丁傳超
摘 要:在中學的數學學習過程中少不了解題環節,其目的就是要提高解題的能力。中學數學教學不僅僅是簡單的知識講授和數學解題方法的講解,而是知識應用能力和解題方法的提升和掌握。針對中學數學解題過程中數學方法的應用進行深入分析。
關鍵詞:中學數學;解題過程;數學方法
隨著新課改逐步推進,中學數學不僅僅是簡單的知識講授和數學解題方法的講解,而是知識應用能力和解題方法的提升和掌握。在新形勢下,中學數學試題考查的內容和形式都發生了巨大的變化,具有很強的靈活性。為了更好地解決數學難題,學生必須在掌握基礎數學知識的同時熟悉數學的方法。
一、中學數學的含義
(一)中學數學的設計特點
1.目標的設計體現了學生的主體性和全面發展性
2.情境的設計體現了數學科學價值與文化價值的滲透性
3.過程的設計體現了老師引導下學生的自主探索性
4.內容的設計體現了符合學生認知特點的知識建構性
(二)要求
1.教學目標設計要恰當、適合,體現出三維教學目標的理念
2.教學素材的選取應體現數學的本質,根據教學實際,關注學生可能出現的問題,要有適度的彈性
3.教學內容的組織要關注數學內容之間的聯系,幫助學生能夠全面整體地理解和學習數學
4.教學內容應該關注知識內容的發生、發展的過程,能使學生自主探索問題
(三)數學教學設計的基本環節
1.前期準備:教學背景分析、教學任務分析、學習者分析
2.開發設計:科學合理地確定教學目標、循序漸進地把握教學過程、恰到好處地選用教學媒體、規范合理地編寫教學設計方案
3.評價修改:對數學教學設計成果的評價,對數學教學內容與對象分析
(四)數學教材的功能:目標功能、教學功能、評價功能
(五)數學教材分析的意義
1.數學教師進行教學設計的基礎
2.數學教師進行教學研究的主要方法之一
3.能體現出教師的教學能力和創造性的勞動
二、如何更好地解題
《中學數學解題研究》緊扣數學新課標和當前學生的解題實際,內容應包括緒論、數學問題解決的基本策略、數學解題理論概述、數學問題解決的一般方法、數學解題能力的培養、中學新課程新增內容解題研究。書中理論與實踐并重,各章節含有例題和習題,先練后講、邊講邊練、及時反思、總結規律,以提高學生解題的意識、能力和修養。
(一)通過數學中的故事設計問題
從古至今,有許多著名的數學家,可以借助他們的經歷創設數學情境,這樣能激發學生的求知欲,還可以學習數學知識,領略數學家的人格魅力,有效激發學生的學習興趣。
(二)利用圖文轉化的方法解題
在中學數學中,有許多幾何、平面、函數題,而解答這些題需要大量空間想象才能逐步完成,這時候就需要學生具備圖文轉化能力。老師應在課堂上準備好幾何模型,組織學生進行觀察與比較活動,這樣不但可以活躍課堂氣氛,而且能提高學生的空間想象能力。
三、數學方法的分析理解
方法是什么,方法就是指人們為達到某種目的而運用的某種手段、途徑和行為方式中所包含的規則或模式。人們通過長期的實踐與探索,發現了很多運用數學思想的手段、門路等。同一手段、門路等被多次運用,并達到了預期的目的和效果,所以變成了數學方法。
(一)數學方法具有三個基本特征
1.高度的抽象性和簡潔性
2.精確性和嚴密性,即邏輯及結論的確定性
3.應用過程的普遍性和操作性等
數學方法在有關技術研究中具有重要的地位和作用,具體如下:
一是提供精確的形式化語言;二是提供數據分析和計算等方法;三是提供邏輯性的工具。尤其是電子計算機的發展過程,它與數學方法的地位和作用是緊密相連的。
(二)在中學數學中經常用到的數學方法
1.數學中的推理方法
如分析法、逆證法、綜合法、反證法、歸納法等。這些方法不僅要遵從邏輯學中的規律和原則,還由于運用于數學中而具有數學運算的特色和樂趣。
2.數學中的基本方法
如建模法、消元法、降次法、代入法、圖形結合分析法、坐標法、圖象法、比較法、放縮法、向量法、數學歸納法等。這些方法一定要熟練掌握和運用,否則將出現許多問題。
3.數學中的特殊方法
如:配方法、待定系數法、加減法、消元法、公式法、換元法、中間變量法、拆項補項法、因式分解諸方法、平行移動法等。這類方法是數學中的難點,所以,一定要多加運用,以達到運算解題的效果。
隨著新課改的不斷推進,中學數學教學不僅是簡單的知識講授和數學解題方法的講解,而是知識應用能力和解題方法的提升和掌握。新形勢下,中學數學試題考查的內容和形式都發生了一定的變化,具有很強的逆向思維性。學生必須熟練掌握數學基礎知識。所以說,不僅要熟悉一般的數學方法還要達到熟練運用。通過中學解題過程中數學方法應用的探究和分析過程,我們希望能夠幫助學生運用數學方法進行解題,形成解決數學問題的思路和方法。
參考文獻:
[1]鄧小榮中學數學的體驗教學法[J].廣西師范學院學報,2003(8):57-78.
[2]胡中雙.淺談中學數學教學中創造性思維能力的培養[J].湖南教育學院學報,2001(7):14-39.
編輯 高 瓊