999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于時間序列的航天器遙測數據預測算法

2017-05-24 14:45:32閆謙時崔廣立
計算機測量與控制 2017年5期
關鍵詞:模型

閆謙時,崔廣立

(西安工業大學 計算機科學與工程學院,西安 710021)

基于時間序列的航天器遙測數據預測算法

閆謙時,崔廣立

(西安工業大學 計算機科學與工程學院,西安 710021)

在航天器遙測數據預測領域,基于時間序列的預測方法有著廣闊的應用前景;時間序列有一明顯的特性就是記憶性,記憶性是指時間數列中的任一觀測值的表現皆受到過去觀測值影響;它的基本思想是根據觀測數據的特點為數據建立盡可能合理的統計模型,利用模型的統計特性解釋數據的統計規律,以期達到預報的目的;提出了采用模式識別和參數估計的方法,結合航天器遙測動態數據,建立關于航天器遙測數據的時序預測模型,對航天器遙測數據趨勢進行檢測和預報。

遙測數據;時間序列;預測;參數估計

0 引言

近年來,我國的航天科技發展日新月異,然而,不斷增加的在軌航天器數量、不斷延長的航天器設計壽命以及不斷增多的航天器型號種類,給地面的管理工作增加了更大的難度,因此對于地面工作人員來說,有效維護航天器運行的穩定性十分重要。和地面的模擬環境相比,航天器運行的空間環境更加的復雜和不可知[1]。航天器在運行過程中長期受到光照、輻射、太陽粒子等多種因素的作用和影響,致使其運行過程中的性能與功能隨在軌時間而發生一定變化,而我們地面控制中心接收到的遙測數據的變化趨勢可以有效的反映出這一情況。所以,為了提高航天器運行的可靠性,降低其運行風險,保障航天器在軌道上長期安全的運行。我們有必要對航天器遙測數據在未來一段時期內的變化趨勢進行預測,進一步達到變化趨勢外推的作用,及時發現數據的異常變化。

在航天器遙測數據預測領域,基于時間序列的預測方法有著廣闊的應用前景。航天器遙測數據的種類繁多,有長期趨勢波動變化的;有季節性變化的;還有一些隨機性變化的。遙測數據的變化能夠反映航天器性能和狀態的改變。根據這些改變,從而可以對航天器各部件的性能和趨勢進行預測。首先通過對航天器遙測數據參數值的變化特點進行平穩性檢測分析,然后采用差分運算法將非平穩的時間序列進行平穩化處理。然后根據時間序列算法特性選取適當的時間序列預測模型,利用MDL準則和貝葉斯估計方法確定模型的階數和參數。進而建立完整的預測模型方程,對遙測數據在未來一段時間內的趨勢變化進行預測。

1 遙測數據預處理

衛星在復雜的空間環境中運行時,會產生大量的遙測數據。這些遙測數據的變化規律能夠很好的反應衛星的運行性能,這些遙測數據包括發動機的溫度、推進線路盒溫度、太陽翼的溫度、電池電壓等等。然而,在實際過程中由于航天器在運行時會受到復雜環境的影響,致使我們得到的遙測數據有可能是非平穩序列。如果遙測數據的時序是非平穩的,那么時間序列回歸中可能會出現預測有偏和無效等問題。所以在進行遙測數據預測前,對數據的變化規律進行預處理,去除野值、跳變等情況,得到平穩性序列。從而可以提高預測精度。常用有差分變換和對數變換進行。通常情況下我們需要對序列進行反復的變換和比較,最終遙測數據時序的正態性和平穩性等達到相對較好的狀態。

1.1 平穩性檢驗

平穩性檢驗是動態數據處理的必要前提,因為時間序列算法的處理對象是平穩性的數據序列。所以獲得一個時間序列之后,要對其進行分析預測,首先要保證該時間序列的平穩性。這里采用游程檢驗法對數據序列進行平穩性檢驗。

比如某衛星推進線路盒殼溫樣本序列為:

x={8.128,8.604,8.584,8.870,8.859,8.574,8.859,10.288,10.278,10.564}

序列的均值為9.1608,序列中比均值小的記為“-”,比均值大的記為“+”,得到符號序列,其中每一段連續相同的符號序列稱為一個游程。該樣本序列的游程如下。

共有2個游程,序列長度為N:

N=N1+N2

(1)

N1和N2分別表示“+”和“-”出現的次數。游程總數r=2,則統計量:

(2)

近似服從N(0,1)分布,其中:

(3)

(4)

通過計算可得E(r)=5.2,D(r)=0.135 8,進而Z=-8.683 9,在顯著性水平α=0.05下,|Z|=8.683 9>1.96,因此該溫度參數序列是非平穩的。

1.2 數據平穩化處理

由于樣本序列是非平穩的,所以需要通過多次差分運算是遙測數據序列趨向平穩。差分運算可用后移算法B或者差分算子▽以及相應的階數d表示。

一階差分:

▽Xt=Xt-Xt-1=(1-B)Xt

(5)

二階差分:

▽2Xt=Xt-2Xt+Xt-2=(1-B)2Xt

(6)

一般地,d階差分:

▽dXt=(1-B)dXt

(7)

其中:▽d稱為d階差分算子:

(8)

為了消除時間序列中的趨勢性,我們通過逐項相減的方法從而使之前后相關性消除,這就是差分法的基本思想。我們可以通過對時間序列進行一階差分運算,消除線性趨勢。通過對時間序列進行二階差分運算,可以消除二階線性趨勢。當通過進行d階差分運算,就可以消除序列的d次多項式趨勢。最終使得所需的非平穩時間序列逐漸趨于平穩。

2 遙測數據預測模型

根據遙測參數隨著時間而發生規律性變化的特點,我們采用基于時間序列模型的外推預測方法。時間序列預測是根據歷史的數據來對時間序列的未來趨勢進行推測[3]。它的基本思想是根據觀測數據的特點為數據建立盡可能合理的統計模型,利用模型的統計特性解釋數據的統計規律,以期達到預報的目的。本算法采用模式識別和參數估計的方法,結合航天器遙測動態數據,建立關于航天器遙測數據的時序預測模型,對航天器遙測數據趨勢進行檢測和預報。在實際應用中許多平穩時間序列往往可由自回歸模型、滑動平均模型和自回歸滑動平均模型近似表示,這樣可以使得相關的分析變得比較簡單,同時也為平穩隨機序列的分析和產生提供了有效方法。

(1)自回歸模型。

時間序列模型中的一種比較簡單常見的模型是自回歸模型,它是一種把自身當做回歸變量的過程。它是把后期隨機變量通過利用前期隨機變量的線性組合來描述的一種線性回歸模型方式。對于時間序列{xt},當它的回歸系數用φ1,φ2,…,φp表示,μt為白噪聲序列,并且隨機項μt與xt-1,xt-2,…,xt-p不相關。那么自回歸模型的表達公式如下:

xt=φ1xt-1+φ2xt-2+…+φpxt-p+μt

(9)

此模型稱為p階自回歸模型。

(2)滑動平均模型。

對于時間序列{xt},當它的滑動平均參數為θ1,θ2,…,θq時,那么滑動平均模型的表達公式為:

xt=μt-θ1μt-1-θ2μt-2-…-θqμt-q

(10)

該模型記為MA(q)。模型的待估參數為θ1,θ2,…,θq,模型的階數為q。

(3)自回歸滑動平均模型。

自回歸移動平均模型,就是把自回歸過程AR和移動平均過程MA結合起來的模型。通過該模型對時間序列樣本數據進行模擬。利用ARMA方法可以通過有限的樣本數據擬合具有一定精度的時間序列數學模型。對于時間序列{xt}自回歸滑動平均模型的表達公式如下:

xt-φ1xt-1-φ2xt-2-…-φpxt-p=μt-θ1μt-1-θ2μt-2-…-θqμt-q[4]

(11)

在上面的式子中p是模型的自回歸階數,q是模型的移動平均階數。自回歸參數是φ1,φ2,…,φp,移動平均參數為θ1,θ2,…,θq,它們是待定參數。AR模型和MA模型是ARMA模型的特殊情況。一個ARMA過程可能是AR與MA過程、幾個AR過程、AR與ARMA過程的迭加,也可能是測度誤差較大的AR過程。ARMA(p,q)是一種比AR(p)和MA(q)更具普遍性的模型。而AR(p)模型和MA(q)模型可以看作是ARMA(p,q)模型的兩個特例。在實際應用任何時間序列都可以通過ARMA(p,q)模型來進行預測。

3 模型的定階

根據時間序列的一段樣本{xi},i=1,2,…,N所包含的信息,利用自相關函數,偏相關函數的性質和其他準則(如AIC、MDL),建立一個能夠正確反映時間序列變化過程的模型。通常情況下,如果時間序列的自相關函數有截斷點,即當階數大于某個數值時,它的自相關系數開始等于零,而它的偏自相關系數卻只是隨著階數的增大而逐漸減小,沒有截斷點,這時采取MA(q)模型。對于隨著階數的增加而時間序列的自相關函數是逐漸減少的,而沒有截斷點,但是它的偏自相關函數卻是有截斷點的,這種情況下我們通常選擇AR(p)模型。設若時間序列的自相關函數和偏自相關函數都只是伴隨著階數的增加而逐漸衰減,但均無截斷點,則無論是采用AR(p)模型還是采用MA(q)模型,其中所包含的的待估參數都比較多。這時,我們通常選擇ARMA(p,q)模型。通過對偏自相關函數的計算,我們可以方便的選取預測模型。這樣就可以通過每個模型的截尾性和拖尾性把各個模型識別出來。

為了最終建立完整的預測方程,需要取得最優階次。要確定預測模型的階次,就是要求得模型中的p和q。常用的方法有AIC準則、MDL準則、殘差方差法等。這里選擇使用MDL準則法進行模型定階。

MDL準則的計算公式為:

(12)

4 估計模型參數

參數估計的方法有很多,每種方法都有各自的優缺點。矩估計法的優點是思想簡單直觀,不需要假設總體分布,計算量也比較小。但是也存在著信息浪費的缺點。而極大似然估計法和最小二乘法都需要假定總體分布,并且計算量比較大。貝葉斯估計的估計精度比較高,所以在這里采用貝葉斯方法來估計模型的參數,首先我們需要計算出模型的似然函數:

(13)

參數θj(j=1,2,3,…q)的后驗分布為:

(14)

參數φi(i=1,2,3…p)的后驗分布為:

(15)

參數σ2的后驗分布為:

(16)

給定Φ,Θ,σ2的初值?1(0),…?p(0)和θ1(0),…θq(0)和σ2(0),然后從后驗分布中分別抽取φi,θj,σ2的值,然后反復迭代直到收斂,最終估計出模型方程的參數值。

通過對時間序列數據是否能夠滿足平穩性要求進行判定,當處于非平穩時進行平穩化處理。然后選擇一種合適的自回歸模型判定階數、估計參數,建立具體的估計方程。然后將已知的時間序列的項代入方程,可預測時間序列中的未來項。

對于具有周期性和平穩性變化規律的遙測參數,比如主母線電壓等,具有很好的預測效果。

5 應用實例

本文以某衛星北主母線電壓的遙測參數作為實例對象,由于衛星運行在復雜的空間環境中電壓的參數變化具有特殊性,需要對數據進行預處理。對于獲得的遙測參數可能會出現跳碼、數據不連續等一些非平穩現象,我們在進行預測模型選擇之前要對數據進行預處理。把有效參數選擇出來,并對遙測數據按照一定的周期性進行取樣,同時選取特定的時間間隔的數據以便建立合理的預測模型。首先通過建立相應的時間序列,并進行平穩性檢驗,得到該時間序列是非平穩的,然后通過差分法進行平穩性處理。經過數據預處理,可以提高預測的精度,然后建立時間預測模型進行預測。

5.1 原始數據和預測數據對比

我們選取某衛星北主母線電壓樣本數據進行分析,選取任意四天的數據作為原始數據應用時間序列模型,來對后七天的數據變化趨勢進行預測,并對比真實值進行誤差分析。通過對四天數據的分析得到的效果圖如圖1所示。

圖1 某衛星任意四天的北主母線電壓曲線

從整體趨勢上看,該數據變化具有日周期性的特點。雖然在每個周期內具體的參數值會存在略微差異,但總體周期趨勢是不變的。所以它可以運用我們的算法來進行預測。經過實驗得到后七天的實際數值和預測數值的對比圖如圖2~3所示。

圖2 后七天的電壓實際數據曲線

圖3 后七天的電壓預測數據曲線

5.2 實驗結果分析

利用建立好的預測模型,把預測得到的電壓數據序列和原始數據進行對比,通過分析可以發現該模型的預測出的數據趨勢能夠較好的反映主母線電壓原始時間序列數據的發展趨勢。從圖3的預測結果中可以觀察出,在一些具體數值上,預測結果和實際數據值之間存在著一定程度的偏差。但在時間序列數據的整體發展趨勢上,原始時間序列中變化較為劇烈的點以及周期性的特點,在該預測模型中都得到了很好的體現。

我們可以發現該模型能夠適應電壓數據的預測計算,能夠預測出數據的狀態變化。為了評定模型的預測精度,我們計算七天的相對誤差率。相對誤差率=(預測值-實際值)/實際值。預測結果標準誤差值如表所示:

表1 相對誤差率

通過分析預測精度變化表,可以看出電壓的變化較為劇烈。在前期,預測的精度相對較高,但隨著時間的推移預測的相對誤差率逐漸增大,預測精度逐漸降低。通過該實驗結果可知該預測算法對于短期的航天器遙測數據的預測是有效的。由于該預測算法所采用的預測模型屬于線性模型,而衛星主母線電壓參數具有非線性的特點,所以該預測算法對于短期內遙測數據預測的擬合度較高,而對于長期的預測精度較低。

6 結論

通過上述分析表明,上述算法對航天器遙測數據在未來短時期內的發展趨勢的預測是有效的。由于航天器長期運行在復雜的空間環境中,遙測數據不僅會受到外部空間環境的影響,同時也會受到自身工作環境等內在因素的干擾,從而導致一些遙測數據具有強烈的非平穩變化趨勢。對于非線性的遙測參數,該算法的擬合度較低,參數的估計精度還有待進一步提高。今后的研究中可以結合BP網絡算法等方法對該算法不斷優化,提高該方法對于遙測數據長期的預測精度。

[1] 孫 健.在軌航天器遙測數據在線預測系統分析與設計[D].北京:北京郵電大學,2013.

[2] 閆 坤.基于時間序列模型的分析預測算法的設計與實現[D].北京:北京郵電大學,2008(5).

[3] 肇 剛,李言俊.基于時間序列數據挖掘的航天器故障診斷方法[J].飛行器測控學報,2010(3):1-5.

[4] 張金玉,張 煒.裝備只能故障診斷與預測[M].北京:國防工業出版社,2013.

[5] 羅鳳曼,時間序列預測模型及其算法研究[D].成都:四川大學,2006.

[6] 王咪咪,時間序列ARMA模型的貝葉斯分析[J].科技信息,2011:568.

Spacecraft Telemetry Data Prediction Algorithm Based on Time Series

Yan Qianshi, Cui Guangli

(School of Computer Science and Engineering, Xi’an Technological University, Xi’an 710021, China)

The prediction method based on time series has broad application prospects in the field of spacecraft telemetry data prediction. One obvious characteristic of time series is memory, and memory is the performance of any observed value in the time series. The basic idea of this model is to establish the statistical model of the data according to the characteristics of the observation data, and to use the statistical characteristics of the model to explain the statistics of the data, so as to achieve the purpose of forecasting. The algorithm using pattern recognition and parameter estimation method, and combined with the spacecraft telemetry dynamic data, the establishment of spacecraft telemetry data time series prediction model, to detect and forecast the trend of the spacecraft telemetry data.

telemetry data; time series; forecast; parameter estimation

2016-11-29;

2017-01-05。

閆謙時(1973-),男,陜西西安人,副教授,碩士研究生導師,主要從事航天器測控、專家系統方向的研究。

1671-4598(2017)05-0188-04

10.16526/j.cnki.11-4762/tp.2017.05.052

TP399

A

猜你喜歡
模型
一半模型
一種去中心化的域名服務本地化模型
適用于BDS-3 PPP的隨機模型
提煉模型 突破難點
函數模型及應用
p150Glued在帕金森病模型中的表達及分布
函數模型及應用
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
3D打印中的模型分割與打包
主站蜘蛛池模板: 97青草最新免费精品视频| 久久久久国产精品嫩草影院| 999精品视频在线| 99热最新在线| 国产精品99r8在线观看| 国产一区二区精品福利 | 国产精品人莉莉成在线播放| 国产成人精品在线1区| 国产浮力第一页永久地址| 视频国产精品丝袜第一页| 国产真实自在自线免费精品| 国产激情无码一区二区免费| 亚洲国产天堂久久综合226114| 国产一级毛片yw| 亚洲日韩精品无码专区97| 青青国产视频| 精品国产www| 久久人体视频| 欧美日本激情| 精品国产aⅴ一区二区三区| 免费高清a毛片| 亚洲天堂网站在线| 亚洲AⅤ综合在线欧美一区| 一个色综合久久| 97se亚洲| 久草视频精品| 国产成人精品一区二区三区| 尤物视频一区| 波多野结衣一二三| 亚洲国产精品成人久久综合影院| 国产成人高清精品免费5388| 香蕉eeww99国产在线观看| 国产精品女主播| 午夜久久影院| 亚洲精品无码日韩国产不卡| 欧美性久久久久| 97视频在线精品国自产拍| 欧美不卡视频在线观看| 欧美一道本| 久久大香伊蕉在人线观看热2| 国产主播一区二区三区| 国产欧美在线| 激情无码字幕综合| 人妻无码一区二区视频| 狠狠躁天天躁夜夜躁婷婷| 精品视频一区在线观看| 亚洲综合激情另类专区| 亚洲无码高清免费视频亚洲 | 欧美人与动牲交a欧美精品| 欧美日韩精品一区二区视频| 98超碰在线观看| 中文字幕在线一区二区在线| 国产夜色视频| 日本精品影院| 成人免费午夜视频| 蜜桃视频一区| 精品国产一区91在线| 婷婷丁香色| 韩日免费小视频| 精品伊人久久久久7777人| 午夜精品福利影院| 国产乱码精品一区二区三区中文 | 亚洲无线视频| 美女扒开下面流白浆在线试听| 韩日午夜在线资源一区二区| 精品无码国产一区二区三区AV| 玖玖精品视频在线观看| 国产成人精品视频一区二区电影 | 99久久人妻精品免费二区| 欧美亚洲网| 黄色片中文字幕| 亚洲IV视频免费在线光看| 一级高清毛片免费a级高清毛片| 国产网友愉拍精品视频| 19国产精品麻豆免费观看| 人妻21p大胆| 日本亚洲欧美在线| 日韩欧美中文在线| 亚洲无码高清免费视频亚洲 | 国产专区综合另类日韩一区| 久久a毛片| 华人在线亚洲欧美精品|