999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

2015年高考福建理科卷壓軸試題解法探究
——洛必達法則在壓軸題中的解題應用

2017-05-17 09:56:02福建省泉州實驗中學362000李仲青
數理化解題研究 2017年10期
關鍵詞:解題

福建省泉州實驗中學(362000) 李仲青●

?

2015年高考福建理科卷壓軸試題解法探究
——洛必達法則在壓軸題中的解題應用

福建省泉州實驗中學(362000)
李仲青●

解析 (Ⅰ)(Ⅱ)略.

由洛必達法則得,

故k≤1.

由①②可得,k=1.

筆者在近年的全國卷的高考試題中尋得數例,有興趣的讀者可以動手驗證,嘗試用此方法進行求解.

(Ⅱ)若當x≥0時f(x)≥0,求a的取值范圍.

解析 (Ⅰ)略.

(Ⅱ)由x(ex-1)-ax2≥0,可得ax2≤x(ex-1).

(ⅰ)當x=0時,不等式恒成立.

又由洛必達法則得,

>1,因此a≤1.

綜上述:a≤1.

(Ⅰ)求a、b的值;

解析 (Ⅰ)易得a=1,b=1.

當01時h″(x)>0,所以h′(x)有最小值h′(x)=0,即當x>0時,h′(x)≥h′(1)=0,所以h(x)在(0,+∞)上遞增.又因為h(1)=0,

所以當01時,h(x)>0,即g′(x)>0,g(x)單調遞增.

由洛必達法得,

點評 巧妙地構造和差對偶式解題,達到了化繁為簡、化難為易的效果.

解 設M=cos1°+cos2°+…+cos44°,

構造對偶式N=sin1°+sin2°+…+sin44°.

則M+N=(cos1°+sin1°)+(cos2°+sin2°)+…+(cos44°+sin44°)

點評 充分利用式子的特征,巧妙地構造出對偶式,利用解方程的思想解決未知數,從而使問題得以順利解決.

三、證明恒等式

例5 求證:cos2α+cos2β-2cosαcosβcos(α+β)=sin2(α+β)

證明 設M=cos2α+cos2β-2cosαcosβcos(α+β).

構造對偶式N=sin2α+sin2β+2sinαsinβcos(α+β)

則M+N=2-2cos2(α+β)=2sin2(α+β). (1)

M-N=cos2α+cos2β-2cos(α+β)cos(α-β)

=cos[(α+β)+(α-β)]+cos[(α+β)-(α-β)]-2cos(α+β)cos(α-β)=0. (2)

由(1)+(2)得 2M=2sin2(α+β),

即M=sin2(α+β),

原式得證.

例6 在三角形ABC中,求證:cos2A+cos2B+cos2C+2cosAcosBcosC=1.

證明 設M=cos2A+cos2B+cos2C+2cosAcosBcosC,

構造對偶式N=sin2A+sin2B+sin2C+2sinAsinBcosC

則M+N=3+2cosC(sinAsinB+cosAcosB)=3+2cosCcos(A-B)

M-N=cos2A+cos2B+cos2C+2cosCcos(A+B)

=cos2A+cos2B+(2cos2C-1)-2cos2C=cos2A+cos2B-1. (2)

由(1)+(2)得 2M=2,即M=1,

原式得證.

點評 例5與例6都是構造異名對偶式,將sinα與cosα互換,充分運用三角公式進行運算和化簡,從而達到了簡捷、高效的解題目的.

四、證明不等式

例7 求證:2sin4x+3sin2xcos2x+5cos4x≤5.

證明 設M=2sin4x+3sin2xcos2x+5cos4x,

構造對偶式N=2cos4x+3cos2xsin2x+5sin4x.

則M+N=7(sin4x+cos4x)+6sin2xcos2x=7(sin2x+cos2x)2-8sin2xcos2x

=7-2sin22x=5+2cos22x, (1)

M-N=3(cos4x-sin4x)=3(cos2x+sin2x)(cos2x-sin2x)=3cos2x. (2)

原式得證.

點評 此題若采用降冪或化同名三角函數的思路證明就非常困難,而根據對稱的思想構造了一組對偶式來進行證明,解題過程就顯得簡潔明了.

構造對偶式,N=(1-sinA+sinB)+(1-sinB+sinC)+(1-sinC+sinA).

(當且僅當 sinA=sinB=sinC即A=B=C時等號成立)

又因為N=3,所以M≥3.故

點評 巧妙地構造出與之匹配的倒數對偶結構式,合理、妥善地運用基本不等式獲得了較為簡捷的解答.

五、解方程

解 設M=cos2x+cos22x+cos23x,

構造對偶式,N=sin2x+sin22x+sin23x.

則M+N=3, (1)

M-N=cos2x+cos4x+cos6x=cos(3x-x)+cos(3x+x)+(2cos23x-1)

=2cos3xcosx+(2cos23x-1)

=2cos3x(cosx+cos3x)-1

=4cosxcos2xcos3x-1. (2)

由(1)+(2)得 2M=4cosxcos2xcos3x+2.又M=1

點評 通過構造對偶式,把原方程轉化為cosxcos2xcos3x=0這一美妙而又簡單的有利條件,使問題得到了圓滿解決.

G632

B

1008-0333(2017)10-0008-02

猜你喜歡
解題
用“同樣多”解題
設而不求巧解題
用“同樣多”解題
巧用平面幾何知識妙解題
巧旋轉 妙解題
根據和的變化規律來解題
例談有效增設解題
拼接解題真簡單
讀寫算(下)(2016年11期)2016-05-04 03:44:22
解題勿忘我
也談構造等比數列巧解題
主站蜘蛛池模板: 亚洲V日韩V无码一区二区| 狠狠色丁婷婷综合久久| 国产欧美日韩另类精彩视频| 91九色国产在线| 综合色亚洲| 在线观看的黄网| 亚洲乱码在线播放| 日韩欧美中文字幕一本| AV无码无在线观看免费| 青草午夜精品视频在线观看| 国产精品吹潮在线观看中文| 91青青在线视频| 97久久免费视频| 国产99热| 久久综合色88| 久久精品无码国产一区二区三区| 日本精品视频| 亚洲天堂网在线视频| 找国产毛片看| 久久亚洲高清国产| 综合亚洲网| 欧美一级大片在线观看| 午夜日韩久久影院| 国产激爽爽爽大片在线观看| 狠狠色婷婷丁香综合久久韩国| 无码中文AⅤ在线观看| 亚洲最大情网站在线观看| 国产激情无码一区二区APP| 欧美翘臀一区二区三区| 亚洲侵犯无码网址在线观看| 亚洲中文字幕97久久精品少妇| 91麻豆国产视频| 国产精品久久久久久久久kt| 激情在线网| 呦系列视频一区二区三区| 91年精品国产福利线观看久久 | 日韩午夜片| 欧美中文一区| 久久人人妻人人爽人人卡片av| 久久国产精品麻豆系列| 国产黄色爱视频| 国内精品免费| 国产成人h在线观看网站站| 一区二区三区成人| 午夜福利在线观看成人| 成人在线综合| 久久青草精品一区二区三区| 日本不卡视频在线| 国产乱论视频| 国产精品亚洲专区一区| 国产资源免费观看| 一区二区日韩国产精久久| 精品免费在线视频| 免费一看一级毛片| 国产美女无遮挡免费视频| 激情爆乳一区二区| 久久综合九九亚洲一区| 99r在线精品视频在线播放 | 日韩最新中文字幕| 亚洲国产一成久久精品国产成人综合| 中文字幕在线日韩91| 成人在线不卡视频| 狠狠色香婷婷久久亚洲精品| 久久久久久久久亚洲精品| 国产自在线拍| 久久这里只精品热免费99| 内射人妻无码色AV天堂| 国产在线98福利播放视频免费| av在线5g无码天天| 91亚洲免费| 五月婷婷综合色| 欧美日韩国产精品va| 久久综合伊人 六十路| 色婷婷综合在线| 伊人久久福利中文字幕| 日韩欧美中文字幕在线韩免费| 亚洲精品无码专区在线观看| 3D动漫精品啪啪一区二区下载| 久久九九热视频| 草草影院国产第一页| 欧美啪啪视频免码| 亚洲丝袜第一页|