999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

綜述植物—土壤反饋研究進展

2017-05-30 06:27:39周陽姜麗麗李博文崔樹娟孟凡棟王奇汪詩平
廣西植物 2017年11期
關鍵詞:植物

周陽 姜麗麗 李博文 崔樹娟 孟凡棟 王奇 汪詩平

摘要: 該文綜述了植物—土壤反饋研究的定義、途經、方法和國內外的研究現狀以及存在的問題。植物—土壤反饋是指植物改變根際土壤的生物和非生物特征,同時被改變的也能提高或降低該植物的生長,形成正的或負的反饋,從而影響植物群落組成及植物間相互作用。植物—土壤反饋研究對于理解植物群落演替、生態系統多樣性與生產力形成與維持機制,認識生態系統對氣候變化和生物入侵等全球生態事件的響應具有重要的理論意義。外來物種快速生長和繁殖及其可能的負反饋可能會導致本地種被競爭排除,未來氣候變化可能導致物種組成發生變化及生物多樣性丟失,但資源互補和植物—土壤反饋效應則可能使植物群落具有較高的生產力和多樣性。因此,未來植物—土壤反饋關系應該加強以下幾方面研究:(1)開展不同生態系統植物—土壤反饋關系的比較研究;(2)植物—土壤及土壤—植物等群落水平的反饋研究;(3)特別是要加強分子和基因工具在植物土壤—反饋關系中的應用,揭示植物—土壤反饋關系的分子機理。

關鍵詞: 植物, 土壤, 反饋關系

中圖分類號: Q948.1

文獻標識碼: A

文章編號: 10003142(2017)11148009

Abstract: This paper reviewed the definition, research approaches and methods of plantsoil feedback and its research progress and problems. Plantsoil feedbacks involve twostep processes: plant changes the abiotic and biotic conditions of its associated soil; these changes in soil conditions may increase or decrease the growth of conspecifics, resulting in positive or negative plantsoil feedbacks, respectively. Plantsoil feedbacks can affect plant performance and plantcompetitive interactions, ultimately affecting community composition and diversity. Role of feedback in the succession process in the plant is uncertain. Growth enhancement of exotic and less negative feedback may result in that local species are competitively excluded, future climate change may cause changes in species composition and biodiversity loss, but resource complementarity and not too strong plantsoil feedbacks effects may lead to high productivity and diversity of mixed plant community. The key issues and further tasks of plantsoil feedback study were suggested as follows: (1) Design the experiment of plantsoil feedback in different ecosystems; (2) There were strong need to study reciprocating effects of plant and soil; using the molecular or genetic mean in plantsoil feedback; (3) Study on the mechanism of plantsoil feedback as a ecological factor.

Key words: plant, soil, feedback

植物—土壤反饋研究對于理解植物群落演替、生態系統多樣性與生產力形成與維持機制,認識生態系統對氣候變化和生物入侵等全球生態事件的響應具有重要的理論意義。研究植物—土壤反饋關系是認識植物和土壤生態學的核心。早期文明的瑪雅人、羅馬人和北京人已經發現土壤的不同會影響農業的產量(Leigh, 2004)。2000年以前的歐洲和亞洲人就發現果樹移栽到同種個體或同類個體生長過的土地上就會出現生長受限的情況(Leigh, 2004)。現在研究認為植物—土壤相互作用是土壤起源的基本驅動因子(Dokuchaev, 1879;Wardle et al,2004),并能預示陸地植物的進化(Selosse & Le Tacon, 1998;Putten et al, 2013; Simberloff et al, 2013)。同時,研究者們認為植物—土壤相互作用不僅僅涉及許多生態學過程,而且也是對全球變化最敏感的生態反應之一(Bardgett et al, 2010)。

人為活動引起的全球變化影響著植物—土壤反饋,反過來這些反饋關系的變化也可能改變這些人為活動引起變化的程度和生態學過程(Wardle et al,2004; Putten et al, 2013)。正確理解植物—土壤反饋理念能幫助我們預測不同環境條件下的植物群落組成和生產力的變化,并有助于減緩人為活動導致的全球性變化的后果,提升生態系統服務的可持續性。

1植物—土壤反饋關系的概念

在牛津字典中反饋被定義為“修改、調整或控制一個過程或者系統,通過過程的結果影響這一過程的起因”。在生態學上,植物—土壤反饋是指植物影響根際土壤的生物和非生物特征,這種影響反過來影響其自己或其它物種的行為(Ehrenfeld et al, 2005)。即植物—土壤反饋包括兩個方面,首先植物改變了它周圍的土壤環境(Chanway et al, 1991);其次,植物引起的土壤環境的改變反過來又能夠影響其自身或其它物種的行為(Bever et al, 1997;Thrall et al, 1997)。

如果植物引起的土壤環境的改變提高了其自身的生長,這種現象稱為正反饋(Ehrenfeld et al, 2005)(圖1)。正反饋可能來自于營養的獲得(Chapman et al, 2006)以及根際共生體的聚集(Klironomos, 2002)等。相反,一種植物生長在其它植物生長的土壤中時比在自己生長的土壤中生長的更好,這種現象稱為負反饋(Ehrenfeld et al, 2005;Kulmatiski et al, 2008)(圖1)。負反饋產生的原因可能是因為營養被固定或消耗(Berendse, 1994), 或者根際捕食者或病原體聚集(Van der Putten, 2003),或者土壤碳的聚集達到某一水平等所導致的(Ehrenfeld et al, 2005)。

Klironomos(2002) 綜述了1994—2008年45篇文獻的329個實驗結果,發現28%的研究結果是正反饋,70%的結果是負反饋,正反饋提高了植物生物量的25%,而負反饋則降低了植物生物量的65%。這一發現表明植物—土壤反饋在生態系統結構和功能的研究中是非常重要的機制(Kulmatiski et al, 2008)。

2反饋發生的途徑

植物—土壤之間可通過物理、化學和生物途徑進行相互作用。

2.1 物理反饋

植物和土壤之間的物理反饋途徑包括通過改變土壤水分、溫度和土壤結構(Gao et al, 2003; Pugnaire et al, 1996)等物理條件產生反饋途徑。土壤水分控制著植物個體, 種群和群落以及地下微生物群落的許多生態特征(Gao et al, 2003; Pugnaire et al, 1996)。反過來,植物通過生長、庇蔭、蒸騰和水分提升等作用影響著土壤的水分變化(Ehrenfeld et al, 2005)和溫度(Raich & Tufekciogul, 2000; Eviner, 2004; Sturm et al, 2005),并通過植物的根系生長和活動改變根際土壤的結構(Eviner & Chapin III, 2002; Garcia et al, 2005; Rillig, 2004)等物理特征。

2.2 化學反饋

植物通過根和根際土壤微生物活動改變土壤有機物,從而對土壤養分起聚集作用(Martens, 2000; Angers & Caron, 1998)。植物可以提高或降低土壤的pH(Binkley & Giardina, 1998; Inkley et al, 1989)、改變土壤的氧含量(Cronk & Fennessy, 2016)、陽離子濃度(Larcher, 2003; Mengoni et al, 2004)、碳(Berendse, 1998; Su, 2004; Schlesinger et al, 1990; Schlesinger & Pilmanis, 1998)和氮(Eviner & Chapin, 1997; Eviner et al, 2006)等化學特征,反過來,這些土壤特征的改變又能決定植物的生長和分布(Inkley et al, 1989; Su, 2004)。一些研究發現在干旱半干旱生態系統,灌木或多年生叢生禾草能夠引起土壤碳的聚集(Binkley & Giardina, 1998; Inkley et al, 1989)。例如,在中國的荒漠草地,當灌木取代草本后,土壤碳呈現明顯的空間異質性;當沙生草本取代灌木后土壤碳的異質性隨后降低(Cheng et al, 2004)。

2.3 生物反饋

土壤微生物對植物引起的改變非常敏感。大量研究表明植物能提高其根際土壤微生物的生物量(Burke et al, 2002; Kourtev et al, 2003; Ravit et al, 2003)。一般認為,植物對微生物的這種影響能改變微生物的功能,從而直接影響植物的生長(Hamilton & Frank, 2001)。例如植物物候(Innes et al, 2004; Kuzyakov, 2010; Lu & Conrad, 2005)、土壤肥力(Innes et al, 2004; Ibekwe et al, 2010; Kennedy et al, 2004; Bardgett & Wardle, 2003)、生物量(Kuske et al, 2003)、植物的凈初級生產力(Eisenhauer et al, 2011; MartínezGarcía et al, 2011; Lin et al, 2011; Kivlin & Hawkes, 2011)、碳輸入(Radford et al, 2010; Suding et al, 2008; Nemergut et al, 2008)及植物群落多樣性等都會影響到土壤微生物的種類或結構。甚至有些根際微生物的遺傳物質(Lugtenberg et al, 2002)也會因根的分泌物不同而發生改變 。除了土壤微生物,植物也通過土壤無脊椎動物(Strauss & Agrawal, 1999)、根際共生體或病原體、寄生生物等與土壤產生反饋關系。大量的研究表明病原體和寄生生物能夠驅動演替過程中的物種替代(Fester et al, 1999)、影響幼苗在母株附近的定植(Klironomos, 2002)、促進外來物種的入侵(Klironomos, 2002)、或者改變群落的結構和競爭關系(Van der Putten et al, 2005; Knevel et al, 2004; Beckstead & Parker, 2003)。

3反饋研究的方法

植物—土壤反饋包括特定物種對土壤的影響以及改變了物種對土壤的反應(Ehrenfeld et al, 2005; Bever, 1994)。 因此植物—土壤反饋的研究可以通過將試驗植物栽到某一土壤中即將該植物栽培到自己生長的的土壤中或栽培到其它植物生長的土壤中,從而開展比較研究。如果是一種植物生長在自己或其它植物生長過的土壤中開展研究叫直接或個體的植物—土壤反饋研究;而當兩個物種被栽培在自己或其它植物生長過的土壤中開展的研究,可以用來評價間接的植物—土壤反饋關系(Mills & Bever, 1998; Reynolds et al, 2003)。 單個的植物—土壤反饋關系提供了植物和土壤之間的關系(正的或負的)。相反,成對的植物—土壤反饋關系可以用來描述物種間的競爭排除或共存。理論模型證明研究成對的植物—土壤反饋關系比研究直接反饋的方向和程度更重要(Bever, 2003; Eppinga et al, 2006),但目前這方面的研究還很少(Kulmatiski et al, 2008)。

近些年,植物—土壤反饋研究逐漸增加。但植物—土壤反饋研究的實驗方法還不太成熟(Kulmatiski & Kardol, 2008)。 例如,植物土壤反饋研究一般分為兩步:第一步獲得植物影響過的土壤;第二步用植物影響過的土壤栽培同種或其他種植物。第一階段的土壤可以用自然出現的植物培養的土(一些自然狀態下生長的單種植物斑塊),也可以用實驗栽培植物培養的土。用自然單種植物斑塊獲得第一階段土壤能消除第一階段對時間的要求,同時也能更多地反應自然的土壤條件,但這一方法卻不能消除取樣點間土壤的異質性差異(Troelstra et al, 2001; Ellis & Weis, 2006 )。在第二階段,可做物種水平和群落水平對土壤反應的測量。在這一方法中,目標物種的反應是以單個物種,多個單個物種,單個物種在群落中反應來體現的。研究方法比較單一,新的研究方法和研究技術還很少應用到植物—土壤反饋研究中。

另外,目前關于植物—土壤反饋的研究多集中于個體水平,群落水平的反饋試驗做得相對較少(De Deyn et al, 2004; Kulmatiski et al, 2006; Kardol et al, 2007)。植物在自然條件下是長在群落里的,所以群落水平的植物—土壤反饋研究可能更重要(Kulmatiski et al, 2008)。

4植物土壤反饋研究的現狀

從20世紀90年代起,國外學者開始在森林(Van Breemen & Finzi, 1998; Binkley & Giardina, 1998)、草原(Burke et al, 1998)、沼澤(Young & Harvey, 1996)、沙丘(Putten et al, 1993; Putten & Troelstra, 1988)、苔原(Sturm et al, 2005)和棄耕地(Kardol et al, 2007, 2006)等不同生態系統做了大量有關植物—土壤反饋方面的工作,但在不同生態系統內植物—土壤反饋關系及不同群落的植物—土壤反饋關系的比較研究還很少(Tmartijn et al, 2006)。近年來,植物—土壤反饋研究在解釋群落演替以及外來種入侵和全球變化的機制等方面成為一個研究熱點(Putten et al,2016; Bailey & Schweitzer, 2016)。

4.1 氣候變化

植物可能通過改變生理特性、物候、基因組成或地理分布對全球氣候變化和CO2增加做出反應(Kardol et al, 2016)。未來氣候變化可能導致物種組成發生變化(Parmesan & Yohe, 2003; Walther et al, 2002)及生物多樣性丟失(Thomas et al, 2005)。物種組成的變化可能打破一些原有的營養關系,甚至當宿主和寄生者都擴大了適合度,它們原有的關系可能變得不那么緊密(Menéndez et al, 2008; Teste et al, 2016)。這種單個物種適合度的變化可能對地下群落產生影響(Kowalchuk et al, 2002; Porazinska et al, 2003)。另外,溫度升高,土壤微生物呼吸增強,均能增加土壤氮的礦化(Rustad et al, 2001),從而可能提高初級生產力并影響食草動物的特征(Bezemer et al, 1998)。

基于不同的影響,多個地下地上營養關系可能改變。例如,CO2增加將會降低植物葉片質量,增加活性碳向土壤的輸入(Van Groenigen et al, 2006)。這些變化將要影響植物和捕食者的關系并會影響地下食物網發生顯著的改變(Mikola et al, 2001),從而改變地上地下生態系統的相互作用。

4.2 群落演替

在群落演替方面已經有關于植物—土壤反饋的研究(Kulmatiski & Kardol, 2008)。關于植物—土壤反饋在群落演替過程中的作用,研究者提出了兩個對立的假說。Reynolds et al (2003)基于模型的假說認為,演替在早期是正反饋而晚期是負反饋。這個假說認為,在演替早期共生體(如固氮微生物)對植物的生長是必須的。因此,導致演替早期的正反饋。另外,在一開始的演替階段,因為土壤條件很嚴酷,寄主密度低,這些都是病原體所不喜歡的條件,所以負反饋機制是不太重要的。當寄主達到一定密度,并改變了非生物環境,使條件有利于土壤病原體。這時就會使負反饋的作用越來越強并驅動演替過程中的物種替代(Reynolds et al, 2003)。有學者通過概念模型提出植物群落動態將會從多物種共生群落逐漸演變為單優勢種群落,在演替后期特殊的植物—土壤反饋作用在混合植物群落中將會導致連續的負反饋作用,這也能解釋為什么單一物種植物群落的生產力小于混合植物群落(Putten et al, 2013)

然而,一些實驗并不支持Reynolds 等的概念模型。在原生演替(Putten et al, 1993; Putten & Troelstra, 1988)和次生演替(Kardol et al, 2006)的早期都發現了負反饋。在原生演替早期負反饋被證實源于線蟲的寄生(Putten et al, 1993)。在次生演替中,早期物種的負反饋與物種的快速生長及弱的抗病能力有關(Coley et al, 1985; Poorter, 1989)。Zhang et al(2016)通過對植物根系分解在植物土壤反饋中作用時發現演替初期根系凋落物分解短期內產生負反饋作用,隨著時間增加會慢慢變為正反饋作用。另外,Kardol et al(2007)發現次生演替的晚期出現正的植物—土壤反饋關系并指出正反饋來源于共生真菌的促進作用。

4.3 外來種入侵

植物土壤反饋作為一種機制在解釋外來植物的豐富度和物種維持方面也引起人們的注意(Reinhart & Callaway, 2006)。入侵種之所以能夠入侵成功是因為一般人們預期引入生境的土壤是天敵和病原體缺乏的(Putten et al, 2013)。因為在入侵的土壤中食根天敵和病原體還沒進化為專一性、而共生體卻是普遍的(Callaway & Aschehoug, 2000)。有學者在加拿大研究發現,相比于本地物種對植物—土壤的正反饋作用,外來物種對于這種反饋作用并不敏感(Crawford & Knight, 2016; Schittko et al, 2016)。這種結果暗示了外來種之所以變成入侵種可能并不是都是因為正反饋作用(當然也不排除其在原生長地的反饋作用不敏感)。研究認為不是所有的外來者或入侵者都能從病原體缺乏中獲益,但是從病原體缺乏中獲益的外來種卻更有可能成為成功的入侵者(Reynolds et al, 2003)。如果入侵者能保留或聚集有益的土壤條件,外來物種相比本土物種會產生顯著的正反饋 (Klironomos, 2002; Reinhart & Callaway, 2006; Agrawal et al, 2005),導致本地種被競爭排除 (Bever et al, 1997; Bever, 2003)。

4.4 物種多樣性與生產力

到目前為止,有關植物—土壤—反饋與物種多樣性對生產力影響的實驗也相對較少。有學者通過對這方面研究發現植物多樣性對生產力的影響可能是由于混播群落水平對土壤病原菌以及養分水平的響應(Putten et al, 2013)。有研究發現單作植物群落生產力要相對低于混播植物群落,但是進行土壤滅菌作用之后就會獲得較高的生產力(Putten et al, 2013)。他們認為土壤致病菌可能是引起單作植物群落生產力降低的原因,因此解釋了物種多樣性與生產力之間的正相關關系。這個結果對于植物多樣性的功能研究方面提供了一個新的觀點,他們認為這種生產過剩現象并不只是由于資源互補效應引起,還有可能是由于這種不太強的植物—土壤反饋作用導致混合植物群落出現這種現象(Putten et al, 2013)。Kulmatiski et al(2008)通過模型模擬研究發現負反饋作用將導致生產過剩,正反饋作則導致生產不足。實驗結果強調了復合試驗設置的重要性,而且要對比較群落水平的植物—土壤反饋作用與個體水平的差異(Putten et al, 2013; Hufkens et al, 2016)。

5存在問題與建議

目前,大量的植物—土壤反饋研究多是在單一生態系統內開展的,缺乏不同生態系統之間的比較研究。特別是植物—土壤反饋研究多是在溫室或盆栽條件下植物個體在幼苗或中等大小下單種栽培完成的。事實上,植物生長在自然界,植物之間的相互影響更為重要。

為了更好地評價物種對土壤物理、化學和生物特征的影響,應該研究某個自然單元內多個相互作用的植物對土壤的影響及其反饋。另外,新的科學方法和技術在探索自然生態系統中的植物—土壤反饋研究中應用很少,如加強分子基因工具以及元素示蹤技術的引入能加強我們對隱藏在明顯反饋背后的機制的理解。再者,植物—土壤反饋研究的理念還有待于進一步加強。研究植物—土壤反饋的變化強度和方向可以用來解釋演替和入侵現象,并能夠幫助理解生態系統如何應對氣候變暖和物種多樣性變化。在未來通過將植物—土壤反饋理念整合到生態學理論中,對于怎樣確定一個通用的生態學模型以及植物—土壤反饋怎樣影響生物進化等方面都具有重要的意義。

參考文獻:

AGRAWAL AA, KOTANEN PM, MITCHELL CE, et al, 2005. Enemy Release? An experiment with congeneric plant pairs and diverse aboveand belowground enemies [J]. Ecology, 86: 2979-2989.

ANDERSON, LAUREL J, 2010. Abovegroundbelowground linkages: biotic interactions, ecosystem processes, and global change [J]. Eos Trans Am Geophys Union, 2(26):222-222.

ANGERS D A, CARON J, 1998. Plantinduced changes in soil structure: processes and feedbacks[M]. Plantinduced soil changes: processes and feedbacks. Basel: Springer Science & Business Media, 4: 55-72.

BAILEY JK, SCHWEITZER JA, 2016. The rise of plantsoil feedback in ecology and evolution [J]. Funct Ecol, 30(7): 1030-1031.

BARDGETT RD, WARDLE DA, 2003. Herbivoremediated linkages between aboveground and belowground communities [J]. Ecology, 84: 2258-2268.

BECKSTEAD J, PARKER IM, 2003. Invasiveness of ammophila arenaria: release from soilborne pathogens [J]. Ecology, 84: 2824-2831.

BERENDSE F, 1994. Litter decomposability—a neglected component of plant fitness [J]. J Ecol, 82: 187-190.

BERENDSE F, 1998. Effects of dominant plant species on soils during succession in nutrientpoor ecosystems [J]. Biogeochemistry, 42: 73-88.

BEVER JD, 1994. Feeback between plants and their soil communities in an old field community [J]. Ecology, 75: 1965-1977.

BEVER JD, 2003. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests [J]. New Phytolt, 157: 465-473.

BEVER JD, WESTOVER KM, ANTONOVICS J, 1997. Incorporating the soil community into plant population dynamics: the utility of the feedback approach [J]. J Ecol , 561-573.

BEZEMER TM, JONES TH, KNIGHT KJ, 1998. Longterm effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae [J]. Oecologia, 116: 128-135.

BINKLEY D, GIARDINA C, 1998. Why do tree species affect soils? The warp and woof of treesoil interactions [J]. Biogeochemistry, 42: 89-106.

BINKLEY D, GIARDINA C, 1998. Why do tree species affect soils? The warp and woof of treesoil interactions [J]. Biogeochemistry, 42: 89-106.

BURKE DJ, HAMERLYNCK EP, HAHN D, 2002. Interactions among plant species and microorganisms in salt marsh sediments[J]. Appl Environ Microbiol, 68: 1157-1164.

BURKE IC, LAUENROTH WK, VINTON MA,et al, 1998. Plantsoil interactions in temperate grasslands [M], Plantinduced soil changes: processes and feedbacks[M]. Basel: Springer: 121-143.

CALLAWAY RM, ASCHEHOUG ET, 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion [J]. Science, 290: 521-523.

CHANWAY CP, TURKINGTON R, HOLL F, 1991. Ecological implications of specificity between plants and rhizosphere microorganisms [J]. Adv Ecol Res, 21: 121-169.

CHAPMAN SK, LANGLEY JA, HART SC,et al, 2006. Plants actively control nitrogen cycling: uncorking the microbial bottleneck [J]. New Phytol, 169: 27-34.

CHENG X, AN S, LIU S, et al, 2004. Microscale spatial heterogeneity and the loss of carbon, nitrogen and phosphorus in degraded grassland in Ordos Plateau, northwestern China [J]. Plant Soil, 259: 29-37.

COLEY PD, BRYANT JP, RD CF, 1985. Resource availability and plant antiherbivore defense [J]. Science, 230: 895-899.

CRAWFORD KM, KNIGHT TM, 2016. Competition overwhelms the positive plantsoil feedback generated by an invasive plant [J]. Oecologia: 1-10.

CRONK JK, FENNESSY MS, 2016. Wetland plants: biology and ecology[M]. Basel: CRC Press.

DE DEYN G, RAAIJMAKERS C, VAN DER PUTTEN W, 2004. Plant community development is affected by nutrients and soil biota [J]. J Ecol, 92: 824-834.

DOKUCHAEV V, 1879. Abridged historical account and critical examination of the principal soil classifications existing [J]. Transact Petersb Soc Nat, 1: 64-67.

EHRENFELD JG, RAVIT B, ELGERSMA K, 2005. Feedback in the plantsoil system [J]. Ann Rev Environ Resourc, 30: 75-115.

EISENHAUER N, MILCU A, SABAIS AC,et al, 2011. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term [J]. PLoS ONE, 6: e16055.

ELLIS AG, WEIS A, 2006. Coexistence and differentiation of ‘flowering stones: the role of local adaptation to soil microenvironment [J]. J Ecol, 94: 322-335.

EPPINGA MB, RIETKERK M, DEKKER SC,et al, 2006. Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions [J]. Oikos, 114: 168-176.

EVINER VT, 2004. Plant traits that influence ecosystem processes vary independently among species [J]. Ecology, 85: 2215-2229.

EVINER VT, CHAPIN FS, 1997. NitrogenCyclePlantMicrobial interactions [J]. Nature, 385: 26-27.

EVINER VT, CHAPIN III FS, 2002. The influence of plant species, fertilization and elevated CO2 on soil aggregate stability [J]. Plant Soil, 246: 211-219.

EVINER VT, CHAPIN III FS, VAUGHN CE, 2006. Seasonal variations in plant species effects on soil N and P dynamics [J]. Ecology, 87: 974-986.

FESTER T, MAIER W, STRACK D, 1999. Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and coinoculation with rhizosphere bacteria [J]. Mycorrhiza, 8: 241-246.

GAO Q,PENG S,ZHAO P,et al, 2003. Explanation of vegetation succession in subtropical southern China based on ecophysiological characteristics of plant species [J]. Tree physiol, 23: 641-648.

GARCIA C, ROLDAN A, HERNANDEZ T, 2005. Ability of different plant species to promote microbiological processes in semiarid soil [J]. Geoderma, 124: 193-202.

GRAYSTON SJ, WANG S, CAMPBELL CD,et al, 1998. Selective influence of plant species on microbial diversity in the rhizosphere [J]. Soil Biol Biochem, 30: 369-378.

HAMILTON EW, FRANK DA, 2001. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass [J]. Ecology, 82: 2397-2402.

HENRIKSSON A, WARDLE DA, Trygg J, 2016. Strong invaders are strong defendersimplications for the resistance of invaded communities [J]. Ecol Lett, 19(4):487-494.

HUFKENS K,KEENAN TF,FLANAGAN LB,et al, 2016. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity [J]. Nat Clim Change.

IBEKWE A, POSS J, GRATTAN S,et al, 2010. Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron [J]. Soil Biol Biochem, 42: 567-575.

INKLEY D, DRISCOLL C, ALLEN H, 1989. Acidic deposition and forest soils [J]. Spriengerverlag: New York: 83.

INNES L, HOBBS PJ, BARDGETT RD, 2004. The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility [J]. Biol Fert Soils, 40: 7-13.

KARDOL P, BEZEMER TM, WH VDP, 2006. Temporal variation in plantsoil feedback controls succession [J]. Ecol Lett, 9: 1080-1088.

KARDOL P, CORNIPS NJ, VAN KEMPEN MM,et al, 2007. MICROBEMediated plantsoil feedback causes historical contingency effects in plant community assembly [J]. Ecol Monogra, 77: 147-162.

KARDOL P, SPITZER CM, GUNDALE MJ,et al,2016. Trophic cascades in the bryosphere: the impact of global change factors on topdown control of cyanobacterial N2fixation [J]. Ecol Lett, 19(8):967-976.

KENNEDY N, BRODIE E, CONNOLLY J,et al, 2004. Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms [J]. Environ Microbiol, 6: 1070-1080.

KIVLIN SN, HAWKES CV, 2011. Differentiating between effects of invasion and diversity: impacts of aboveground plant communities on belowground fungal communities [J]. New Phytol, 189: 526-535.

KLIRONOMOS JN, 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities [J]. Nature, 417: 67-70.

KNEVEL IC, LANS T, MENTING FB,et al, 2004. Release from native root herbivores and biotic resistance by soil pathogens in a new habitat both affect the alien Ammophila arenaria in South Africa [J]. Oecologia, 141: 502-510.

KOURTEV P, EHRENFELD J, H GGBLOM M, 2003. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities [J]. Soil Biol Biochem, 35: 895-905.

KOWALCHUK GA, BUMA DS, DE BOER W,et al, 2002. Effects of aboveground plant species composition and diversity on the diversity of soilborne microorganisms [J]. Ant Van Leeuw, 81: 509-520.

KULMATISKI A, BEARD KH, STEVENS JR,et al, 2008. Plantsoil feedbacks: a metaanalytical review [J]. Ecol Lett, 11: 980-992.

KULMATISKI A, BEARD KH, STARK JM, 2006. Soil history as a primary control on plant invasion in abandoned agricultural fields [J]. J Appl Ecol, 43: 868-876.

KULMATISKI A, KARDOL P, 2008. Getting plant—soil feedbacks out of the greenhouse: experimental and conceptual approaches[M]. Basel: Springer: 449-472.

KUSKE C, TICKNOR L, BUSCH J,et al, 2003. The pinyon rhizosphere, plant stress, and herbivory affect the abundance of microbial decomposers in soils [J]. Microb Ecol, 45: 340-352.

KUZYAKOV Y, 2010. Priming effects: interactions between living and dead organic matter [J]. Soil Biol Biochem, 42: 1363-1371.

LARCHER W, 2003. Physiological plant ecology: ecophysiology and stress physiology of functional groups[M]. Basel: Springer Science & Business Media.

LEIGH GJ, 2004. The worlds greatest fix: a history of nitrogen and agriculture[M]. Oxford: Oxford University Press.

LIN YT, JANGID K, WHITMAN W B,et al, 2011. Change in bacterial community structure in response to disturbance of natural hardwood and secondary coniferous forest soils in central Taiwan [J]. Microb Ecol, 61: 429-437.

LU Y, CONRAD R, 2005. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere [J]. Science, 309: 1088-1090.

LUGTENBERG BJ, CHINAWOENG TF, BLOEMBERG GV, 2002. Microbeplant interactions: principles and mechanisms [J]. Ant Van Leeuw, 81: 373-383.

MART NEZGARC ALB, ARMAS C, DE DIOS MIRANDA J,et al, 2011. Shrubs influence arbuscular mycorrhizal fungi communities in a semiarid environment [J]. Soi Biol Biochem, 43: 682-689.

MARTENS D,2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration [J]. Soi Biol Biochem, 32: 361-369.

MEN NDEZ R, GONZLEZMEGAS A, LEWIS OT, et al, 2008. Escape from natural enemies during climatedriven range expansion: a case study [J]. Ecol Entomol, 33: 413-421.

MENGONI A, GRASSI E, BARZANTI R,et al, 2004. Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickelhyperaccumulator plant Alyssum bertolonii [J]. Microb Ecol, 48: 209-217.

MIKOLA J, YEATES GW, BARKER GM,et al, 2001. Effects of defoliation intensity on soil foodweb properties in an experimental grassland community [J]. Oikos, 92: 333-343.

MILLS KE, BEVER JD, 1998. Maintenance of diversity within plant communities: soil pathogens as agents of negative feedback [J]. Ecology, 79: 1595-1601.

NEMERGUT DR, TOWNSEND AR, SATTIN SR,et al, 2008. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling [J]. Environ Microbiol, 10: 3093-3105.

PARMESAN C, YOHE G, 2003. A globally coherent fingerprint of climate change impacts across natural systems [J]. Nature, 421: 37-42.

POORTER H, 1989. Interspecific variation in relative growth rate: On ecological causes and physiological consequences [J]. Causes and consequences of variation in growth rate and productivity of higher plants, 24: 45-68.

PORAZINSKA DL, BARDGETT RD, BLAAUW MB,et al, 2003. Relationships at the abovegroundbelowground interface: plants, soil biota, and soil processes [J]. Ecol Monogra, 73: 377-395.

PUGNAIRE F, HAASE P, PUIGDEF BREGAS J,et al, 1996. Facilitation and succession under the canopy of a leguminous shrub, Retama sphaerocarpa, in a semiarid environment in southeast Spain [J]. Oikos : 455-464.

PUTTEN WH, BRADFORD MA, PERNILLA BRINKMAN E, et al, 2016. Where, when and how plantsoil feedback matters in a changing world [J]. Funct Ecol, 30(7): 1109-1121.

PUTTEN WHVD, BARDGETT RD, BEVER JD,et al, 2013. Plantsoil feedbacks: the past, the present and future challenges [J]. J Ecol, 101: 265-276.

PUTTEN WHVD, DIJK CV, PETERS BAM, et al, 1993. Plantspecific soilborne diseases contribute to succession in foredune vegetation [J]. Nature, 362: 53-56.

PUTTEN WHVD, TROELSTRA SR, 1988. Biotic soil factors affecting the growth and development of Ammophila arenaria [J]. Oecologia, 76: 313-320.

RADFORD IJ, DICKINSON KJ, LORD JM, 2010. Does disturbance, competition or resource limitation underlie Hieracium lepidulum invasion in New Zealand? Mechanisms of establishment and persistence, and functional differentiation among invasive and native species [J]. Aust Ecol, 35: 282-293.

RAICH JW, TUFEKCIOGUL A, 2000. Vegetation and soil respiration: correlations and controls [J]. Biogeochemistry, 48: 71-90.

RAVIT B, EHRENFELD JG, HAGGBLOM MM, 2003. A comparison of sediment microbial communities associated with Phragmites australis and Spartina alterniflora in two brackish wetlands of New Jersey [J]. Estuaries, 26: 465-474.

REINHART KO, CALLAWAY RM, 2006. Soil biota and invasive plants. New Phytol [J]. New Phytolog, 170: 445-457.

REYNOLDS HL, PACKER A, BEVER JD,et al, 2003. Grassroots ecology: plantmicrobesoil interactions as drivers of plant community structure and dynamics [J]. Ecology, 84: 2281-2291.

RILLIG MC, 2004. Arbuscular mycorrhizae and terrestrial ecosystem processes [J]. Ecol Lett, 7: 740-754.

RUSTAD L, CAMPBELL J, MARION G,et al, 2001. A metaanalysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming [J]. Oecologia, 126: 543-562.

SCHITTKO C, RUNGE C, STRUPP M, et al, 2016.No evidence that plantsoil feedback effects of native and invasive plant species under glasshouse conditions are reflected in the field [J]. J Ecol, 104(5):1243-1249.

SCHLESINGER WH, PILMANIS AM, 1998. Plantsoil interactions in deserts [M]. Basel: Springer: 169-187.

SCHLESINGER WH, REYNOLDS JF, CUNNINGHAM GL,et al, 1990. Biological feedbacks in global desertication [J]. Science, 247: 1043-1048.

SELOSSE MA, LE TACON F, 1998. The land flora: a phototrophfungus partnership? [J] Trends Ecol Evol, 13: 15-20.

SIMBERLOFF D, MARTIN JL, Genovesi P, et al, 2013. Impacts of biological invasions: whats what and the way forward [J]. Trends Ecol Evol, 28(1):58.

STRAUSS SY, AGRAWAL AA, 1999, The ecology and evolution of plant tolerance to herbivory [J]. Trends Ecol Evol, 14: 179-185.

STURM M, SCHIMEL J, MICHAELSON G,et al, 2005. Winter biological processes could help convert arctic tundra to shrubland [J]. Bioscience, 55: 17-26.

SU YZ, ZHAO HL, LI YL, et al, 2004. Influencing Mechanisms of several shrubs on soil chemical properties in Semiarid Horqin Sandy Land, China [J]. Arid Land Res & Manag, 18(3): 251-263.

SUDING KN, ASHTON IW, BECHTOLD H,et al, 2008. Plant and microbe contribution to community resilience in a directionally changing environment [J]. Ecol Monogra, 78: 313-329.

TESTE FP, KARDOL P, TURNER BL, et al,2017.Plantsoil feedback and the maintenance of diversity in Mediterraneanclimate shrublands [J]. Science, 355(6321): 173-176.

THOMAS DS, KNIGHT M, WIGGS GF, 2005. Remobilization of southern African desert dune systems by twentyfirst century global warming [J]. Nature, 435: 1218-1221.

THRALL PH, BEVER JD, MIHAIL J,et al, 1997. The population dynamics of annual plants and soilborne fungal pathogens [J]. J Ecol: 313-328.

TMARTIJN B, CLARES L, KATARINA H,et al, 2006. Plant species and functional group effects on abiotic and microbial soil properties and plantsoil feedback responses in two grasslands [J]. J Ecol, 94: 893-904.

TROELSTRA S, WAGENAAR R, SMANT W,et al, 2001. Interpretation of bioassays in the study of interactions between soil organisms and plants: involvement of nutrient factors [J]. New Phytol, 150: 697-706.

VAN BREEMEN N, FINZI AC, 1998. Plantsoil interactions: ecological aspects and evolutionary implications [J]. Biogeochemistry, 42: 1-19.

VAN DER PUTTEN W, YEATES G, DUYTS H,et al, 2005. Invasive plants and their escape from root herbivory: a worldwide comparison of the rootfeeding nematode communities of the dune grass Ammophila arenaria in natural and introduced ranges [J]. Biol Inv, 7: 733-746.

VAN DER PUTTEN WH, 2003. Plant defense belowground and spatiotemporal processes in natural vegetation [J]. Ecology, 84: 2269-2280.

VAN DER STOEL C, VAN DER PUTTEN W, DUYTS H, 2002. Development of a negative plantsoil feedback in the expansion zone of the clonal grass Ammophila arenaria following root formation and nematode colonization [J]. J Ecol, 90: 978-988.

VAN GROENIGEN KJ, SIX J, HUNGATE BA,et al, 2006. Element interactions limit soil carbon storage [J]. Proceed Nat Acad Sci, 103: 6571-6574.

WALTHER GR, POST E, CONVEY P,et al, 2002. Ecological responses to recent climate change [J]. Nature, 416: 389-395.

WARDLE DA, BONNER KI, BARKER GM,et al, 1999. Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties [J]. Ecol Monogra, 69: 535-568.

WARDLE DA, BARDGETT RD, KLIRONOMOS JN, et al, 2004, Ecological linkages between aboveground and belowground biota [J]. Science, 304(5677):1629-33.

YOUNG BM, HARVEY EL, 1996. A spatial analysis of the relationship between mangrove (Avicennia marina var. australasica) physiognomy and sediment accretion in the Hauraki Plains, New Zealand [J]. Estuar, Coast Shelf Sci, 42(2): 231-246.

ZHANG N, PUTTEN WHVD, Veen GF, 2016. Effects of root decomposition on plantsoil feedback of earlyand midsuccessional plant species [J]. New Phytol, 212(1):220-231.

猜你喜歡
植物
誰是最好的植物?
為什么植物也要睡覺
長得最快的植物
各種有趣的植物
植物也會感到痛苦
會喝水的植物
植物的防身術
把植物做成藥
哦,不怕,不怕
將植物穿身上
主站蜘蛛池模板: 在线欧美日韩| 欧美日韩国产精品va| 色九九视频| 久久人人妻人人爽人人卡片av| 国产亚洲高清在线精品99| yy6080理论大片一级久久| 四虎综合网| 毛片视频网| 亚洲成人77777| 国产91成人| 欧美日韩精品一区二区在线线| 国产日韩欧美中文| 国产精品成人一区二区不卡| 色网在线视频| 农村乱人伦一区二区| 久久99国产精品成人欧美| WWW丫丫国产成人精品| 国产精品精品视频| 亚洲Va中文字幕久久一区| 中文字幕av无码不卡免费| 波多野结衣一区二区三区AV| 日韩人妻精品一区| av尤物免费在线观看| 久久久久亚洲AV成人人电影软件| 欧美日韩一区二区在线播放 | 一级毛片在线播放免费观看 | 日本免费a视频| 亚洲最黄视频| av无码一区二区三区在线| 欧美三级不卡在线观看视频| 亚洲国产欧洲精品路线久久| 久久久91人妻无码精品蜜桃HD| 国产视频久久久久| 欧美.成人.综合在线| 欧美a在线视频| 久久久久国产精品熟女影院| 免费毛片网站在线观看| 久久午夜夜伦鲁鲁片不卡 | 国产欧美日韩综合在线第一| 99久久这里只精品麻豆| аⅴ资源中文在线天堂| 亚洲天堂久久| 国产毛片高清一级国语| 成年av福利永久免费观看| 亚洲天堂视频在线播放| 国产H片无码不卡在线视频| 亚洲欧美自拍一区| 性视频久久| 视频国产精品丝袜第一页| 久久国产精品嫖妓| 最新国语自产精品视频在| 欧美色图久久| 欧美精品二区| 中文字幕免费播放| Aⅴ无码专区在线观看| 日本欧美一二三区色视频| 亚洲一区二区三区在线视频| 国产伦精品一区二区三区视频优播| 国产福利免费观看| 亚洲无线国产观看| 国产高潮视频在线观看| 99青青青精品视频在线| 欧美在线视频不卡| 亚洲天堂久久新| 国产一级裸网站| 国产乱子伦视频三区| 欧美特黄一级大黄录像| 无码一区18禁| 日本午夜视频在线观看| 亚洲精品777| 亚洲国产欧美国产综合久久 | 欧美在线视频a| 99re在线免费视频| 国产制服丝袜无码视频| 日本午夜网站| 色九九视频| 情侣午夜国产在线一区无码| 狠狠色综合久久狠狠色综合| 一本无码在线观看| 福利国产在线| 亚洲综合网在线观看| 精品无码一区二区三区电影|