段,使其與磁珠共價結合.含有突變的珠子最終被流式細胞術分選.Newman等開發了另一種新技術,稱為CAPP?Seq的(cancer personalized profiling by deep sequencing),即通過深度測序的癌癥個性化分析來定量ctDNA.他們使用針對相關癌癥中復發突變區的生物素化DNA寡核苷酸組成探針組,在100%的Ⅱ~Ⅳ期和50%的Ⅰ期NSCLC患者中檢測到ctDNA,其中對于低至0.02%等位基因頻率的突變的特異度為96%[4].近年來,數字PCR(digital PCR)技術的成熟可以使ctDNA檢測靈敏度達到0.01%或更低.與之前的方法相比,這些新技術顯著提高了ctDNA檢測的靈敏度,并且具有高通量和低價格的優點.然而,這些新技術也有局限性.首先,基于NGS的方法僅能為約50%的早期階段患者提供有價值的診斷[2,4],因此其靈敏度需要進一步改善.此外,這些技術的成本依然相對較高,從而限制了其在臨床實踐中的應用.

4.2 ctDNA甲基化的檢測方法ctDNA甲基化的檢測方法有很多種,主要分為三個類別.①甲基化含量:高效液相色譜法(high?performance liquid chroma?tography,HPLC)或高效毛細管電泳(high?perform?ance capillary electrophoresis,HPCE).②候選基因:甲基化敏感性限制內切酶?PCR/Southern(methyla?tion?sensitive restrictionendonuclease?PCR/Southern,MSRE?PCR/Southern)、亞硫酸氫鹽測序、甲基化特異性PCR(methylation?specific PCR,MS?PCR)、Meth?yLight等.③甲基化模式和甲基化譜:限制性標記基因組掃描(restriction landmark genomic scanning,RLGS)、甲基化間位點擴增(amplification of inter?methylated sites,AIMS)、甲基化CpG島擴增(methyl?ated CpG?island amplification,MCA)等.目前最常見的方法是MS?PCR.

5 ctDNA在腫瘤診斷、治療和預后中的潛在應用

ctDNA在腫瘤臨床醫學中具有多種應用潛力(表1).例如,對于人群的液體活檢檢測是否含有ctDNA及其突變類型,可以早期篩查癌癥,進行早期干預.對于局部性癌癥,ctDNA的突變類型可協助選擇其治療方法.同時在治療過程中,血液中ctDNA的含量可以監測腫瘤負荷和療效.治療后仍可實時檢測ctDNA含量和突變來達到監控癌癥復發和轉移的目的.同時針對難治性癌癥,對ctDNA突變型的挖掘可以發現新的生物標記,從而深度了解抵抗機制,這些新的生物標記也可以用于新型靶向藥物的研發.下面將舉例說明ctDNA在腫瘤診斷、治療和預后中的潛在應用.

表1 ctDNA在腫瘤臨床醫學中的潛在應用

5.1 監測腫瘤負荷和治療反應ctDNA的動力學性質諸如ctDNA水平、腫瘤負荷和治療反應之間的關系已經在各種實體惡性腫瘤中被研究過[5,9,70-73].蛋白質生物標志物常被用于癌癥診斷和治療應答的評估,例如癌胚抗原(CEA),前列腺特異性抗原(PSA),癌抗原(CA)19?9和CA?125.然而這些蛋白質生物標志物的特異性和可靠性并不令人滿意,許多惡性腫瘤甚至沒有任何可靠的蛋白質生物標志物[74-75].ctDNA攜帶全面、固有高特異度和高敏感度的信息,因此具有優于常規蛋白質生物標志物的獨特優勢.關于黑色素瘤[7,76]、乳腺癌[70]、卵巢癌[77]和結腸癌[9,78]的研究已經確立了ctDNA在治療過程中動態并精確監測腫瘤負荷的潛在應用價值.ctDNA水平隨疾病進展而快速增加,并在成功治療后相應地下降[7,9,70,76-77].ctDNA水平的定量評估也可以作為預后的重要指標.一些初步數據支持在晚期癌癥患者的ctDNA水平和預后之間的關聯[70-81].

耐藥性是癌癥患者治療中的主要問題.ctDNA可以有效評估與治療耐藥相關的突變的出現[43,82-85].KRAS的分子改變與結腸直腸癌的抗EGFR治療的獲得性耐藥性的起因有關.檢測接受抗EGFR治療的患者的ctDNA中KRAS變體可以在放射學記錄疾病進展之前10個月鑒定復發[82].此外,通過使用全外顯子組測序,連續ctDNA分析可以在獲得治療耐藥性的過程中針對基因組的改變提供公正和全面的評估[86].

ctDNA分析最終可以提供遺傳改變的綜合圖譜,包括突變譜的動態變化以及癌癥治療過程中的腫瘤異質性和進化.這種綜合圖譜可以幫助設計組合治療以最大程度避免治療抗性.

5.2 監測最小殘留病變ctDNA可被應用在手術后或治愈性療法之后檢測最小殘留病變.在某些類型的癌癥中,手術便可治愈大部分患有早期或局部腫瘤的患者.然而,目前尚無有效的方法區分哪些患者被治愈,哪些患者會出現殘留病變導致的復發.因此,一些通過手術治愈的患者仍然由于缺乏是否確診復發的信息而接受不必要的輔助化療.ctDNA是手術切除后殘留病變的潛在標志物,可以用來鑒定具有復發風險的患者.研究表明,對于在手術切除后血漿

DNA中腫瘤特異性突變的評估可以識別具有殘留病變的個體[3],并檢測疾病復發[87-88].早期預測復發將有助于在腫瘤負荷仍最小時引入有效的治療策略.

6 總結與展望

對ctDNA的生物學和臨床應用的最新研究證實,基于ctDNA的液體活檢可以通過基因分型、疾病監測、治療評估等途徑改善癌癥診斷和治療.然而,為使該技術最終可以應用到常規臨床實踐中,目前仍然存在一些問題與挑戰需要解決.首先,使用ctDNA作為診斷標記物,非常重要的一點是需要更好地理解ctDNA的生物學特性,包括其與腫瘤組織的各個部分、原病灶、轉移病灶等基因組成的關聯性.此外,盡管ctDNA的臨床相關性已被驗證,但是將該技術應用于常規臨床實踐仍需要進一步證明其分析有效性和臨床有效性,并且建立統一的臨床標準.同時以NGS為基礎的方法往往用時長、成本高,這為其臨床應用帶來了困難.但是隨著測序技術的進步,測序所需時間會逐漸縮短,成本會進一步降低,因此長遠來看ctDNA的液體活檢成為臨床檢驗標準更多的是時間問題.ctDNA的液體活檢的臨床應用面臨的另外一個困難是檢測方法的敏感度有限,尤其面臨癌癥早篩和檢測殘留病變時.現階段以NGS為基礎的方法的敏感度受限于DNA聚合酶的擴增錯誤率,普遍認為為0.01%.隨著三代測序技術的出現,ctDNA的檢測不再受限于DNA聚合酶的擴增.總之,隨著測序技術的快速發展和對ctDNA生物學及其臨床潛力的理解加深,ctDNA終將會在臨床實踐中得到廣泛應用.

[1]Gerlinger M,Rowan AJ,Horswell S,et al.Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J].N Engl J Med,2012,366(10):883-892.

[2]Yong E.Cancer biomarkers:Written in blood[J].Nature,2014,511(7511):524-526.

[3]Sorenson GD,Pribish DM,Valone FH,et al.Soluble normal and mutated Dna-sequences from single?copy genes in human blood[J].Cancer Epidemiol Biomarkers Prev,1994,3(1):67-71.

[4]Newman AM,Bratman SV,To J,et al.An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage[J].Nat Med,2014,20(5):548-554.

[5]Diaz LA Jr,Bardelli A.Liquid biopsies:genotyping circulating tumor DNA[J].J Clin Oncol,2014,32(6):579-586.

[6]Romero D.Breast cancer:Tracking ctDNA to evaluate relapse risk[J].Nat Rev Clin Oncol,2015,12(11):624.

[7]Bidard FC,Madic J,Mariani P,et al.Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in meta?static uveal melanoma[J].Int J Cancer,2014,134(5):1207-1213.

[8]Martignetti JA,Camacho?Vanegas O,Priedigkeit N,et al.Personal?ized ovarian cancer disease surveillance and detection of candidate therapeutic drug target in circulating tumor DNA[J].Neoplasia,2014,16(1):97-103.

[9]Diehl F,Schmidt K,Choti MA,et al.Circulating mutant DNA to assess tumor dynamics[J].Nat Med,2008,14(9):985-990.

[10]Chan KC,Jiang P,Zheng YW,et al.Cancer genome scanning in plasma:detection of tumor?associated copy number aberrations,single?nucleotide variants,and tumoral heterogeneity by massively parallel sequencing[J].Clin Chem,2013,59(1):211-224.

[11]Yung TK,Chan KC,Mok TS,et al.Single?molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non?small cell lung cancer patients[J].Clin Cancer Res,2009,15(6):2076-2084.

[12]Diehl F,Li M,Dressman D,et al.Detection and quantification of mutations in the plasma of patients with colorectal tumors[J].Proc Natl Acad Sci U S A,2005,102(45):16368-16373.

[13]Qiu M,Wang J,Xu Y,et al.Circulating tumor DNA is effective for the detection of EGFR mutation in non?small cell lung cancer:a meta?analysis[J].Cancer Epidemiol Biomarkers Prev,2015,24(1):206-212.

[14]Freidin MB,Freydina DV,Leung M,et al.Circulating tumor DNA outperforms circulating tumor cells for KRAS mutation detection in thoracic malignancies[J].Clin Chem,2015,61(10):1299-1304.

[15]Wong IH,Lo YM,Zhang J,et al.Detection of aberrant p16 methyl?ation in the plasma and serum of liver cancer patients[J].Cancer Res,1999,59(1):71-73.

[16]Chan KC,Lai PB,Mok TS,et al.Quantitative analysis of circulating methylated DNA as a biomarker for hepatocellular carcinoma[J].Clin Chem,2008,54(9):1528-1536.

[17]Balgkouranidou I,Chimonidou M,Milaki G,et al.Breast cancer metastasis suppressor?1 promoter methylation in cell?free DNA pro?vides prognostic information in non?small cell lung cancer[J].Br J Cancer,2014,110(8):2054-2062.

[18]Chan KC,Jiang P,Chan CW,et al.Noninvasive detection of canc?er?associated genome?wide hypomethylation and copy number aberra?tions by plasma DNA bisulfite sequencing[J].Proc Natl Acad Sci,2013,110(47):18761-18768.

[19]Lo YM,Chan LY,Lo KW,et al.Quantitative analysis of cell?freeEpstein?Barr virus DNA in plasma of patients with nasopharyngeal carcinoma[J].Cancer Res,1999,59(6):1188-1191.

[20]Chan KC,Hung EC,Woo JK,et al.Early detection of nasopharyn?geal carcinoma by plasma Epstein?Barr virus DNA analysis in a surveillance program[J].Cancer,2013,119(10):1838-1844.

[21]Campitelli M,Jeannot E,Peter M,et al.Human papillomavirus mutational insertion:Specific marker of circulating tumor DNA in cervical cancer patients[J].PLoS One,2012,7(8):e43393.

[22]Mouliere F,Rosenfeld N.Circulating tumor?derived DNA is shorter than somatic DNA in plasma[J].Proc Natl Acad Sci U S A,2015,112(11):3178-3179.

[23]Anker P,Mulcahy H,Chen XQ,et al.Detection of circulating tumour DNA in the blood(plasma/serum)of cancer patients[J].Cancer Metastasis Rev,1999,18(1):65-73.

[24]Stroun M,Lyautey J,Lederrey C,et al.About the possible origin and mechanism of circulating DNA[J].Clin Chim Acta,2001,313(1-2):139-142.

[25]van der Vaart M,Pretorius PJ.The origin of circulating free DNA[J].Clin Chem,2007,53(12):2215.

[26]Marzese DM,Hirose H,Hoon DS.Diagnostic and prognostic value of circulating tumor?related DNA in cancer patients[J].Expert Rev Mol Diagn,2013,13(8):827-844.

[27]Jiao L,Zhu J,Hassan MM,et al.K?ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients:in relation to cigarette smoking[J].Pancreas,2007,34(1):55-62.

[28]Liggett T,Melnikov A,Yi QL,et al.Differential methylation of cell?free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis[J].Cancer,2010,116(7):1674-1680.

[29]Soda M,Choi YL,Enomoto M,et al.Identification of the transfor?ming EML4?ALK fusion gene in non?small?cell lung cancer[J].Nature,2007,448(7153):561-566.

[30]Santos E,Martin?Zanca D,Reddy EP,et al.Malignant activation of a K?ras oncogene in lung carcinoma but not in normal tissue of the same patient[J].Science,1984,223(4637):661-664.

[31]Davies H,Bignell GR,Cox C,et al.Mutations of the BRAF gene in human cancer[J].Nature,2002,417(6892):949-954.

[32]Paez JG,J?nne PA,Lee JC,et al.EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy[J].Science,2004,304(5676):1497-1500.

[33]Takeuchi K,Soda M,Togashi Y,et al.RET,ROS1 and ALK fusions in lung cancer[J].Nat Med,2012,18(3):378-381.

[34]Kohno T,Ichikawa H,Totoki Y,et al.KIF5B?RET fusions in lung adenocarcinoma[J].Nat Med,2012,18(3):375-377.

[35]Wang S,An T,Wang J,et al.Potential clinical significance of a plasma?based KRAS mutation analysis in patients with advanced non?small cell lung cancer[J].Clin Cancer Res,2010,16(4):1324-1330.

[36]Oxnard GR,Arcila ME,Sima CS,et al.Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR?mutant lung cancer:distinct natu?ral history of patients with tumors harboring the T790M mutation[J].Clin Cancer Res,2011,17(6):1616-1622.

[37]Taniguchi K,Uchida J,Nishino K,et al.Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adeno?carcinomas[J].Clin Cancer Res,2011,17(24):7808-7815.

[38]Hsieh JS,Lin SR,Chang MY,et al.APC,K?ras,and p53 gene mutations in colorectal cancer patients:correlation to clinicopathologic features and postoperative surveillance[J].Am Surg,2005,71(4):336-343.

[39]Lecomte T,Ceze N,Dorval E,et al.Circulating free tumor DNA and colorectal cancer[J].Gastroenterol Clin Biol,2010,34(12):662-681.

[40]Kopreski MS,Benko FA,Borys DJ,et al.Somatic mutation screen?ing:identification of individuals harboring K?ras mutations with the use of plasma DNA[J].J Natl Cancer Inst,2000,92(11):918-923.

[41]Lecomte T,Berger A,Zinzindohoué F,et al.Detection of free?circu?lating tumor?associated DNA in plasma of colorectal cancer patients and its association with prognosis[J].Int J Cancer,2002,100(5):542-548.

[42]Bazan V,Bruno L,Augello C,et al.Molecular detection of TP53,Ki?Ras and p16INK4A promoter methylation in plasma of patients with colorectal cancer and its association with prognosis.Results of a 3?year GOIM(Gruppo Oncologico dell’Italia Meridionale)prospec?tive study[J].Ann Oncol,2006,17(Suppl 7):vii84-90.

[43]Diaz LA Jr,Williams RT,Wu J,et al.The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers[J].Nature,2012;486(7404)::537-540.

[44]Wang JY,Hsieh JS,Chang MY,et al.Molecular detection of APC,K?ras,and p53 mutations in the serum of colorectal cancer patients as circulating biomarkers[J].World J Surg,2004,28(7):721-726.

[45]Gold B,Cankovic M,Furtado LV,et al.Do circulating tumor cells,exosomes,and circulating tumor nucleic acids have clinical utility?:A report of the association for molecular pathology[J].J Mol Diag?nostics,2015,17(3):209-224.

[46]Herman JG,Baylin SB.Gene silencing in cancer in association with promoter hypermethylation[J].N Engl J Med,2003,349(21):2042-2054.

[47]Siegel R,Ma J,Zou Z,et al.Cancer statistics,2014[J].CA Cancer J Clin,2014,64(1):9-29.

[48]Tóth K,Galamb O,Spisák S,et al.The influence of methylated septin 9 gene on RNA and protein level in colorectal cancer[J].Pathol Oncol Res,2011,17(3):503-509.

[49]Grützmann R,Molnar B,Pilarsky C,et al.Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay[J].PLoS One,2008,3(11):e3759.

[50]DeVos T,Tetzner R,Model F,et al.Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer[J].Clin Chem,2009,55(7):1337-1346.

[51]Warren JD,Xiong W,Bunker AM,et al.Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer[J].BMC Med,2011,9:133.

[52]Cassinotti E,Melson J,Liggett T,et al.DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps[J].Int J Cancer,2012,131(5):1153-1157.

[53]Pack SC,Kim HR,Lim SW,et al.Usefulness of plasma epigenetic changes of five major genes involved in the pathogenesis of colorectal cancer[J].Int J Colorectal Dis,2013,28(1):139-147.

[54]Philipp AB,Stieber P,Nagel D,et al.Prognostic role of methylated free circulating DNA in colorectal cancer[J].Int J Cancer,2012,131(10):2308-2319.

[55]Liggett TE,Melnikov AA,Marks JR,et al.Methylation patterns in cell?free plasma DNA reflect removal of the primary tumor and drug treatment of breast cancer patients[J].Int J Cancer,2011,128(2):492-499.

[56]Martínez?Galán J,Torres?Torres B,Nú?ez MI,et al.ESR1 gene promoter region methylation in free circulating DNA and its correla?tion with estrogen receptor protein expression in tumor tissue in breast cancer patients[J].BMC Cancer,2014,14:59.

[57]Dulaimi E,Hillinck J,Ibanez de Caceres I,et al.Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients[J].Clin Cancer Res,2004,1010(18 Pt 1):6189-6193.

[58]Sharma G,Mirza S,Parshad R,et al.CpG hypomethylation of MDR1 gene in tumor and serum of invasive ductal breast carcinoma patients[J].Clin Biochem,2010,43(4-5):373-379.

[59]Mirza S,Sharma G,Parshad R,et al.Clinical significance of Strati?fin,ERalpha and PR promoter methylation in tumor and serum DNA in Indian breast cancer patients[J].Clin Biochem,2010,43(4-5):380-386.

[60]Sharma G,Mirza S,Parshad R,et al.Clinical significance of pro?moter hypermethylation of DNA repair genes in tumor and serum DNA in invasive ductal breast carcinoma patients[J].Life Sci,2010,87(3-4):83-91.

[61]Knoepp UW,Ravenel JG.CT and PET imaging in non?small cell lung cancer[J].Crit Rev Oncol Hematol,2006,58(1):15-30.

[62]Zhang Y,Wang R,Song H,et al.Methylation of multiple genes as a candidate biomarker in non?small cell lung cancer[J].Cancer Lett,2011,303(1):21-28.

[63]Usadel H,Brabender J,Danenberg KD,et al.Quantitative adenom?atous polyposis coli promoter methylation analysis in tumor tissue,serum,and plasma DNA of patients with lung cancer[J].Cancer Res,2002,62(2):371-375.

[64]Wang YC,Hsu HS,Chen TP,et al.Molecular diagnostic markers for lung cancer in sputum and plasma[J].Ann N Y Acad Sci,2006,1075:179-184.

[65]Rykova EY,Skvortsova TE,Laktionov PP,et al.Investigation of tumor?derived extracellular DNA in blood of cancer patients by methylation?specific PCR[J].Nucleosides Nucleotides Nucleic Acids,2004,23(6-7):855-859.

[66]Ponomaryova AA,Rykova EY,Cherdyntseva NV,et al.Potentiali?ties of aberrantly methylated circulating DNA for diagnostics and post?treatment follow?up of lung cancer patients[J].Lung Cancer,2013,81(3):397-403.

[67]Kneip C,Schmidt B,Seegebarth A,et al.SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma[J].J Thorac Oncol,2011,6(10):1632-1638.

[68]Vinayanuwattikun C,Sriuranpong V,Tanasanvimon S,et al.Epithelial?specific methylation marker:a potential plasma biomarker in advanced non?small cell lung cancer[J].J Thorac Oncol,2011,6(11):1818-1825.

[69]Salazar F,Molina MA,Sanchez?Ronco M,et al.First?line therapy and methylation status of CHFR in serum influence outcome to chemo?therapy versus EGFR tyrosine kinase inhibitors as second?line therapy in stage IV non?small?cell lung cancer patients[J].Lung Cancer,2011,72(1):84-91.

[70]Dawson SJ,Tsui DW,Murtaza M,et al.Analysis of circulating tumor DNA to monitor metastatic breast cancer[J].N Engl J Med,2013,368(13):1199-1209.

[71]McBride DJ,Orpana AK,Sotiriou C,et al.Use of cancer?specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors[J].Genes Chromosomes Cancer,2010,49(11):1062-1069.

[72]Leary RJ,Kinde I,Diehl F,et al.Development of personalized tumor biomarkers using massively parallel sequencing[J].Sci Transl Med,2010,2(20):20ra14.

[73]Lipson EJ,Velculescu VE,Pritchard TS,et al.Circulating tumor DNA analysis as a real?time method for monitoring tumor burden in melanoma patients undergoing treatment with immune checkpoint blockade[J].J Immunother Cancer,2014,2(1):42-48.

[74]Yoshimasu T,Maebeya S,Suzuma T,et al.Disappearance curves for tumor markers after resection of intrathoracic malignancies[J].Int J Biol Markers,1999,14(2):99-105.

[75]Ito K,Hibi K,Ando H,et al.Usefulness of analytical CEA doubling time and half?life time for overlooked synchronous metastases in colo?rectal carcinoma[J].Jpn J Clin Oncol,2002,32(2):54-58.

[76]Shinozaki M,O'Day SJ,Kitago M,et al.Utility of circulating B?RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy[J].Clin Cancer Res,2007,13(7):2068-2074.

[77]Forshew T,Murtaza M,Parkinson C,et al.Noninvasive identifica?tion and monitoring of cancer mutations by targeted deep sequencing of plasma DNA[J].Sci Transl Med,2012,4(136):136ra68.

[78]Tie J,Kinde I,Wang Y,et al.Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer[J].Ann Oncol,2015,26(8):1715-1722.

[79]Pathak AK,Bhutani M,Kumar S,et al.Circulating cell?free DNA in plasma/serum of lung cancer patients as a potential screening and prognostic tool[J].Clin Chem,2006,52(10):1833-1842.

[80]Nygaard AD,Garm Spindler KL,Pallisgaard N,et al.The prognostic value of KRAS mutated plasma DNA in advanced non?small cell lung cancer[J].Lung Cancer,2013,79(3):312-317.

[81]Olsson E,Winter C,George A,et al.Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease[J].EMBO Mol Med,2015,7(8):1034-1047.

[82]Misale S,Yaeger R,Hobor S,et al.Emergence of KRAS mutations and acquired resistance to anti EGFR therapy in colorectal cancer[J].Nature,2014,486(7404):532-536.

[83]Misale S,Arena S,Lamba S,et al.Blockade of EGFR and MEK intercepts heterogeneousmechanismsofacquiredresistanceto anti?EGFR therapies in colorectal cancer[J].Sci Transl Med,2014,6(224):224ra26.

[84]Bardelli A,Corso S,Bertotti A,et al.Amplification of the MET receptor drives resistance to anti?EGFR therapies in colorectal cancer[J].Cancer Discov,2013,3(6):658-673.

[85]De Mattos?Arruda L,Cortes J,Santarpia L,et al.Circulating tumour cells and cell?free DNA as tools for managing breast cancer[J].Nat Rev Clin Oncol,2013,10(7):377-389.

[86]Murtaza M,Dawson SJ,Tsui DW,et al.Non?invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA[J].Nature,2013,497(7447):108-112.

[87]Nawroz H,Koch W,Anker P,et al.Microsatellite alterations in serum DNA of head and neck cancer patients[J].Nat Med,1996,2(9):1035-1037.

[88]Gang F,Guorong L,An Z,et al.Prediction of clear cell renal cell carcinoma by integrity of cell?free DNA in serum[J].Urology,2010,75(2):262-265.

Circulating tumor DNA and its application in liquid biopsy of cancer

LI Jun1,LI Tai?Bo2

1Department of Genetics,Harvard Medical School,Boston MA 02115,USA;2Broad Institute,Cambridge MA 02142,USA

Tissue biopsy and genotyping are standard diagnostic procedures for categorizing tumors for clinical decisions at present.However,tumor tissues are often difficult to obtain and only provide a snapshot.Tumor heterogeneity is a significant cause of failures of cancer therapeutics,even molecularly targeted thera?pies.Noninvasive liquid biopsy from blood has been attempted to characterize tumor heterogeneity.Cell?free circulating tumor DNA(ctDNA)in the bloodstream is a versatile biomarker with good potential to genotype the entire tumor.This review focuses on the following aspects of ctDNA:the biology of ctDNA;tumor?specific ctDNA mutations;the epigenetic alterations of ctDNA;ctDNA detection methods;the potential application of ctDNA in the diag?nosis,treatment and prognosis of tumor.

circulating tumor DNA;liquid biopsy;diagnosis,treatment and prognosis

R740.43

A

2095?6894(2017)03?01?06

2016-12-14;接受日期:2016-12-30

李 君.博士,哈佛大學醫學院博士后研究員.研究方向:循環腫瘤DNA、液體活檢.E?mail:Jun_Li2@hms.harvard.edu

猜你喜歡
基因突變檢測
大狗,小狗——基因突變解釋體型大小
英語世界(2023年6期)2023-06-30 06:29:10
“不等式”檢測題
“一元一次不等式”檢測題
“一元一次不等式組”檢測題
“幾何圖形”檢測題
“角”檢測題
管家基因突變導致面部特異性出生缺陷的原因
基因突變的“新物種”
乙型肝炎病毒逆轉錄酶基因突變的臨床意義
小波變換在PCB缺陷檢測中的應用
主站蜘蛛池模板: 极品私人尤物在线精品首页| 欧美精品啪啪| 人妻丰满熟妇AV无码区| 在线亚洲天堂| 色播五月婷婷| 日本精品影院| 亚洲无码久久久久| 在线观看欧美精品二区| 久久无码免费束人妻| 欧美成人区| 在线观看亚洲成人| 香蕉在线视频网站| 久久青草免费91观看| 国产综合色在线视频播放线视| 亚洲天堂精品在线观看| 色老头综合网| 伊人激情综合网| 日韩国产一区二区三区无码| 日韩人妻无码制服丝袜视频| 亚洲天堂日韩在线| 欧美日韩激情在线| 试看120秒男女啪啪免费| 亚洲αv毛片| 天堂av综合网| 四虎国产永久在线观看| 国产欧美日韩18| 中日无码在线观看| 久久久久国产精品嫩草影院| 中文无码精品A∨在线观看不卡| 亚洲熟女偷拍| 欧美成人影院亚洲综合图| 日韩精品成人在线| 国产精品无码久久久久久| 国产一区二区三区在线观看免费| a级毛片毛片免费观看久潮| 久久频这里精品99香蕉久网址| 99re热精品视频中文字幕不卡| 国产精品久久久久久久久久98| 日韩国产亚洲一区二区在线观看| 国产99免费视频| 亚洲成人精品在线| 一级片一区| 久久一色本道亚洲| 成人免费一区二区三区| 波多野结衣无码中文字幕在线观看一区二区 | 人人爽人人爽人人片| 毛片网站免费在线观看| 亚洲高清国产拍精品26u| 国产成人超碰无码| 成人午夜在线播放| 中文字幕佐山爱一区二区免费| 亚洲资源在线视频| 国产永久在线视频| 欧美a在线看| 中国国产A一级毛片| 九九热免费在线视频| 亚洲欧洲AV一区二区三区| 日韩欧美一区在线观看| 精品在线免费播放| 啪啪免费视频一区二区| 五月激激激综合网色播免费| 2020精品极品国产色在线观看 | 久久免费视频播放| 日韩人妻少妇一区二区| 欧美a级在线| 真人免费一级毛片一区二区| 色一情一乱一伦一区二区三区小说| 日韩国产高清无码| 999国产精品| 成人福利免费在线观看| 国产在线观看人成激情视频| 亚洲天堂2014| 热思思久久免费视频| 日本AⅤ精品一区二区三区日| 婷婷五月在线| 国产欧美性爱网| 精品久久香蕉国产线看观看gif | 直接黄91麻豆网站| 欧美在线国产| av尤物免费在线观看| 色综合久久无码网| 久996视频精品免费观看|