999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Explicit Formula for the Smarandache Functionand Solutions of Related Equations

2017-05-15 11:06:44LIAOQunyingLUOWenli
關鍵詞:數學

LIAO Qunying, LUO Wenli

(Institute of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan)

The Explicit Formula for the Smarandache Functionand Solutions of Related Equations

LIAO Qunying, LUO Wenli

(InstituteofMathematicsandSoftwareScience,SichuanNormalUniversity,Chengdu610066,Sichuan)

Letφ(n) andS(n) be the Euler function and Smarandache function for a positive integern, respectively. By using elementary methods and techniques, the explicit formula forS(pα) is obtained, wherepis a prime andαis a positive integer. As a corollary, some properties for positive integer solutions of the equationsφ(n)=S(nk) orσ(2αq)/S(2αq) are given, whereqis an odd prime andσ(n) is the sum of different positive factors forn.

Smarandache function; Euler function; Gauss function; perfect number

1 Introduction and Main Results

In 1918, Kempner[1]studied the formula of the value min{m:m∈N,n|m!}forafixedpositiveintegern.In1993,Smarandacheraisedsomeinterestingnumbertheoryproblems,andputforwordthedefinitionoftheSmarandachefunctionS(n)=min{m:m∈N,n|m!} for a positive integern. From the definition,S(1)=1,S(2)=2,S(3)=3, and so on. So far, there are some good related results[1-9]. For example, in [2], the distribution ofS(n) was discussed, and the asymptotic formula ofS(n) was given as follows

whereP(n) is the maximum prime factor ofn, andζ(s) is the Riemann-zeta function. In [3], Farris studied the bound ofS(n) and got the following upper and lower bounds

On the other hand, a lot of number theory equations related toS(n) have been studied in recent years. Especially, for a given positive integerk, many properties for positive integer solutions of the equationφ(n)=S(nk) were studied, whereφis the Euler function. Easy to see that this is equivalent to solve the equation

(*)

wherepis a prime, gcd(p,m)=1 andS(pαk)≥S(mk).

Theorem1.1Letpbeaprimeandαbeapositiveinteger.

1)Foranypositiveintegerrandα=pr,wehave

2)Foranypositiveintegerr, t∈[1,r]andα=pr-t,wehave

3)Foranypositiveintegerr, t∈[r+1,pr-pr-1]andα=pr-t.

(I)If

with

then we have

(1)

(II) If

witht∈[1,kn] and

then

(2)

Corollary 1.2 Letαbe a positive integer. If

then we haveS(2α)=α+n.

Fork=2,3,4, the solutions of the equation (*) have been discussed in [7]. In the present paper, we complement their results and obtain some necessary conditions for solutions of the equation (*).

Theorem 1.3 1) For any positive integerk, there are no any primepand positive integermcoprime withp, such thatφ(pm)=S(pk) andS(pk)≥S(mk).

2) For any positive integerk, if there are some primepand positive integermcoprime withp, such thatφ(p2m)=S(p2k) andS(p2k)≥S(mk). Thenp=2k+1 or 2≤p≤k. Furthermore,

(I) if 2k+1=p, then

(II) otherwise, i.e., 2≤p≤k, thenk≥3 and

3) For any positive integerk, if there are some primepand positive integermcoprime withp, such thatφ(pαm)=S(pαk) andS(pαk)≥S(mk). Thenαk+1>pα-3(p2-1) and 1≤φ(m)≤q, where

4) For any positive integerk, there exist some primepand positive integermcoprime withp, such thatφ(p3m)=S(p3k) andS(p3k)≥S(mk), namely,m=1,2.

2)Letpbeanoddprime, α≥1andn=2αp.

3)If2r-1isaprimeandn=22r-1(2r-1),then

Remark For convenience, throughout the paper we denote [·] to be the Gauss function.

2 The Proofs for Our Main Results

Before proving our main results, the following Lemmas are necessary.

2) For any primepand positive integerkwithk≤p, we have

Lemma 2.2 For any positive integerαand primep, we haveS(pα)≤(α-kα)p, wherekα(p+1)≤α<(kα+1)(p+1).

Proof For 0<α

Now forα=m≥p+1, ifS(pm)=(m-km)pwith

then

Thus forα=m+1, we know that

Hence we have two cases as following.

(I) If

thenkm+1=km. By the definition ofS(n), we haveS(pm+1)≤S(pm)+p, and so

therefore in this case Lemma 2.2 is true.

(II) Otherwise, we havem+1=(km+1)(p+1), and thenkm+1=km+1 andm-km=(km+1)p, where

Note that

therefore

This means that Lemma 2.2 is true.

By the definition ofS(n), we immediately have the following.

Lemma 2.3 Letpbe a prime andmbe a positive integer. Then

The Proof for Theorem 1.1 1) Sincepis a prime, and so

Thus, by the definition ofS(n), we haveS(ppr)=pr+1-pr+p, and then (1) of Theorem 1.1 is proved.

2) Since

andpr‖(pr+1-pr), and so for any positive integerrandα=pr-twitht∈[1,r], we haveS(pα)=pr+1-pr, thus (2) of Theorem 1.1 is true.

3) Forα=pr-twithr+1

(3)

In fact, form=1, i.e.,α=pr-r-1, we have

And then by the definition ofS(n), we can obtain

which means that (3) is true form=1. Now suppose that (3) is true for anym=k(≥1), i.e.,

Then form=k+1, by Lemma 2.3, we have

(A)

or

(B)

For the case (A), by Lemma 2.3, we have

and then

which means that (3) is true.

whichmeansthattheidentity(3)issatisfied.

Fromtheabove,theidentity(3)istrue.

Nowweprove(3)ofTheorem1.1.

1)Supposethatforanypositiveintegerk1andm=pk1such thatα=pr-r-pk1. Fromr+m∈[r+1,pr-pr-1], we haver+pk1∈[r+1,pr-pr-1], thus by the identity (3) and (1) of Theorem 1.1, we can obtain

2) Suppose that for any positive integerk1,s∈[1,k1] andm=pk1-s, such thatα=pr-r-(pk1-s). Fromr+m∈[r+1,pr-pr-1], i.e.,r+pk1-s∈[r+1,pr-pr-1], (3) and (2) of Theorem 1.1, we have

3) Suppose that there is some positive integerk1ande∈[k1+1,pk1-pk1-1], such thatm=pk1-e, namely,α=pr-r-(pk1-e). Fromr+m∈[r+1,pr-pr-1] we haver+pk1-e∈[r+1,pr-pr-1]. Now set

then

Similar to the previous discussions, we have the following three cases.

1′) If there is some positive integerk2such thatm1=pk2, i.e.,

and

Thus by (3) and (1) of Theorem 1.1, we have

which satisfies (1) of Theorem 1.1.

2′) Suppose that there is some positive integerk2andt1∈[1,k2], such thatm1=pk2-t1, i.e.,

and so

Thus by (3) and (2) of Theorem 1.1, we have

which satisfies (2) of Theorem 1.1.

3′) Suppose that there is some positive integerk2andt1∈[k2+1,pk2-pk2-1], such thatm1=pk2-t1, i.e.,

Now set

then

and so

Similar to the previous discussions, we know thatα∈[pr-1,pr] is a positive integer. Thus, one can repeat the above discussions 1)-3).

From the above discussions, Theorem 1.1 is proved.

The Proof for Corollary 1.2 For any positive integerski(1≤i≤n) with 1≤k1

(**)

Note that for anykm(1≤m≤n-1), we have

Thus from (**) we can get

Hence

Thus Corollary 1.2 is proved.

The Proof for Theorem 1.3 1) If there are some primepand positive integermcoprime withp, such thatS(pk)=φ(pm) andS(pk)≥S(mk). Then forp=2, we have

Byφ(2m)≡ 0(mod 2) we havem≥3. While byS(2k)≥S(mk), we havem=1, this is a contradiction. And sop≥3, thus from the definition ofS(n) and the assumption thatpis coprime withm, we have

2) Suppose that there exist some positive integerα, primepand positive integermcoprime withp, such thatφ(p2m)=S(p2k) andS(p2k)≥S(mk).

(I) For the case 2k≤p, by (2) of Lemma 2.1, we have

i.e., 2k=(p-1)φ(m). Note thatpis a prime, ifp=2, then by 2k≤p=2 we havek=1, and soφ(m)=2, thusm=3,4,6. Hence from gcd(p,m)=1 andp=2, we can getm=3. In this case,

which means that (p,m)=(2,3) is a solution.

Now forp≥3, by 2k≤pwe have

and soφ(m)=1, i.e.,m=1 or 2 andp=2k+1, hence

(II) For the case 2k>p, suppose thatt1andt2are both nonnegative integers such that

(4)

and

Then byS(p2k)=φ(p2m) and Lemma 2.2, we have

(5)

and

Now from (5), we know that

which means that

(6)

Note that 2k>p, i.e., 2kp>p2, thus we have three cases as following.

1) For the case

which means that

and sop2-1|p+2, i.e.,p+2≥p2-1. While

2) For the case

i.e.,

3) Therefore we must have (p2-1)φ(m)-(p+1)>p2, namely,

By (6), we have

i.e.,

(7)

thus 2p2-(2k+1)p-3≤0, and so

(8)

Note thatpis a prime, and so 2p-(2k+1)≤1. If 2p-(2k+1)=1, then by (8), we know that (p,k)=(2,1),(3,2). From (p,k)=(2,1), we have 2k=p=2, this is a contradiction to 2k>p. Sok=2,p=3 or 2p<2k+1. Byk=2,p=3 and (7), we haveφ(m)=2, and thenm=3,4,6. Note that gcd(p,m)=1 and then forp=3, we havem=4, thus

namely,

(9)

Note that

whichisacontradiction.Hencek≥3,thusweprove(2)ofTheorem1.3.

3)Forα≥3.Ifαk≤p,thenby(2)ofLemma2.1,wehave

thus

henceαk=p=2,whichisacontradictiontotheassumptionα≥3.Andsoαk>p.Nowsupposethatt1andt2arebothnonnegativeintegerssuchthat

(10)

and

(11)

namely,

thus

and so

i.e.,

(12)

Note that for any positive integerm, we haveφ(m)≥1, therefore we must haveαk+1≥pα-3(p2-1).

If

i.e.,φ(m)=1. In this case, forα=3 we have 3k+1=p2-1, i.e.,p2=3k+2, which is impossible. Soα>3, and then

We can conclude that

(13)

Otherwise, fromα-3≥pα-4(p-1)-1, we have

(14)

It is easy to see that forα≥4 there is no any primep>5 satisfying (14). Hencep=2 or 3. Byp=3 and (14) we haveα≥2(3α-4+1). While 2(3α-4+1)>αforα≥5. Therefore from (14) we haveα=4, and then 4k+1=3α-1-3α-3=24, which is a contradiction. Thus we must havep=2.

Now fromp=2 and (14), we haveα>2α-4+2, and soα=4,5,6. Thus byαk+1=pα-1-pα-3andα=4, we haveαk+1=4k+1=23-2=6, which is a contradiction. Forα=5, we have 5k+1=12, which is also a contradiction. Forα=6,6k+1=24, it is also a contradiction. Hence (14) is not true, and soα-3

Now byφ(m)=1, gcd(p,m)=1 andφ(pαm)=S(pαk), we have

this meanspα-3+p=pα-2. Note thatpis a prime, thus we havep=2 andα=4. And so 4k+1=23-2=6, which is a contradiction.

From the above we must haveαk+1>pα-3(p2-1)≥p+1. Without loss of the generality, set

Now by (12), we have

(15)

and so 1≤φ(m)≤q. Thus we prove (3) of Theorem 1.3.

Thusweprove(4)ofTheorem1.3.

FromtheaboveTheorem1.3isproved.

we have

i.e.,

(16)

Thus from

we have

(17)

wecanobtain1≤m≤d.

ThusweproveTheorem1.4.

TheProofforCorollary1.5 1)Ifp=2r+1isaprimeandα=2r,n=22r(2r+1).Then

Ontheotherhand,bythedefinitionofσ(n)and(1)ofTheorem1.1,wealsohave

2)Sincen=2p-1(2p-1)isaperfectnumber,soσ(n)=2p(2p-1).Thusfrom(1)ofLemma2.1and2p-1isaprimenumber,wehave

Notethat

andso

Bythesimilarway,wecanprovepart(3).

ThusweproveCorollary1.5.

3 Some Examples

Inthissection,someexamplesforbothTheorem1.1andCorollary1.2aregiven.

Example3.1Letp=3,α=35=243,thenby(1)ofTheorem1.1wehave

Ontheotherhand,from

163+54+18+6+2+0=243,

and the definition ofS(n), we also haveS(3243)=489.

Example 3.2 Letp=3,α=36-4=725. Namely, be takingr=6,t=4 in (2) of Theorem 1.1, we know that

On the other hand, from

486+162+54+18+6+2+0=728,

485+161+53+17+5+1+0=722,

and the definition ofS(n), we also haveS(3725)=1 458.

Example 3.3 Letp=3,α=5 017, i.e.,

thus from (2) of Theorem 1.1, we have

4×2 187+16×81=10 044.

On the other hand, from

3 348+1 116+372+124+

41+13+4+1=5 019,

and

3 347+1 115+371+123+

41+13+4+1=5 015,

we also haveS(35 017)=10 044.

4 Conclusion

[1] KEMPNER A J. Miscellanea[J]. American Mathematical Monthly,1918,25(5):201-210.

[2] XU Z F. The value distribution of Smarandache function[J]. Acta Mathematica Sinica,2006,49(5):1009-1012.

[3] FARRIS M, MITSHELL P. Bounding the Smarandache function[J]. Smarandache Notions J,2002,13:37-42.

[4] SMARANDACHE F. Only Problems, Not Solution[M]. Chicago:Xiquan Publishing House,1993.

[5] GORSKI D. The pseudo-Smarandache function[J]. Smarandache Notions J,2002,13(1/2/3):140-149.

[6] LE M H. A lower bound forS(2p-1(2p-1))[J]. Smarandache Notions J,2001,12(1):217-218.

[7] LIU Y M. On the solutions of an equation invloving the Smarandache function[J]. Scientia Magna,2006,2(1):76-79.

[8] 溫田丁. Smarandache函數的一個下界估計[J]. 純粹數學與應用數學,2010,26(3):413-416.

[9] YI Y. An equation in volving the Euler function and Smarandache function[J]. Scientia Magna,2005,1(2):172-175.

Smarandache函數的準確計算公式以及相關數論方程的求解

廖群英, 羅文力

(四川師范大學 數學與軟件科學學院, 四川 成都 610066)

Smarandache函數; 歐拉函數; 高斯函數; 完全數

O

A

1001-8395(2017)01-0001-10

2016-01-03

國家自然科學基金(11401408)和四川省科技廳研究項目(2016JY0134)

廖群英(1974—),女,教授,主要從事編碼和密碼學理論的研究,E-mail:qunyingliao@sicnu.edu.cn

Foundation Items: This work is supported by National Natural Science Foundation of China (No.11401408) and Project of Science and Technology

10.3969/j.issn.1001-8395.2017.01.001

(編輯 周 俊)

Received date:2016-01-03

Department of Sichuan Province (No.2016JY0134)

2010 MSC:12E20; 12E30; 11T99

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 99ri精品视频在线观看播放| 国语少妇高潮| 国产精品久久久免费视频| 精品三级在线| 国产精品女熟高潮视频| 日韩毛片基地| 亚洲精品国产精品乱码不卞| 日a本亚洲中文在线观看| 狼友视频国产精品首页| 亚洲视频影院| 国产精品久久久久久久久| 天堂在线www网亚洲| 国产swag在线观看| 国产精品久久久久婷婷五月| 久久福利片| 午夜成人在线视频| 最新国产精品第1页| 国产午夜人做人免费视频中文| 欧美国产在线看| 69av在线| 中文字幕日韩欧美| 色欲色欲久久综合网| 欧美日韩精品在线播放| 中文字幕在线永久在线视频2020| 91精品情国产情侣高潮对白蜜| 免费在线成人网| 亚洲天堂视频在线观看免费| 国产第一色| 国产成人精品亚洲日本对白优播| 精品无码一区二区三区电影| 97综合久久| 91黄视频在线观看| 99免费视频观看| 亚洲欧美日韩另类| 日韩AV无码一区| 三级毛片在线播放| 国产一区二区免费播放| 欧美天堂在线| 久久无码免费束人妻| 91精品国产综合久久不国产大片| 干中文字幕| 国产精女同一区二区三区久| 91日本在线观看亚洲精品| 青青热久免费精品视频6| 麻豆精品在线| 久久久精品无码一二三区| 一本色道久久88综合日韩精品| 亚洲无码电影| 亚洲浓毛av| 美女扒开下面流白浆在线试听| 亚洲精品日产精品乱码不卡| 国产精品 欧美激情 在线播放 | 国产无人区一区二区三区| 国产资源免费观看| 日本亚洲最大的色成网站www| 欧美日韩高清| 亚洲一区二区三区在线视频| 91精品小视频| 亚洲精品在线影院| 国产激情无码一区二区APP| a级毛片免费网站| 夜夜操国产| 国产福利小视频高清在线观看| 久久久久久久久亚洲精品| 97免费在线观看视频| 99这里只有精品6| 久久黄色视频影| 国产欧美日韩资源在线观看| 亚洲经典在线中文字幕| 国产精品尤物铁牛tv| 国产精品妖精视频| 中文字幕在线欧美| 国产欧美综合在线观看第七页| 精品欧美日韩国产日漫一区不卡| 免费国产无遮挡又黄又爽| 亚洲国产成人在线| 国产午夜不卡| 蜜芽国产尤物av尤物在线看| 国产精品无码久久久久AV| 天天综合天天综合| 456亚洲人成高清在线| 亚洲婷婷丁香|