邵克勇+王季馳+于葉強



摘 要:針對帶擾動不確定分數階混沌系統的同步問題,基于自適應Terminal滑模控制,設計了一種分數階非奇異Terminal滑模面,保證誤差系統沿著滑模面在有限時間內穩定至平衡點,在系統外部擾動和不確定性的邊界事先未知的情況,設計了自適應控制率,在線估計未知邊界,使得同步誤差軌跡能到達滑模面。最后,以三維分數階Chen系統和四維分數階Lorenz超混沌系統為例,利用所設計的自適應Terminal滑模控制器進行同步仿真,驗證了所給方法是有效性和可行性。
關鍵詞:混沌同步;分數階非奇異Terminal滑模;自適應控制;分數階混沌系統
Abstract: In this paper, the problem of synchronization of uncertain fractional order chaotic systems with disturbance is investigated based on adaptive terminal sliding mode control method. First, a new non-singular fractional order terminal sliding surface with strong robustness is designed to guarantee finite-time convergence to the equilibrium of the error dynamics in the sliding mode. Then, for the case that the bounds of the uncertainties and external disturbances are assumed to be unknown in advance, an adaptive control law is proposed to estimate the unknown bounds online, and force the trajectory of the synchronization error system onto the sliding surface. Finally, numerical simulations on synchronizing Chen chaotic system and hyperchaos Lorenz are carried out separately. The simulation results show the effectiveness and feasibility of the adaptive terminal sliding mode controller.
Keywords: Chaos synchronization; non-singular fractional order terminal sliding mode; adaptive control; fractional order chaotic systems
1.引 言
分數階微積分起源于19世紀,是一個有著將近300年歷史的數學概念,近些年來,科學工作者對分數階微積分進行了深入研究[1]。多年來,這個分支被認為是唯一一個幾乎沒有應用的數學和理論相結合的學科。但是,數十年來,分數階動力學系統的混沌現象、混沌控制及同步研究已經得到廣泛和深入的研究[2-6]。
1990 年,Pecora和Carroll等人在混沌同步的研究中做出了開創性的工作[7]。此后,科學工作者們對混沌控制與同步問題產生廣泛的關注[8]。由于分數階與整數階模型相比較,分數階微分是刻畫具有記憶性和遺傳性的各種材料及過程的良好的工具,分數階混沌同步比整數階混沌同步在保密通信以及控制領域等方面有著巨大的應用前景和發展前景[9-14]。近年來,人們提出了很多分數階混沌系統的同步控制方法,如脈沖控制[15],主動控制[16],自適應控制[17],廣義投影控制[18]和被動控制[19]。
滑模控制是一種簡單并且有效的魯棒控制策略。傳統的線性滑模具有很快的速度,但卻漸近地趨于平衡點,極大的影響收斂速度;Terminal滑模使系統狀態在有限的時間內收斂于平衡點,但當系統的狀態離平衡點較遠時,到達時間卻較長,并出現了無窮大奇異點。為了避免傳統Terminal滑模方法中所出現的奇異問題,文獻[20-22]提出了非奇異Terminal滑模控制方法,提高系統到達滑模面的速度,提高系統處于滑動模態時的收斂速度。但在實際應用中,系統受外界干擾和自身的不確定性是不可避免的,而且由于測量條件的局限性,外界也很難精確探測出系統的數學模型。因此研究受擾動和帶有不確定項的分數階混沌系統更具有實際的意義。然而,國內外學者對于不確定擾動分數階混沌系統的同步問題的研究并不深入。文獻[23]在考慮不確定因素影響的情況下,對不確定項進行了自適應估計,但是該方法中誤差系統并不能在有限時間內收斂到滑模面。
綜上所述,論文首先研究了分數階非奇異Terminal滑模控制方法,誤差系統在有限時間收斂到Terminal滑模面的同時,實現了誤差系統的狀態變量在有限時間內收斂到平衡點附近的鄰域內,實現分數階混沌系統的同步。進而在未知外部擾動及不確定性的條件下,設計自適應控制器,使得同步誤差軌跡達到Terminal滑模面,并在線估計未知邊界。通過理論分析和數值模擬驗證所設計的控制器是有效和可行的。
4 結論
本文基于非奇異Terminal滑模控制方法和自適應控制方法,研究了不確定擾動的分數階混沌系統的同步問題。首先設計了一種分數階非奇異Terminal滑模面,其次根據滑模可到達條件,并假設不確定性和外部擾動的邊界都是事先未知的情況下,設計了自適應非奇異Terminal滑模控制器,使誤差系統從空間內任意一點出發,都能在有限時間內沿滑模面穩定至平衡點,進而實現了分數階混沌系統同步。運用所設計的自適應非奇異Terminal滑模控制器實現了三維分數階Chen系統與四維分數階Lorenz超混沌系統的滑模控制同步。數值仿真結果驗證了該控制器的有效性。
參考文獻
[1] Podlubny I. Fractional differential equations[M]. New York: Academic Press, 1999.
[2] Tavazoei MS, Haeri M, Jafari S, Bolouki S, Siami M. Some applications of fractional calculus in suppression of chaotic oscillations. IEEE Trans Ind Electron
2008, 55:4098–101.
[3] Magin RL. Fractional calculus in bioengineering. Crit Rev Biomed Eng, 2004,32:1-104.
[4] Couceiro MS, Fonseca Ferreira NM, Tenreiro Machado JA. Application of fractional algorithms in the control of a robotic bird. Commun Nonlinear Sci Numer Simul, 2010,15:895-910.
[5] Victor S, Melchior P, Oustaloup A. Robust path tracking using flatness for fractional linear MIMO systems: a thermal application. Comput Math Appl, 2010,59:1667-78.
[6] Preda L, Mihailescu M, Preda A. Application of fractional derivative to the relaxation of laser target. UPB Sci Bull Ser A Appl Math Phys ,2009,71:11-20.
[7] Pecora L M, Carroll T L. Synchronization in chaotic system[J]. Physical Review Letters, 1990, 64(8):821-824.
[8] Her-Terng Yau, Chieh-Li Chen. Chaos control of Lorenz systemsusing adaptive controller with input saturation[J]. Chaos, Solitons and Fractals, 2007, 34:1567-1574.
[9] Abdullah, A.: Synchronization and secure communication of uncertain chaotic systems based on full-order and reduced-order output-affine observers. Appl. Math. Comput.219, 10000–10011 (2013).
[10] Wu, X, Wang, H, Lu, H. Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication[J]. Nonlinear Anal. Real World Appl., 2012, 13(3), 1441-1450.
[11] Sheu, L J . A speech encryption using fractional chaotic systems[J]. Nonlinear Dyn., 2011, 65[1], 103-108.
[12] Muthukumar, P, Balasubramaniam, P. Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography[J]. Nonlinear Dyn., 2013, 74(4), 1169-1181.
[13] Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Synchronization of a novel fractional order stretch-twist-fold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES). Nonlinear Dyn., 2014, 77(4), 1547-1559.
[14] Muthukumar, P, Balasubramaniam, P, Ratnavelu, K. Synchronization and an application of a novel fractional order King Cobra chaotic system[J]. Chaos, 2014, 24(3), 033105.
[15] Xi, H L, Yu, S M, Zhang, R X, Xu, L. Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems[J]. Optik Int. J. Light Electron Opt., 2014(9), 125, 2036-2040.
[16] Bhalekar, S, Daftardar-Gejji, V. Synchronization of different fractional order chaotic systems using active control[J]. Commun. Nonlinear Sci. Numer. Simul., 2010, 15(11), 3536–3546.
[17] Yang, L X, Jiang, J. Adaptive synchronization of driveresponse fractional-order complex dynamical networks with uncertain parameters[J]. Commun. Nonlinear Sci. Numer.Simul., 2014, 19(5), 1496–1506.
[18] Peng, G J, Jiang, Y L, Chen, F. Generalized projective synchronization of fractional order chaotic systems. Phys. A, 2008, 387(14), 3738–3746.
[19] Wu, C J, Zhang, Y B, Yang, N N: The synchronization of a fractional order hyperchaotic system based on passive control[J]. Chin. Phys. B, 2011,20(6), 060505.
[20] Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167.
[21] Zhang W W, Wang J. Nonsingular terminal sliding model control based on exponential reaching law[J]. Control and Decision, 2012, 27(6): 909-913. (張巍巍, 王京. 基于指數趨近律的非奇異terminal滑模控制[J]. 控制與決策, 2012, 27(6): 909-913.)
[22] Yang L, Yang J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. Int J of Robust and Nonlinear Control, 2011, 21(16), 1865-1879.
[23] Deng W, Fang J, Wu Z J, et al. Adaptive modified function projective synchronization of a class of chaotic systems with uncertainties[J]. Acta Physica Sinica, 2012, 61(14): 140503. (鄧瑋,方潔, 吳振軍等. 含有不確定項的混沌系統自適應修正函數投影同步[J]. 物理學報, 2012, 61(14): 140503.)
[24] Aguila-Camacho, N, Duarte-Mermoud, M A, Gallegos, J A. Lyapunov functions for fractional order systems[J]. Commun. Nonlinear Sci. Numer. Simul., 2014, 19(9), 2951-2957 .
[25] Mohammad P A, Sohrab K, Ghassem A. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique[J]. Applied Mathematical
Modelling, 2011, 35(6): 3080-3091.