李春輝,梁漢東*,陳 洋,白江偉,崔玉坤(.中國(guó)礦業(yè)大學(xué)(北京)煤炭資源與安全開(kāi)采國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 00083;2.中國(guó)礦業(yè)大學(xué)(北京)地球科學(xué)與測(cè)繪工程學(xué)院,北京 00083)
中國(guó)烏達(dá)煤炭基地塵土汞分布特征
李春輝1,2,梁漢東1,2*,陳 洋1,白江偉1,崔玉坤1(1.中國(guó)礦業(yè)大學(xué)(北京)煤炭資源與安全開(kāi)采國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100083;2.中國(guó)礦業(yè)大學(xué)(北京)地球科學(xué)與測(cè)繪工程學(xué)院,北京 100083)
針對(duì)烏達(dá)區(qū)約200km2的區(qū)域按照1km網(wǎng)格法在185個(gè)點(diǎn)位采集了約1.5mm厚度的地表塵土樣.熱解-Lumex RA-915汞分析儀對(duì)其測(cè)試結(jié)果表明:煤礦區(qū)塵土汞含量范圍117~765ng/g,平均值為285ng/g;工業(yè)園塵土汞含量范圍160~6453ng/g,平均值為804ng/g;城區(qū)塵土汞含量范圍41~382ng/g,平均值為160ng/g;農(nóng)場(chǎng)塵土汞含量范圍16~198ng/g,平均值為66ng/g;荒地塵土范圍 3~284ng/g,平均值為50ng/g.烏達(dá)區(qū)塵土汞分布具有顯著的非均一性.與烏達(dá)區(qū)背景值(18ng/g)和中國(guó)潮土背景值(50ng/g)相比較,烏達(dá)工業(yè)園和煤礦區(qū)塵土汞明顯富集.與國(guó)內(nèi)金屬礦區(qū)、城區(qū)塵土 Hg含量相比,烏達(dá)煤礦區(qū)、城區(qū)塵土 Hg含量較低;煤礦區(qū)塵土汞與煤火區(qū)、矸石山相對(duì)位置和本身地勢(shì)有關(guān);城區(qū)位于煤礦區(qū)下風(fēng)向,受煤礦區(qū)煤火影響,植被稀少、空氣干燥和夏季日照較長(zhǎng)成為制約汞沉降的主控因素;工業(yè)園區(qū)的極大值點(diǎn)可能與區(qū)域地理位置和 PVC生產(chǎn)相關(guān).通過(guò)計(jì)算 Igeo值,發(fā)現(xiàn)烏達(dá)區(qū)工業(yè)園污染嚴(yán)重,偏重污染區(qū)域占全區(qū)36.59%,7.32%達(dá)到極重污染程度;煤礦區(qū)多為偏中污染和中污染,在全區(qū)所占比例為84.09%,偏重污染區(qū)域僅為2.27%;城區(qū)、農(nóng)場(chǎng)和荒地污染較少.
烏達(dá);煤火;塵土;汞;分布;污染
烏達(dá)是中國(guó)50多個(gè)大型煤炭基地之一[1],依托煤炭生產(chǎn)形成了工業(yè)體系,發(fā)展成了典型的煤炭型城市.煤巖長(zhǎng)期暴露在空氣中,由于含硫礦物氧化致使溫度升高,隨著熱量積累,出現(xiàn)煙塵和明火,進(jìn)而產(chǎn)生煤火災(zāi)害[2-4].美國(guó)粉河煤田有 400萬(wàn)年的煤火歷史[5],至今煤火仍未熄滅.工業(yè)革命致使對(duì)煤炭開(kāi)采大增,煤巖暴露于空氣,極大加速加重煤炭自燃危害[11].近年來(lái),自然煤火相繼被報(bào)道,如美國(guó)、澳大利亞、塔吉克斯坦和中國(guó)[3,6-9].中國(guó)煤火主要分布于北方,東西長(zhǎng)大約 5000km和南北寬700km的范圍內(nèi)(圖1a)[10],包括內(nèi)蒙、新疆、山西等.
煤火不僅釋放CO2、CO、SO2、多環(huán)芳烴等溫室氣體[11-12],而且還釋放具有生物毒性的重金屬 Hg.汞是毒性最強(qiáng)的重金屬污染物之一,已被我國(guó)、聯(lián)合國(guó)環(huán)保署、世界衛(wèi)生組織、歐盟、美國(guó)環(huán)境保護(hù)署等國(guó)家和組織列為優(yōu)先控制的污染物.Hg進(jìn)入塵土主要通過(guò):工業(yè)排放[13-15],大氣干濕沉降[16-17]和機(jī)動(dòng)車排放[18].外力作用下,地表塵土?xí)粨P(yáng)起,與大氣顆粒進(jìn)行相互轉(zhuǎn)化,進(jìn)而對(duì)人體健康構(gòu)成危害[19-20].國(guó)外對(duì)礦區(qū)、田地和城區(qū)塵土Hg含量、分布和潛在健康危害研究較多[21-24].國(guó)內(nèi)對(duì)塵土 Hg研究主要集中在金屬礦區(qū)[25-26]、城區(qū)道路[27-30]和公園[31-36].
研究發(fā)現(xiàn)烏達(dá)煤火不僅是全球性Hg污染釋放源,對(duì)臨近城區(qū)汞污染作用更是突出[37].眾多對(duì)塵土Hg的研究多集中在金屬礦區(qū)和發(fā)達(dá)地區(qū)城區(qū)塵土Hg,對(duì)老煤炭基地及其附屬的工業(yè)園、農(nóng)田和城區(qū)塵土Hg研究較少,尤其煤火發(fā)育區(qū)更少,缺少煤火發(fā)育區(qū)及其附屬區(qū)域塵土 Hg研究數(shù)據(jù).為此,論文以煤火發(fā)育的烏達(dá)區(qū)約200km2塵土為研究對(duì)象,系統(tǒng)采集塵土樣品185個(gè),通過(guò)分析塵土Hg濃度,對(duì)比評(píng)價(jià)各區(qū)域 Hg濃度差異及其污染指數(shù),分析富集機(jī)理,為煤礦區(qū)及其附屬區(qū)域汞環(huán)境安全提供依據(jù)和借鑒.

圖1 中國(guó)北方煤火區(qū)分布(a)[10]和烏達(dá)采樣點(diǎn)分布(b)Fig.1 Coal fire distribution in north China (a)[10]and Profile samples in Wuda (b)
烏達(dá)區(qū)位于內(nèi)蒙古自治區(qū)烏海市西部,賀蘭山北段,烏蘭布和沙漠南緣(圖 1a).北緯39°20′~39°40′,東經(jīng) 106°30′~106°50′.烏達(dá)煤火始于1961年蘇海圖井田9 #、10 #煤層自燃.烏達(dá)區(qū)地處半沙漠干旱地區(qū),氣候條件干燥少雨,日照時(shí)間長(zhǎng),植被稀少,大部分地區(qū)基巖裸露[38].野生煤火多因煤巖露頭長(zhǎng)期與空氣接觸,緩慢氧化造成的.煤巖一旦被點(diǎn)燃,將對(duì)蓋層和圍巖烘烤產(chǎn)生破壞,導(dǎo)致圍巖產(chǎn)生大量裂隙或其他氣體通道,進(jìn)而煤巖與空氣進(jìn)一步接觸,煤火災(zāi)害進(jìn)一步增強(qiáng).20世紀(jì)80年代小煤窯遍地開(kāi)花和管理不善使得煤火越演越烈,2009年烏達(dá)火區(qū)面積達(dá)486.08× 104m2[39],雖加大治理力度,但最近研究結(jié)果表明煤火仍在蔓延[40-41],煤礦區(qū)主要煤火區(qū)分布如圖1b.火區(qū)可見(jiàn)深溝、裂隙中釋放的煙塵(圖2).
烏達(dá)區(qū)包括煤礦區(qū)、工業(yè)園、城區(qū)和農(nóng)場(chǎng),各區(qū)域分布圖如1b.煤礦區(qū)位于研究區(qū)域西北部.烏達(dá)煤田工業(yè)開(kāi)采始于1958年,此后烏海逐漸成為一典型的煤炭型城市.烏達(dá)礦區(qū)下轄 3個(gè)井田(五虎山、蘇海圖和黃白茨),面積約為35km2,煤炭總儲(chǔ)量6.3億t,剩余儲(chǔ)量約2.8億t,可采儲(chǔ)量約1.9億 t.礦井設(shè)計(jì)生產(chǎn)能力390×104t/a,是內(nèi)蒙古自治區(qū)重要的焦煤生產(chǎn)基地,2011年原煤產(chǎn)量達(dá)2973.45×104t,洗煤3093.24×104t[42].

圖2 烏達(dá)煤火Fig.2 Coal fire in Wuda
工業(yè)園具有能源、化工、建材和冶金4大支柱產(chǎn)業(yè).2011年生產(chǎn)聚氯乙烯樹(shù)脂77.54×104t,燒堿 30.72×104t;同時(shí)水泥、電石和生鐵產(chǎn)量均在60×104t以上,形成了煤-電-化工、煤-焦-化工和煤-電-冶金產(chǎn)業(yè)鏈條[42],工業(yè)園內(nèi)多見(jiàn)排煙煙囪與排放水蒸氣的冷卻塔.
烏達(dá)城區(qū)位于工業(yè)園北方,煤礦區(qū)東側(cè)(圖1b),占地面積僅 12km2.火電廠位于城區(qū)南部.研究發(fā)現(xiàn)由于當(dāng)?shù)貧庀髼l件使城區(qū)處于煤礦區(qū)下風(fēng)向,進(jìn)而城區(qū)大氣污染直接受煤礦區(qū)煤火影響[43].
對(duì)烏達(dá)區(qū)包括煤礦區(qū)、工業(yè)園、城區(qū)、農(nóng)場(chǎng)和荒地約200km2,采用1km正方形網(wǎng)格布點(diǎn)(圖1b),依據(jù)經(jīng)緯坐標(biāo)通過(guò)手持 GPS定位,用硬質(zhì)與軟質(zhì)毛刷結(jié)合采集表層約1.5mm塵土;沿工業(yè)園道路S216均勻布點(diǎn),采集塵土樣8個(gè).采集塵土樣大多為淺灰色或淡黃色,煤礦區(qū)塵土樣較工業(yè)園干燥,顏色較深.對(duì)同一區(qū)域采集 3個(gè)平行樣(現(xiàn)場(chǎng)采集樣品約555個(gè))充分混合后進(jìn)行標(biāo)號(hào),共采集塵土樣品185個(gè),采集后除去樣品中雜質(zhì)(植物殘?bào)w、鐵屑、建筑材料、工業(yè)產(chǎn)品等非自然塵土物質(zhì)),經(jīng)風(fēng)干、縮分、研磨粉碎至200目(75μm),置于密封棕色廣口瓶于陰涼背光處備用.
Lumex RA-915測(cè)汞儀(俄羅斯產(chǎn))采用塞曼原子吸收光譜法和高頻調(diào)制偏振光聯(lián)合技術(shù)(外加熱解裝置).該儀器自帶汞標(biāo)準(zhǔn)物,可進(jìn)行自動(dòng)校準(zhǔn),總汞定量準(zhǔn)確度和精確度與傳統(tǒng)汞分析儀相當(dāng)(檢測(cè)線0.5ng/g),已在國(guó)內(nèi)外環(huán)境研究領(lǐng)域廣泛應(yīng)用[44-45].測(cè)試塵土樣前對(duì)沉積物標(biāo)樣 gSD-5(國(guó)家標(biāo)準(zhǔn)物質(zhì),中國(guó))進(jìn)行測(cè)試(5次),測(cè)試值與實(shí)際值相關(guān)系數(shù)達(dá)到 0.9990以上后對(duì)塵土樣進(jìn)行測(cè)試.測(cè)試過(guò)程:稱取塵土樣0.1000g,置于石英舟中,進(jìn)入 800℃恒溫?zé)峤馐?依據(jù)標(biāo)準(zhǔn)溶液系列監(jiān)測(cè)獲得的標(biāo)準(zhǔn)工作曲線進(jìn)行分析質(zhì)量控制,定量精度優(yōu)于5%;檢測(cè)線優(yōu)于2ng/g.
烏達(dá)區(qū)塵土汞含量分布呈明顯的非均一性(圖 3),并且極大值(6453ng/g)與極小值(3ng/g)相差懸殊.烏達(dá)區(qū)塵土汞均值含量工業(yè)園(804ng/g)>煤礦區(qū)(285ng/g)>城區(qū)(160ng/g)>農(nóng)場(chǎng)(66ng/ g)>荒地(50ng/g).塵土 Hg高濃度區(qū)域集中分布于工業(yè)園(圖 3-B-b,c區(qū)域)和煤礦區(qū)(圖 3-A-a區(qū)域),城區(qū)、農(nóng)場(chǎng)和荒地塵土Hg含量相對(duì)較低.對(duì)烏達(dá)區(qū)汞排放源分析,發(fā)現(xiàn)除機(jī)動(dòng)車(公路)和煤火呈線狀分布外,其余多為點(diǎn)狀(化工工業(yè)、燃煤電廠和冶金工業(yè))或面狀(煤礦區(qū))分布,烏達(dá)區(qū)塵土Hg濃度分布呈面狀.
Hg通過(guò)干濕沉降進(jìn)入塵土,由于塵土中的黏土礦物和有機(jī)質(zhì)的吸附作用,能迅速將其固定,造成塵土 Hg濃度升高[46-47].采用地積累指數(shù)Igeo=log2(C/1.5Bn)(Igeo)評(píng)價(jià)塵土 Hg污染狀況[48]. C為塵土Hg的實(shí)測(cè)值,Bn為Hg背景值(使用中國(guó)潮土Hg含量50ng/ g),1.5是為了消除沉積物地區(qū)差異可能引起背景值變動(dòng)的轉(zhuǎn)換系數(shù),Igeo的污染級(jí)別標(biāo)準(zhǔn)[48-49]: Igeo≤0,無(wú)污染;0<Igeo≤1,輕污染;1<Igeo≤2,偏中污染;2<Igeo≤3,中污染;3<Igeo≤4,偏重污染;4<Igeo≤5,重污染;5<Igeo,極重污染.

圖3 烏達(dá)區(qū)塵土汞分布Fig.3 Distribution of mercury in dusts of Wuda

表1 烏達(dá)塵土汞富集性Table 1 Mercury enrichment in dusts of Wuda
3.1 工業(yè)園塵土汞含量與分布
工業(yè)園塵土 Hg量范圍 160~6453ng/g,平均值804ng/g(表1),工業(yè)園塵土Hg含量分別是區(qū)域土壤Hg背景值和中國(guó)潮土Hg背景值的45和16倍,具有較強(qiáng)富集性.工業(yè)園整體位于煤礦區(qū)的東南部,為煤礦區(qū)的下風(fēng)向,塵土汞含量受礦區(qū)煤火影響.工業(yè)園區(qū)塵土 Hg含量較高區(qū)域?yàn)閮蓚€(gè):西南部高Hg區(qū)(圖3-B-c)和東北部高Hg區(qū)(圖3-B-b),西南部高Hg區(qū)最高值達(dá)6453ng/g,Hg來(lái)源除工業(yè)園燃煤對(duì) Hg不間斷釋放沉積外,圖3-A區(qū)域?yàn)閰^(qū)域排煙煙囪,由于地形因素:西南部背靠山體,大致處于山體凹形區(qū)域內(nèi),空間相對(duì)封閉,含 Hg塵埃得以長(zhǎng)期沉降致使工業(yè)園西南部Hg含量較高;前人報(bào)道了化工廠生產(chǎn)過(guò)程如氯堿工業(yè)、電石法PVC生產(chǎn)等產(chǎn)生含汞廢水引起的Hg污染問(wèn)題[51-52],此處高Hg區(qū)附近某聚氯乙烯工廠生產(chǎn)過(guò)程使用含汞催化劑,也是此區(qū)域汞含量增高的重要因素.東北部高 Hg區(qū)最高值為2448ng/g,塵土 Hg多來(lái)源于工業(yè)園內(nèi)部燃煤,秋冬季西北季風(fēng)作用下使其處于燃煤電廠下風(fēng)向,燃煤電廠除排放大量含汞煙塵外,還排放大量水蒸氣使區(qū)域濕度增加(工業(yè)園內(nèi)存在數(shù)個(gè)冷卻塔,其周圍相對(duì)濕度為 14.5~24.4,均值為 20.6;工業(yè)園其余地區(qū)相對(duì)濕度較低均值范圍4.4~8.4,見(jiàn)附件),加快大氣Hg沉降速率,致使塵土Hg含量出現(xiàn)較大值.通過(guò)分析地積累指數(shù)(表 2),烏達(dá)區(qū)工業(yè)園污染嚴(yán)重,偏重污染區(qū)域占全區(qū) 36.59%, 7.32%區(qū)域達(dá)到極重污染程度.

表2 烏達(dá)區(qū)塵土汞積累指數(shù)Table 2 Geo-accumulation index in Wuda
3.2 煤礦區(qū)塵土汞含量與分布
煤礦區(qū)塵土Hg含量范圍117~765ng/g,平均值285ng/g.烏達(dá)煤礦區(qū)塵土Hg均值含量低于金屬礦區(qū)塵土 Hg均值含量如陜西金礦(1980ng/ g)[53],夾皮溝金礦(560ng/g)[54],湘西官寨鉛鋅礦(1150ng/g)和花垣鉛鋅礦(690ng/g)[55].煤礦區(qū)塵土Hg含量分別是區(qū)域土壤Hg背景值和中國(guó)潮土Hg背景值的16和6倍(表1),具有富集性.塵土Hg較高濃度(765ng/g)出現(xiàn)在煤火區(qū)與矸石山附近(圖 3a).研究發(fā)現(xiàn)地下煤火煙氣與矸石山釋放氣體汞含量分別為 464ng/m3(98~1345ng/m3, n=600)和5908ng/m3(1022~31750ng/m3, n=2760),致使附近大氣汞含量顯著增高[56].煤礦高 Hg區(qū)采樣時(shí)發(fā)現(xiàn)地勢(shì)相對(duì)較低、地表為灰黑色,西北部3號(hào)煤火區(qū),南部為5號(hào)火區(qū),東南部為17號(hào)火區(qū)與東部矸石山遙相呼應(yīng),煤火區(qū)不間斷釋放Hg、煤矸石自燃釋放Hg和區(qū)域地勢(shì)相對(duì)較低有利于Hg在此處疊加沉降致使塵土Hg出現(xiàn)較高值,圖2為礦區(qū)煤火釋放的煙塵;煤礦區(qū)其他煤火區(qū)和矸石山附近塵土 Hg含量范圍為 117~455ng/g,由于地形較為突出、煤火區(qū)和矸石山呈點(diǎn)狀或線狀分布(圖1b),風(fēng)力作用致使大氣Hg和含Hg塵埃得不到有效沉降,塵土Hg含量并不顯著,如8號(hào)火區(qū)東部塵土Hg含量為362ng/g,而火區(qū)西部Hg含量更低為201ng/g,這與區(qū)域地勢(shì)和西北季風(fēng)相關(guān).煤礦區(qū)多為偏中污染和中污染,在全區(qū)所占比例為 84.09%,偏重污染區(qū)域僅為2.27%(表2).
3.3 城區(qū)塵土汞含量與分布
烏達(dá)城區(qū)(圖 3C1)位于煤田東方約 5km,烏達(dá)電廠位于城區(qū)南部,塵土Hg量范圍41~382ng/ g,平均值160ng/g,低于沈陽(yáng)老城區(qū)(210ng/g)[57]、長(zhǎng)春城區(qū)(240ng/g)[58]、開(kāi)封城區(qū)(500ng/g)[59],與重慶城區(qū)(160ng/g)[60]相當(dāng).烏達(dá)城區(qū)塵土 Hg含量呈明顯的規(guī)律性:自西南向東北塵土 Hg含量具有減小趨勢(shì),主要原因?yàn)?Hg釋放源所處的相對(duì)位置有關(guān),烏達(dá)城區(qū)火電廠和工業(yè)園分別位于南部,在西北季風(fēng)的作用下,城區(qū)受之影響較小,研究發(fā)現(xiàn)烏達(dá)城區(qū) Hg污染多受煤礦區(qū)煤火影響[37].前人研究發(fā)現(xiàn)氣態(tài)單質(zhì) Hg沉降速率遠(yuǎn)低于顆粒態(tài)Hg和活性氣態(tài)Hg,被植被覆蓋區(qū)域活性氣態(tài)Hg沉降速率高于草地或裸露地表沉降速率,大氣濕度能大大增加顆粒態(tài) Hg的沉降速率
[61-63].烏達(dá)城區(qū)塵土 Hg含量與其他城區(qū)相比較低,與本地區(qū)自然地理?xiàng)l件、氣候條件密切相關(guān),如烏達(dá)城區(qū)植被稀少、空氣干燥和夏季日照較長(zhǎng)等,此外區(qū)域風(fēng)沙沉積量大對(duì)大氣 Hg沉積具有稀釋作用.城區(qū)污染程度全為中污染及其以下,污染程度較輕(表2).
3.4 農(nóng)場(chǎng)與荒地塵土汞含量
農(nóng)場(chǎng)區(qū)塵土 Hg含量范圍 16~198ng/g,平均值66ng/g;區(qū)內(nèi)荒塵土Hg量范圍3~284ng/g,平均值 50ng/g.農(nóng)場(chǎng)和荒地塵土 Hg含量與中國(guó)潮土Hg含量(50ng/g)相當(dāng),稍高于烏達(dá)區(qū)背景值(18ng/g).煤礦區(qū)與工業(yè)園之間荒地塵土汞含量較其余地區(qū)高,原因?yàn)樘幱诘V區(qū)煤火下風(fēng)向和此處洗煤廠釋放汞,致使塵土 Hg含量與同樣位于火區(qū)下風(fēng)向的工業(yè)園(除高Hg區(qū))塵土Hg含量相當(dāng)(圖 3);農(nóng)場(chǎng)所在區(qū)域不在煤礦區(qū)下風(fēng)向,其塵土 Hg含量與城區(qū)相比較低,荒地遠(yuǎn)離污染源,農(nóng)場(chǎng)和荒地多為無(wú)污染區(qū),有少量區(qū)域?yàn)檩p污染和偏中污染(表2).
3.5 主干道路塵土汞分布
人為汞排放包括化石燃料燃燒、城市垃圾和垃圾焚燒、金屬冶煉、氯堿工業(yè)、水泥制造等[64-65].研究發(fā)現(xiàn)影響大氣汞沉降的因素主要有汞存在形態(tài)、地形、光照、地表植被覆蓋率和大氣濕度等[61-63,66].烏達(dá)區(qū)汞排放源主要有燃煤、化工工業(yè)、金屬冶煉和機(jī)動(dòng)車排放;烏達(dá)自然地理?xiàng)l件多不利于大氣Hg快速沉降如干燥少雨、日照時(shí)間長(zhǎng)、植被稀少和大部分地區(qū)基巖裸露等.

圖4 沿道路塵土汞分布Fig.4 Distribution of mercury in dusts of along road
沿工業(yè)園內(nèi)部近似東西向主干道路(S216)采集塵土樣,采樣點(diǎn)塵土多為灰黑色,塵土沉積較厚,砂質(zhì).此道路為烏達(dá)主干道,主要擔(dān)負(fù)煤炭、化工產(chǎn)品和冶金工業(yè)產(chǎn)品的外運(yùn),車流量大,如只考慮道路自身釋放沉降,道路塵土汞含量理論上應(yīng)具有均一性.經(jīng)測(cè)試發(fā)現(xiàn)道路塵土汞含量具有明顯的非均一性,并且極大值(800ng/g)與極小值(215ng/g)相差在 3倍以上.沿道路自西向東塵土Hg濃度分布(圖 4)有先增加后減小趨勢(shì).S-3采樣點(diǎn)無(wú)明顯大顆粒沙土,多為灰黑色細(xì)粒粘土,塵土濕度較高,分析發(fā)現(xiàn) S-3(極大值)點(diǎn)緊鄰工業(yè)園某氯堿工廠,化工廠燃煤和煤加工釋放汞外,還釋放大量白色水霧,增加了區(qū)域大氣濕度,加快汞濕沉降速率;此外化工廠生產(chǎn)過(guò)程使用含 Hg催化劑,也可使區(qū)域 Hg污染加重.道路塵土汞含量差異,原因?yàn)楦浇c(diǎn)釋放源的影響.
4.1 烏達(dá)區(qū)塵土汞含量分布呈明顯的非均一性,工 業(yè) 園 (804ng/g)>煤 礦 區(qū) (285ng/g)>城 區(qū)(160ng/g)>農(nóng)場(chǎng)(66ng/g)>荒地(50ng/g);塵土 Hg含量均值分別與烏達(dá)區(qū)背景值(18ng/g)和中國(guó)潮土背景值(50ng/g)相比較,烏達(dá)工業(yè)園和煤礦區(qū)塵土Hg明顯富集.
4.2 煤礦區(qū)極大值點(diǎn)與煤火區(qū)、矸石山相對(duì)位置和本身地勢(shì)有關(guān);工業(yè)園整體處于礦區(qū)煤火區(qū)下風(fēng)向,塵土 Hg含量明顯受其影響,工業(yè)園區(qū)局部 Hg含量較高,主要原因?yàn)楣I(yè)園自身點(diǎn)釋放源如燃煤源、蒸汽釋放源和化工廠使用含Hg催化劑.城區(qū)位于煤礦區(qū)下風(fēng)向,塵土 Hg含量多受煤火影響.
4.3 通過(guò)計(jì)算 Igeo值,發(fā)現(xiàn)烏達(dá)區(qū)塵土 Hg污染分布具明顯規(guī)律性,污染區(qū)域分布于礦區(qū)煤火下風(fēng)向.煤礦區(qū)多為偏中污染和中污染,在全區(qū)所占比例為84.09%,偏重污染區(qū)域僅為2.27%;工業(yè)園汞污染嚴(yán)重,偏重污染區(qū)域占全區(qū)36.59%,7.32%達(dá)到極重污染程度.工業(yè)園和煤礦區(qū)塵土 Hg污染應(yīng)給予特別關(guān)注.
[1]周德群,湯建影,程?hào)|全,等.中國(guó)礦業(yè)城市研究結(jié)構(gòu)、演變與發(fā)展[M]. 中國(guó)礦業(yè)大學(xué)出版社, 2002.
[2]Heffern E L, Coates D A. Geologic history of natural coal-bed fires, Powder River basin, USA [J]. International Journal of Coal Geology, 2004,59:25-47.
[3]Stracher G B. Coal fires burning around the world: a global catastrophe. International Journal of Coal Geology, 2004,59:1-6.
[4]Walker S. Uncontrolled Fires in Coal and Coal Wastes, Coal Research [M]. International Energy Agency, London, Great Britain, 1999,119-132.
[5]Heffern E L, Coates D A. Geologic history of natural coal-bed fires, Powder River basin, USA [J]. International Journal of Coal Geology, 2004,59:25-47.
[6]Kuenzer C, Stracher G B. Geomorphology of coal seam fires [J]. Geomorphology, 2012,138:209-222.
[7]Sharygin V V, Sokol E V, Belakovskii D I. Fayalite-sekaninaite paralava from the Ravat coal fire (central Tajikistan) [J]. Russian Geology and Geophysics, 2009,50:703-721.
[8]Ellyett C D, Fleming A W. Thermal infrared imagery of the Burning Mountain coal fire [J]. Remote Sensing Environment, 1974,3:79-86.
[9]Zhang X M, Kroonenberg S B, B De Boer C. Dating of coal fires in Xinjiang, north-west China [J]. Terra Nova, 2004,16:68-74.
[10]張建民,管海晏,曹代勇,等.中國(guó)地下煤火研究與治理 [M]. 北京:煤炭工業(yè)出版社, 2008:3-27.
[11]Ide S T, Orr F M J. Comparison of methods to estimate the rate ofCO2emissions and coal consumption from a coal fire near Durango [J]. International Journal of Coal Geology, 2011,86:95-107.
[12]O’Keefe J M, Henke K R, Hower J C, et al.CO2, CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA [J]. Science of the total environment, 2010,408:1628-1633.
[13]Leung A O W, Duzgoren-aydin N S, Cheung K C, et al. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southest China [J]. Environmental Science & Technology, 2008,42(7):2674-2680.
[14]Ahmed F, Ishiga H. Trace metal concentrations in street dusts of Dhaka city, Bangladesh [J]. Atmospheric Environment, 2006,40(21):3835-3844.
[15]Lough G C, Schauer J J, Park J S, et al. Emissions of metals associated with motor vehicle roadways [J]. Environmental Science & Technology, 2005,39(3):826-836.
[16]楊忠平,盧文喜,龍玉橋.長(zhǎng)春市城區(qū)重金屬大氣干濕沉降特征[J]. 環(huán)境科學(xué)研究, 2009,22(1):28-34.
[17]張 云,張宇峰,胡 忻.南京不同功能區(qū)街道路面積塵重金屬污染評(píng)價(jià)與源分析 [J]. 環(huán)境科學(xué)研究, 2010,23(11):1376-1381.
[18]Tokalioglu S,Kartal S. Multivariate analysis of the data and speciation of heavy metals in street dust samples from the Organized Industrial District in Kayseri (Turkey) [J]. Atmospheric Environment, 2006,40(16):2797-2805.
[19]Lnyuang H I, Bae S. Impacts of dust on environmental systems and human health [J]. Journal of Hazardous Materials, 2006, 132(1):5-6.
[20]Lioy P J, Freeman N C, Millette J R. Dust: A metric for use in residential and building exposure assessment and Source characterization [J]. Environmental Health Perspectives, 2002, 110(10):969-983.
[21]Takashi Tomiyasu, Yuriko Kono, Hitoshi Kodamatani, et al. The distribution of mercury around the small-scale gold mining area along the Cikaniki river, Bogor, Indonesia [J]. Environmental Research, 2013,125:12-19.
[22]Lim H S, Lee J S, Chon H T, et al. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea [J]. Journal of Geochemical Exploration, 2008,96(2/3):223-230.
[23]Ivan G, Rabia A G. Potential health risk assessment for soil heavy metal contamination in the central zone of Belgrade (Serbia) [J]. Journal of serbia Chemical Society, 2008,73(8/9):923-934.
[24]Thum C R, Farago M E, Thornton L. Bioavailability of trace metals in brown field soils in an urban area in the UK [J]. Environmental Geochemistry and Health, 2008,30(6):549-563.
[25]Lin Y, Guo M, Gan W. Mercury pollution from small gold mines in China [J]. Water, Air and Siol Pollution, 1997,97(3/4):233-239.
[26]王 爽,李榮華,張?jiān)鰪?qiáng),等.陜西潼關(guān)農(nóng)田土壤及農(nóng)作物重金屬污染及潛在風(fēng)險(xiǎn) [J]. 中國(guó)環(huán)境科學(xué), 2014,34(9):2313-2320.
[27]Chen X, Xia X H, Wu S, et al. Mercury in urban soils with various types of land use in Beijing, China [J]. Environmental Pollution, 2010,158(1):48-54.
[28]Zhang X M, Luo K L, Sun X Z, et al. Mercury in the topsol and dust of Beijing City [J]. Science of the Total Environment, 2006,368(2/3):713-722.
[29]Du Y R, Gao B, Zhou H D, et al. Health risk assessment of heavy metals in road dusts in urban parks of beijing, China [J]. Procedia Environmental Sciences, 2013,18:299-309.
[30]唐榮莉,馬克明,張育新,等.北京城市道路灰塵重金屬污染的健康風(fēng)險(xiǎn)評(píng)價(jià) [J]. 環(huán)境科學(xué)學(xué)報(bào), 2012,32(8):2006-2015.
[31]李山泉,楊金玲,阮心玲,等.南京市大氣沉降中重金屬特征及對(duì)土壤環(huán)境的影響 [J]. 中國(guó)環(huán)境科學(xué), 2014,34(1):22-29.
[32]常 靜,劉 敏,李先華,等.上海地表灰塵重金屬污染的健康風(fēng)險(xiǎn)評(píng)價(jià) [J]. 中國(guó)環(huán)境科學(xué), 2009,29(5):548-554.
[33]史貴濤,陳振樓,許世遠(yuǎn),等.上海市公園土壤及灰塵中重金屬污染特征 [J]. 環(huán)境科學(xué), 2007,28(2):238-242.
[34]Tsai Y I, Kuo S C, Liu Y H. Teporal characteristics of inhalable mercury and arsenic aerosols in the urban atmosphere in southernTaiwan [J]. Atmosphereic Environment, 2003,37(34):3401-3411.
[35]李如忠,周愛(ài)佳,童 芳,等.合肥城市地面灰塵重金屬分布特征及環(huán)境健康風(fēng)險(xiǎn)評(píng)價(jià) [J]. 環(huán)境科學(xué), 2011,32(9):2661-2668.
[36]Lu X, Li Y. L, Wang L, et al. Contamination Assessment of Mercury and Arsenic in Roadway Dust from Baoji, China [J]. Atmospheric Environment, 2009,43:2489-2496.
[37]Liang Y C, Liang H D, Zhu S Q. Mercury emission from coal seam fire at Wuda, Inner Mongolia, China [J]. Atmospheric Environment, 2014,83:176-184.
[38]樊新杰,曹代勇,時(shí)孝磊,等.內(nèi)蒙古西部烏達(dá)礦區(qū)煤層自燃的控制因素 [J]. 地質(zhì)通報(bào), 2006,25(4):487-491.
[39]王浩森,胡社榮,杜 婷,等.烏達(dá)煤田煤層自燃動(dòng)態(tài)變化和產(chǎn)生原因 [J]. 中國(guó)礦業(yè), 2013,22(2):101-103.
[40]Kuenzer C, Zhang J Z, Sun Y L, et al. Coal fires revisited: The Wuda coal field in the aftermath of extensive coal fire research and accelerating extinguishing activities [J]. International Journal of Coal Geology, 2012,102:75-86.
[41]李 峰,梁漢東,趙小平,等.基于ASTER影像的烏達(dá)火區(qū)遙感監(jiān)測(cè)研究 [J]. 煤礦安全, 2016,47(11):15-18.
[42]Wuda Municipal Government, 2012. Wuda Climate. Wuda Municipal Government. www.wuda.gov.cn.
[43]Zhang C Y, Guo S, Guan Y N, et al. The diffusion area simulation of gases released by coal fire [J]. Journal of China Coal Society, 2012,1698-1704.
[44]Sholupov S, Pogarev S, Ryzhov V, et al. Zeeman atomic absorption spectrometer RA-915+for direct determination of mercury in air and complex matrix samples [J]. Fuel Processing Technology, 2004,85(6/7):473-485.
[45]李 珊,李 洋,梁漢東,等.北京城郊燃煤汞排放及其對(duì)當(dāng)?shù)乜諝猸h(huán)境的影響 [J]. 環(huán)境科學(xué)研究, 2014,27(12):1420-1425.
[46]王 梅,黃 標(biāo),孫維俠,等.強(qiáng)烈人為作用下城鎮(zhèn)周圍汞的空間變異及其積累遷移規(guī)律 [J]. 土壤學(xué)報(bào), 2011,48(3):506-515.
[47]Muller G. Index of geo-accumulation in sediments of the Rhine River [J]. Geological journal, 1969,2(3):108-118.
[48]Kr?mová K, Robertson D, Cve?ková V, et al. Road-deposited sediment, soil and precipitation (RDS) in Bratislava, Slovakia:compositional and spatial assessment of contamination [J]. Journal of Soil and Sediments, 2009,9(4):304-316.
[49]Lu X W, Wang L J, Lei K, et al. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China [J]. Journal of Hazardous Materials, 2009,161(2/3):1058-1062.
[50]中國(guó)環(huán)境監(jiān)測(cè)總站.中國(guó)土壤元素背景值 [M]. 北京:中國(guó)環(huán)境科學(xué)出版社, 1990:87-90.
[51]Lodenius M, Nuopteva P N S L. Uptake of Mercury by Terrestrial plants-Observation in Finland and Slovenia in the Years 1979-1981 [J]. Materials and Geoenvironment, 2004,51(2):1181-1184.
[52]Halk B, Stanislav F B, Zeljko K. Comparison of two mercury polluted coastal environments in the Adriatic Sea [J]. Rudarsko-Metalurski Zbomik, 2001,48(1):226-228.
[53]徐友寧,柯海嶺,劉瑞萍,等.某金礦區(qū)農(nóng)田土壤汞污染評(píng)價(jià) [J].黃金, 2006,27(7):47-50.
[54]楊 凈,王 寧.夾皮溝金礦開(kāi)采區(qū)土壤重金屬污染潛在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià) [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2013,32(3):595-600.
[55]李永華,王五一,楊林生,等.湘西多金屬礦區(qū)汞鉛污染土壤的環(huán)境質(zhì)量 [J]. 環(huán)境科學(xué), 2005,26(5):187-191.
[56]Liang Y C, Liang H D, Zhu S Q. Mercury emission from spontaneously ignited coal gangue hill in Wuda coalfield, Inner Mongolia, China [J]. Fuel, 2016,182:525-530.
[57]馬志孝,任婉俠,薛 冰,等.老工業(yè)搬遷區(qū)街道灰塵重金屬污染物的人體健康風(fēng)險(xiǎn)評(píng)價(jià) [J]. 生態(tài)科學(xué), 2014,33(5):963-971.
[58]楊忠平,王 雷,翟 航,等.長(zhǎng)春市城區(qū)近地表灰塵重金屬健康風(fēng)險(xiǎn)評(píng)價(jià) [J]. 中國(guó)環(huán)境科學(xué), 2015,35(4):1247-1255.
[59]段海靜,蔡曉強(qiáng),阮心玲,等.開(kāi)封市公園地表灰塵重金屬污染及健康風(fēng)險(xiǎn) [J]. 環(huán)境科學(xué), 2015,36(8):2972-2979.
[60]李燕燕,李章平,熊海靈,等.重慶市街道灰塵重金屬污染的健康風(fēng)險(xiǎn)評(píng)價(jià) [J]. 西南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015,37(2):18-23.
[61]Lindberg S E, Stratton W J. Atmospheric mercury speciation:Concentrations and behavior of reactive gaseous mercury in ambient air [J]. Environmental Science & Technology, 1998, 32:49-57
[62]Lindberg S E, Dong W, Meyers T. Transpiration of gaseous elemental mercury through vegetation in a subtropical wetland in Forida [J]. Atmospheric Environment, 2002,36:5207-5219.
[63]Qi J H , Li P L, Li X G , et al. Estimation of dry deposition fluxes of particulate species to the water surface in the Qindao area, using a model and surrogate surfaces [J]. Atmospheric Environment, 2005,39:2081-2088.
[64]Pacyna E G, Pacyna J M, Steenhuisen F, et al. Global anthropogenic mercury emission inventory for 2000 [J]. Atmospheric Environment, 2006,40:4048-4063.
[65]Street D G, Hao J M, Wu Y, et al. Anthropogenic mercury emission in China [J]. Atmospheric Environment, 2005,39(40):7789-7806.
[66]Nho-Kim E Y, Mi chou M, Peoch V H. Parameterization of size-dependent particle dry deposition velocities for global modeling [J]. Atmospheric Environment, 2004,38:1933-1942.
Distribution of mercury content in dusts of coal base, Wuda, China.
LI Chun-hui1,2, LIANG Han-dong1,2*, CHENYang1, BAI Jiang-wei1, CUI Yu-kun1(1.State Key Laboratory of Coal Resoures and Safe Mining, China University of Mining and Technology, Beijing 100083, China;2.College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China). China Environmental Science, 2017,37(6):2203~2210
185 samples were collected, using a systematic sampling strategy with sampling density 3composite dust samples (about 1.5mm above the ground surface) per km2in Wuda, and total of 200 km2. The mercury (Hg) concentrations of dusts were investigated using Lumex RA-915. The results showed that the dust Hg concentrations of coalfield ranged from 117 to 765ng/g with an average of 285ng/g, the value of industrial part ranged from 160 to 6453ng/g with an average of 804ng/g, the value of urban ranged from 41 to 382ng/g with an average of 160ng/g, the value of farm ranged from 16 to 198ng/g with an average of 66ng/g, and the value of industrial wasteland ranged from 3 to 284ng/g with an average of 50ng/g. Compared with the value of Wuda background and China tide soil background, the dust Hg concentrations were significantly enrichment in industrial park and coalfield. But the concentrations were lower than that of metal mining area and other urban, the reason of which was that the dusts mercury was mainly related to the relative position of coalfire, gangue and it’s geographic height in coalfield, sunshine duration, dry air and surface naked in urban. The distribution of dust Hg in Wuda was significantly inhomogeneity. The Hg distribution in industrial park was affected by regional humidity increase, chemical plant using the involving mercury catalyst and regional geographical location such as relatively closed and downwind of coal-fired power plants. By the analyze of geo-accumulation index (Igeo), the results showed that the Hg pollution of industrial park was serious with 36.59% area close to heavy pollution and 7.32% very heavy pollution, the Hg pollution in coalfield was moderate with 2.27% area close to heavy pollution, other areas were lesspolluted.
Wuda;coalfire;dusts;mercury;distribution;pollution
X53
A
1000-6923(2017)06-2203-08
李春輝(1990-),男,河南省周口市人,中國(guó)礦業(yè)大學(xué)(北京)博士研究生,主要從事汞污染研究.
2016-11-01
國(guó)家自然科學(xué)基金(41371449)
* 責(zé)任作者, 教授, HDL6688@vip.sina.com