999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

新疆紅棗棗果主要致病菌交鏈格孢菌產生毒素種類及黑斑病病果毒素含量測定

2017-08-30 17:35:02何麗郭開發艾尼古麗依明趙思峰
新疆農業科學 2017年6期

何麗,郭開發,艾尼古麗·依明,趙思峰

(新疆綠洲農業病蟲害治理與植保資源利用自治區高校重點實驗室/石河子大學農學院,新疆石河子 832003)

新疆紅棗棗果主要致病菌交鏈格孢菌產生毒素種類及黑斑病病果毒素含量測定

何麗,郭開發,艾尼古麗·依明,趙思峰

(新疆綠洲農業病蟲害治理與植保資源利用自治區高校重點實驗室/石河子大學農學院,新疆石河子 832003)

【目的】研究新疆紅棗縮果病和棗果黑斑病兩種病害的主要致病菌交鏈格孢菌(Alternariaalternate)產生的主要毒素種類,以及栆果黑斑病病果中的毒素種類和含量,為紅棗加工和食用的安全性評價提供依據。【方法】采用超高效液相色譜-串聯質譜法,測定10株鏈格孢菌產生的毒素種類及含量,并對棗果黑斑病不同嚴重度發病棗果和人工接種果實中毒素種類及含量進行測定。【結果】10株交鏈格孢供試菌株可產生4種毒素,分別為鏈格孢酚(alternariol,AOH)、交鏈格孢酚單甲醚(alternariol monomethyl ether,AME)、交鏈孢烯(altenuene,ALT)和細交鏈格孢菌酮酸(tenuazonic acid,TeA)。TeA、ALT、AME和AOH在不同病級發病棗果和人工培養條件下均有檢出,其中TeA檢出含量最高,范圍為3.1×103~5.5×103mg/kg;AME、AOH和ALT的含量范圍分別為7.2×102~6.4×102mg/kg,1.2~3.8×102mg/kg和0.09~5.08 mg/kg。人工接種鏈格孢菌后,無傷、有傷棗果內均檢測到大量TeA。不止在發病棗果中檢測到了毒素,無傷接種未發病棗果亦發現大量毒素,且未接種健康棗果中亦有少量鏈格孢霉毒素。【結論】新疆紅棗棗縮果病和棗果黑斑病病原菌兩種病害的主要致病菌交鏈格孢菌(Alternariaalternate)均可產生鏈格孢霉毒素,且產毒量高,危害嚴重,影響了新疆紅棗的產量及商品價值,患病棗果無法安全食用。在紅棗鮮食加工和風險評估中應引起關注和重視,并在紅棗種植和貯存期間減少病原菌侵染,以避免更多的污染。

紅棗;棗果縮果病;棗果黑斑病;鏈格孢霉;毒素

0 引 言

【研究意義】鏈格孢屬真菌已報道約500種,其廣泛存在于水果、蔬菜和田間作物上導致多種農作物病害,同時該屬真菌還可以產生多種真菌毒素,主要種類有鏈格孢酚(AOH)、交鏈格孢酚單甲醚(AME)、交鏈孢烯(ALT)和細交鏈格孢菌酮酸(TeA)等[1-3],這些毒素具有誘變性、致癌性、基因毒性等多種毒性作用[4]。【前人研究進展】目前已在蘋果、柑橘、番茄、土豆、小麥、葵花籽等農產品中檢測到AME、AOH等鏈格孢毒素[5-8]。Dong等[9]從林縣的谷物上測出多種鏈格孢霉毒素,并認為AOH和AME兩種毒素很有可能與中國河南林縣的食道癌發生密切相關。AOH能引起食道上皮細胞增殖,并能引起胚胎食道鱗狀細胞癌變,用AOH處理老鼠皮下,可誘導鱗狀上皮細胞癌[10]。AME作為直接誘變劑,可使姊妹染色體交換率上升,誘導NIH 3T3細胞轉化,轉化后的細胞易癌變[11];AME也可選擇性作用于特定的基因組或DNA序列引發誘變[12]。TeA在鏈格孢霉毒素中毒性最強,具多種生物特性,如抗病毒[13]、抗腫瘤、抑菌[14]、細胞毒性、植物毒性[15],抑制蛋白質的合成[16]等。TeA對哺乳動物(小鼠、大鼠等[17])具有急性毒性,其鈉鹽、鎂鹽與一種發生在非洲的人類出血性疾病-奧尼賴病(Onyalai)密切相關[18]。目前歐盟已就食品與飼料中鏈格孢霉毒素對人畜的健康進行風險發布,其中TeA已列入美國食品藥物管理局(FDD)有毒化學物質登記冊。【本研究切入點】新疆棗縮果病和棗果黑斑病的主要病原菌均為交鏈格孢菌(Alternariaalternate)[19,20],而其是否產生鏈格孢菌毒素以及毒素的種類和量目前尚未有明確報道。【擬解決的關鍵問題】研究采用超高效液相色譜-串聯質譜法,對分離自新疆棗縮果病和棗果黑斑病的交鏈格孢菌毒素種類及含量進行測定和分析,并測定及分析棗果黑斑病不同發病病級的果實和人工接種交鏈格孢菌后紅棗中毒素種類和含量,為新疆紅棗果實的安全食用風險評估提供依據。

1 材料與方法

1.1 材 料

1.1.1 供試菌株

鏈格孢菌代表菌株(Alternariaalternate)10株,分離自新疆紅棗主產區的棗縮果病和棗果黑斑病病樣上,經形態學和分子生物學方法鑒定為交鏈格孢菌(A.alternate),菌種保藏于石河子大學新疆綠洲農業病蟲害治理與植保資源利用自治區高校重點實驗室。

1.1.2 發病棗果樣品

采自新疆阿拉爾市周邊駿棗發病果實,按發病面積進行分級:0級,果實表面沒有病斑;1級,病斑面積<25%;2級,病斑面積25%~50%;3級,病斑面積50%~75%;4級,病斑面積>75%[21]。

1.1.3 接種用棗果

采自阿拉爾市周邊駿棗膨大期果實,快遞至石河子市實驗室內供接種用。

1.1.4 培養基

DRYES培養基[22]:酵母膏 20 g、蔗糖150 g、虎紅0.5 g、氯霉素0.1 g(0.2%溶于乙醇)、水1 L,pH 6.8。

PDA培養基[23]:馬鈴薯(去皮) 200 g、葡萄糖 20 g、瓊脂粉 15 g、水1 L,pH 6.8。

交鏈格孢酚單甲醚(AME,純度>98%)和鏈格孢酚(AOH,純度>98%)標準品購買于美國Sigma公司;細交鏈格孢菌酮酸(TeA,純度>98%)和交鏈孢烯(ALT,純度>98%)標準品購買于北京萊耀生物公司;其余乙酸乙酯、乙二胺-N-丙基硅烷(PSA)、乙腈等試劑購買于石河子市試劑公司。

Xevo TQ/MS超高效液相色譜串聯質譜儀(美國Waters公司),配有Acquity UPLC EH C18液相色譜柱(2.1 mm×150 mm,1.7 μm)。

1.2 方 法

1.2.1 超高效液相色譜-串聯質譜條件

色譜柱:Acquity UPLC BEH C18液相色譜柱(1.7 μm,50 mm×2.1 mm);流動相:乙腈-水(0.1%甲酸);離子化模式:電噴霧離子源,正離子模式(ESI+);質譜掃描方式:多反應監測(MRM);毛細管電壓3.5 kV,錐孔電壓40 kV,離子源溫度150℃,霧化溫度500℃,脫溶劑氣流量1 000 L/h,錐孔氣流速50 L/h。列出4種鏈格孢霉毒素的監測離子、錐孔電壓和碰撞電壓等質譜參數。表1

表1 4種鏈格孢霉毒素的串聯質譜測定參數
Table 1 MS/MS parameters for the 4 Alternaria mycotoxins

成分Compound電離模式IonizationMode母離子Precursor(m/z)子離子Daughter(m/z)保留時間Dwell(s)毛細管電壓Cone(kV)錐孔電壓Collision(kV)AOHESI+259.2213.2185.2*1.093.53.54040AMEESI+273.2199.1128.2*2.33.53.54040TeAESI+198.2153.2125.2*1.123.53.54040ALTESI+293.2257.2257.3*0.823.53.54040

注:*定量離子

Note:*Quantitative ion

1.2.2 10株交鏈格孢菌毒素種類及含量測定

將10株交鏈格孢菌菌株在PDA培養基上活化后,用打孔器打5 mm菌餅,接種到DRYES培養基上,三次重復,以空白為對照,28℃恒溫、12 h晝夜交替培養14 d后,分別從三次重復中取1 g菌餅,用液氮研磨充分,于2 mL離心管中。離心管內加入1 mL乙酸乙酯(含1%甲酸),震蕩1 h,在4 000 r/min下離心5 min,將提取液轉入一個新2 mL離心管內,以氮吹器蒸發干燥,將凍干粉末溶解到400 μL甲醇,取上清液過0.45 μm有機濾膜,濾液經UPLC-MS/MS分析。

1.2.3 不同病級發病棗果樣品處理

將采集的不同發病級數紅棗栆果樣品用清水洗凈晾干,用75%酒精表面消毒,再用無菌水將果實沖洗干凈,最后用滅菌濾紙吸干果實上殘留的水分,分別稱取健康棗果和發病果實病斑附近果肉2 g(精確至0.01 g),于50 mL尖底具塞離心管中,加入10 mL 1%甲酸乙腈溶液,7.5 mL無菌水,震蕩4 min;再加入4 g無水MgSO4和1 g NaCl,劇烈震蕩2 min 后,在4 000 r/min下離心5 min;取上清液轉入15 mL離心管,加入0.2 g PSA和0.6 g無水MgSO4,劇烈震蕩2 min后,在4 000 r/min下離心5 min;取上清液以氮吹器蒸發干燥,將凍干粉末溶解到400 μL甲醇,過0.45 μm有機濾膜,濾液經UPLC-MS/MS分析。10株棗縮果病和棗果黑斑病代表性的致病菌株在DRYES培養基上培養14 d后,提取粗提取物,測量4種鏈格孢霉毒素。

1.2.4 人工接種鏈格孢后發病棗果樣品處理

將活化的10株采用離體菌塊貼接法[20],對健康棗果進行無傷、有傷接種,將活化后的供試菌株,用打孔器打5 mm菌餅,將采集的健康無傷的紅棗果實用清水洗凈晾干,用75%酒精表面消毒,再用無菌水將果實沖洗干凈,最后用滅菌濾紙吸干果實上殘留的水分,用滅菌牙簽刺孔,在超凈工作臺中將菌餅菌面朝下接種到紅棗果實上,以DRYES培養基塊為對照,然后放入鋪有濕潤濾紙的方形發芽盒內(12 cm×12 cm×1.5 cm)中,每個代表菌株接種3個果實,28℃條件下12 h光照、12 h黑暗交替培養,5 d后稱取病斑附近果肉2 g,按1.2.3方法處理后測定4種鏈格孢霉毒素種類及含量。

試驗分別準確稱取健康果肉、DRYES培養基,在20、100、500和1 000 ppb 4個水平下加標,每個水平重復測定6次,按1.3.2樣品處理方法處理并測定,以進樣質量濃度X(ng/mL)為橫坐標、峰面積Y為縱坐標繪制標準曲線。

2 結果與分析

2.1 4種鏈格孢霉毒素總離子流

在乙腈-水(0.1%甲酸)流動相體系中質量濃度為100 ng/mL的混標溶液(AOH、AME、ALT和TeA混合物)在3 min內達到有效分離且峰型良好。保留時間為0.81和2.3 mim的物質分別為ALT和AME,1.09和1.12 min分別為AOH和TeA。4種鏈格孢霉毒素的總離子流中有3個顯示峰,AOH和TeA聚集在一個峰上,但試驗采用超高效液相色譜質譜連用技術,結合濃度為100 ng/mL標準溶液中4種鏈格孢霉毒素(AOH、AME、ALT和TeA)的MRM定量離子對質譜圖,以離子比為參照確定混合物中組分,并不影響試驗結果,試驗可行。圖1,圖2

圖1 4種鏈格孢霉毒素的混合標準溶液(100 ng/mL)總離子流
Fig.1 Total ion current of 4 mycotoxins mixed standard solution(100 ng/mL)

2.2 方法驗證

4種鏈格孢霉毒素在2~100 ng/mL范圍內均有良好的線性關系,R2>0.99,平均回收率在70%~95%,相對標準偏差均小于8.9%在S/N=3時,ALT、AME、AOH和TeA的檢出限在5~20 ppb。研究表明,該方法對紅棗樣品的不同含量的4種鏈格孢霉毒素的測定均具有較高的回收率和精密度,滿足檢測要求。表2,表3

2.3 10株鏈格孢菌菌株中毒素種類及含量

研究表明,10株菌均可產生TeA,在4種鏈格孢霉毒素中TeA含量最高,其中菌株21-HB含量最高,可達5.39×103mg/kg,hm-16產毒最低,含量為35.9 mg/kg;菌株92-3-1和hm-24產生的毒素種類最多,4種鏈格孢霉毒素均可產生;菌株30-HB-2和36-3-3產生毒素種類最少,僅產生TeA;菌株hm-16、hm-31和hm-35可產生AOH、AME、ALT,產毒范圍分別為5.52~3.82×102mg/kg,1.96~7.16×102mg/kg,0.22~2.53 mg/kg。表3

注:A.ALT;B.AOH;C.TeA;D.AME

Notes:A.ALT; B.AOH; C.TeA; D.AME

圖2 4種鏈格孢霉毒素混合標準溶液在ESI+模式下MRM色譜


Fig.2 Mutiple reaction monitoring (MRM) chromatograms of mixed solution

of 4 mycotoxins standards in ESI+

表2 4種鏈格孢霉毒素的線性范圍、線性方程、R2、檢出限(LOD)


Table 2 Linear equations, correlation coefficients, linear ranges, detections limi, recoveries and precisions for the 4Alternariamycotoxins

基質成分Components線性方程R2線性范圍(ng/mL)檢出限(LOD)回收率Recovery(%)RSD(%)CKAOHAMETeAALTY=402.347X+2014.14Y=240.212X+1292.26Y=889.202X+12622.6Y=125.01X+227.1710.98510.99130.97630.99262~1001020510847688864.54.73.28.9果肉AOHAMETeAALTY=253.954X+2974.11Y=204.011X+1456.73Y=720.905X+4860.95Y=171.612X+7196.060.98510.99490.99060.98912~1001020510707295844.46.55.97.1培養基AOHAMETeAALTY=253.371X+1116.79Y=191.023X+1620.98Y=728.674X+20711Y=192.937X+302.4590.99790.9980.94840.92942~1001020510736987795.25.96.16.3

表3 DRYES培養基中10株鏈格孢菌產生毒素種類及含量
Table 3 The species and content of 10Alternariastrains produce mycotoxins in DRYES medium (mg/kg)

菌號成分CK34T11L30-HB-2hm-35hm-1692-3-1hm-2421-HB36-3-3hm-60hm-31AOH40.13381.5811.895.5212.8955.70AME12.0264.9836.561.96716.10375.42TeA1.751261.5744.06429.935.882396.634647.965389.21537.31724.404943.01ALT2.530.220.52

2.4 不同病級發病棗果中4種鏈格孢霉毒素含量

研究表明,不同發病程度發病棗果中4種鏈格孢霉毒素均有檢出。隨著棗果發病程度增加,鏈格孢霉毒素含量逐漸升高,3級時毒素含量最高;4種毒素中TeA含量最高,最高可達3.1×103mg/kg,AME、AOH、ALT分別可達6.4×102mg/kg,94.5 mg/kg,16.5 mg/kg。且0級果實中也檢測到了4種毒素,但檢出量較低,可能是運輸儲藏過程中健康棗果受到病果污染所致。表4

表4 不同病級發病棗果中4種鏈格孢霉毒素含量
Table 4 The content of 4Alternariamycotoxins in effected jujube fruit (mg/kg)

病級TeAAOHAMEALT030.910.040.620.031126.970.401.790.182524.9977.22638.643.3333102.2794.51995.3816.484186.463.092.131.68

2.5 人工接種棗果后4種鏈格孢霉毒素含量

研究表明,10株菌人工接種健康棗果后,無傷、有傷棗果內均產生大量鏈格孢霉毒素,其中TeA含量最高,4種毒素含量范圍分別為4.6~2.1×103mg/kg,4.7~1.4×103mg/kg,1.2~122 mg/kg,0.09~5.08 mg/kg。用菌株hm-24接種的產毒量最高,TeA為2 102.90 mg/kg,AME為1 390.86 mg/kg;hm-16產毒量最低,TeA僅為5.40 mg/kg;34T11L、hm-35、hm-24、hm-604個菌株接種后可產生4種鏈格孢霉毒素;30-HB-2、92-3-1、21-HB、和36-3-3接種后在紅棗果肉中僅檢測出了TeA。且CK果肉中也檢測到TeA,可能是樣品在運輸儲藏的過程中健康棗果受到病果污染。表5

表5 棗果接種后4種鏈格孢霉毒素含量測定
Fig.5 The content of four Alternaria mycotoxins after inoculated withA.alternateon Jujube fruit (mg/kg)

成分菌號TeAAOHAMEALTCK-+1.202.8034T11L-+4.6046.407.1032.000.391.2230-HB-2-+16.1041.50hm-35-+54.00429.904.7030.100.09hm-16-+4.505.401.20122.20249.1892-3-1-+5.6070.40hm-24-+17.002102.900.4999.101390.860.685.0821-HB-+6.60151.7036-3-3-+6.2071.10hm-60-+11.8012.207.2922.021.19hm-31-+10.601455.402.90

注:空白表示未檢測到毒素

Note:Blank said undetectedAlternaria Mycotoxins

3 討 論

鏈格孢菌種類繁多,適應性強,寄主范圍廣,95%以上的種能兼性寄生于植物上,可引起多種植物尤其是糧食作物、蔬菜、水果等農作物和經濟作物病害。A.tenuissima、A.alternata、Alternariasp、A.triticina等可侵染引起小麥葉斑病等[24],A.arborescens、A.tenuissima、A.mali、A.alternata/A.longipes等[25]多種鏈格孢菌可引起蘋果葉斑病和果斑病。A.tenuissima侵染引起的小麥黑胚病(Black point of wheat)是一種世界性籽粒病害,在中國、美國、墨西哥、加拿大、印度、英國、前蘇聯、秘魯等國均有發生[26,27]。A.alternata侵染引起的梨黑斑病(裂果病)是梨的三大病害之一,是梨樹上廣泛發生的世界性病害,尤其在亞洲的日本、韓國和中國發病十分嚴重[28]。梨黑斑病主要侵染葉片,造成大量落葉;有時也可危害果實和新梢,能造成較大的經濟損失,發生嚴重時可使梨采后損失達50%以上[29]。2004 年我國鴨梨曾因黑斑病被停止出口美國和加拿大[30]。史文景[31]、程月萌等[32]測定了蘋果、桃和梨中鏈格孢霉毒素,檢測結果表明,蘋果中檢測到AOH和AME,含量分別為49和30 μg/kg。Birgitte等[33]運用超高液相色譜質譜串聯技術測定了小麥、番茄、核桃、藍莓中的鏈格孢霉毒素,結果表明均存在AOH、AME、ALXII、ALT、TeA、TEN等毒素。Peter 等[34]測定了谷物中鏈格孢霉毒素,檢測結果表明83份樣品中均檢測到AOH、AME,含量分別為0.34和0.13 ng/g。Miller等[17]對小鼠分別經靜脈注射、腹腔、皮下、口腔單次給TeA鈉鹽的LD50分別為(125±10)、(150±10)、(145±20)、(225±25) mg/kg;AOH和AME對實驗動物的急性毒性較弱,小鼠的LD50>100 mg/kg。鏈格孢霉毒素在全球多種農產品中均已檢測到,對人類和動物健康的潛在危害已不容忽視。

紅棗種植目前已成為新疆近年來發展最快、效益最突出和惠民成效最為顯著的一項林果產業[35,36],然而棗果黑斑病在很多地區均有發生。研究以新疆紅棗縮果病和棗果黑斑病病果分離的10株交鏈格孢菌以及不同發病級數的棗果作為研究對象,10株供試菌株均能產生鏈格孢菌毒素,不同菌株產生的毒素種類以及含量有差異,其中從哈密分離到的hm-24菌株可以產生4種毒素,且產生毒素的量也最高,用其接種健康棗果后也可以在果肉中檢測到4種毒素。不同病級棗果中4種鏈格孢霉毒素均有檢出,TeA、AME、AOH、ALT含量分別為30.9~3.1×103mg/kg,0.6~6.4×102mg/kg,0.3~94.5 mg/kg,0.2~16.5 mg/kg。這與Magnani等[30]蔣黎艷等[31]檢測到鏈格孢霉毒素中TeA含量最高而相一致。其中在健康棗果上也檢測到了微量的TeA毒素,可能是運輸過程中污染所致,也有可能健康果實表面也有鏈格孢菌的污染產生的毒素。

4 結 論

鏈格孢菌毒素分布面廣,對人以及哺乳動物均有誘變性、致癌性、基因毒性等多種毒性作用,研究采用超高效液相色譜-串聯質譜法,明確了引起棗縮果病和棗果黑斑病的主要致病菌交鏈格孢菌可以產生TeA、AME、AOH和ALT 4種毒素,毒素含量分別為1.2~2 102.9、22.02~1 390.86、1.2~122.2和0.39~5.08 mg/kg,其中TeA毒素的產生量最高,最高可達2 102.9 mg/kg。用其接種健康棗果5 d后,可在接種部位檢測到大量鏈格孢菌毒素;同時對田間自然條件下采集的不同發病級數的棗果黑斑病果實進行檢測后也能檢測到4種鏈格孢菌毒素,在健康未發病的果實上也檢測到了少量鏈格孢菌毒素。因此,安全、有效、及時控制棗果黑斑病已成為新疆紅棗種植過程中的一個影響紅棗食用安全性的關鍵問題,采收時應當將健康果實與病果分開,防止健康果實被病果污染。

References)

[1] Logrieco, A., Bottalico, A., Mulé, G., Moretti, A., & Perrone, G. (2003). Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops.EuropeanJournalofPlantPathology, 109(7): 645-667.

[2] Thomma, B. P. H. J. (2003). Alternaria, spp.: from general saprophyte to specific parasite.MolecularPlantPathology, 4(4): 225-236.

[3] Patriarca, A., Azcarate, M. P., Terminiello, L., & Fernández, P. V. (2007). Mycotoxin production by alternaria strains isolated from argentinean wheat.InternationalJournalofFoodMicrobiology, 119(3): 219-222.

[4] Janardhanan, K. K., & Husain, A. (1983). Studies on isolation, purification and identification of tenuazonic acid, a phytotoxin produced by alternaria alternata, (fr.) keissler causing leaf blight of datura innoxia, mill.Mycopathologia, 83(3): 135-140.

[5] Logrieco, A., Moretti, A., & Solfrizzo, M. (2009). Alternaria toxins and plant diseases: an overview of origin, occurrence and risks.WorldMycotoxinJournal, 2(2): 129-140.

[6] O Ostry, V. (2008). Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs.WorldMycotoxinJournal, 1(2): 175-188.

[7] Magnani, R. F., Souza, G. D. D., & Rodrigues-Filho, E. (2007). Analysis of alternariol and alternariol monomethyl ether on flavedo and albedo tissues of tangerines ( citrus reticulata ) with symptoms of alternaria brown spot.JournalofAgricultural&FoodChemistry, 55(13): 4,980-4,986.

[8] Logrieco, A., Visconti, A., & Bottalico, A. (1990). Mandarin fruit rot caused by alternaria alternata and associated mycotoxins.PlantDisease, 74(6): 415-417.

[9] Dong, Z. G., Liu, G. T., Dong, Z. M., Qian, Y. Z., An, Y. H., & Miao, J. A., et al. (1987). Induction of mutagenesis and transformation by the extract of alternaria alternata isolated from grains in linxian, china.Carcinogenesis, 8(7): 989-991.

[10] Liu, G. T., Qian, Y. Z., Zhang, P., Dong, W. H., Qi, Y. M., & Guo, H. T. (1992). Etiological role of alternaria alternata in human esophageal cancer.ChineseMedicalJournal, 105(5): 394-400.

[11] Lehmann, L., Wagner, J., & Metzler, M. (2006). Estrogenic and clastogenic potential of the mycotoxin alternariol in cultured mammalian cells.Food&ChemicalToxicology, 44(3): 398-408.

[12] An, Y. H., Zhao, T. Z., Miao, J., Liu, G. T., Zheng, Y. Z., & Xu, Y. M., et al. (1989). Isolation, identification, and mutagenicity of alternariol monomethyl ether.JournalofAgricultural&FoodChemistry, 37(5): 1,341-1,343.

[13]M Miller, F. A., Rightsel, W. A., Sloan, B. J., Ehrlich, J., French, J. C., & Bartz, Q. R., et al. (1964). Antiviral activity of tenuazonic acid.Nature,200(4913): 1,338-1,339.

[14] Gitterman, C. O. (1965). Antitumor, cytotoxic, and antibacterial activities of tenuazonic acid and congeneric tetramic acids.JournalofMedicinalChemistry, 8(4): 483-486.

[15] Lebrun, M. H., Nicolas, L., Boutar, M., Gaudemer, F., Ranomenjanahary, S., & Gaudemer, A. (1988). Relationships between the structure and the phytotoxicity of the fungal toxin tenuazonic acid.Phytochemistry, 27(1): 77-84.

[16] Shigeura, H. T., & Gordon, C. N. (1963). The biological activity of tenuazonic acid.Biochemistry, 2(2): 1,132-1,137.

[17]吳春生,馬良,江濤,等.鏈格孢霉毒素細交鏈格孢菌酮酸的研究進展[J].食品科學,2014,35(19): 295-301.

WU Chun-sheng, MA Liang, JIANG Tao, et al. (2014). A review on tenuazonic acid, a toxic produced byAlternaria[J].FoodScience, 35(19):295-301.(in Chinese)

[18] Steyn, P. S., & Rabie, C. J. (1976). Characterization of magnesium and calcium tenuazonate from phoma sorghina.Phytochemistry, 15(12): 1,977-1,979.

[19]董寧,馮宏祖,王蘭,等.南疆駿棗黑斑病癥狀表現及病原菌鑒定[J].植物保護學報,2016,43(6): 922-927.

DONG Ning, FENG Hong-zu, WANG Lang, et al. (2016). The disease symptom and the pathogen identification of jujube black spot in southern Xinjiang [J].JournalofPlantProtection, 52(7):53-58. (in Chinese)

[20]向征,鐘聰慧,胡軍,等.新疆棗果黑斑病病原鑒定[J].新疆農業科學,2013,50(5): 845-850.

XIANG Zheng, ZHONG Cong-hui, HU Jun, et al. (2013). Identification of Jujube black spot pathogens in Xinjiang, China [J].XinjiangAgriculturalSciences, 50(5):845-850. (in Chinese)

[21]馬榮,劉曉琳,梁英梅,等. 棗果黑斑病發生相關因素分析及田間藥效試驗[J]. 中國農學通報,2015,(16): 182-189.

MA Rong, LIU Xiao-lin, LIANG Ying-mei, et al. (2015). Analysis of the influencing factors on disease occurrence of Jujube black pot and field efficacy Test [J].ChineseAgriculturalScienceBulletin, (16):182-189. (in Chinese)

[22] Andersen, B., Hansen, M. E., & Smedsgaard, J. (2005). Automated and unbiased image analyses as tools in phenotypic classification of small-spored alternaria spp.Phytopathology, 95(9): 1,021-1,029.

[23]方中達.植病研究方法[M].第三版. 北京:中國農業出版社,1998.

FANG Zhong-da. (1998).Methodofplantpathologyresearch[M]. Third Edition. Beijing: China Agriculture Press, 1998.(in Chinese)

[24] Zhao, K., Shao, B., Yang, D., Li, F., & Zhu, J. (2015). Natural occurrence of alternaria toxins in wheat-based products and their dietary exposure in China.PLOSOne. 10(6), e0132019.

[25] Harteveld, D. O. C., Akinsanmi, O. A., & Drenth, A. (2013). Multiple alternaria, species groups are associated with leaf blotch and fruit spot diseases of apple in australia.PlantPathology, 62(2): 289-297.

[26] Machacek, J. E., & Greaney, F. J. (2011). The "black-point" or "kernel smudge" disease of cereals.CanadianJournalofResearch, (16): 84-113.

[27]Y B Kang, Y J Zhang , H J Li , et al. (1999). State of the field of wheat on black point disease (in Chinese) [J].TriticalCrops, 19(2): 58- 60. (in Chinese)

[28]楊曉平,胡紅菊,王友平,等. 梨黑斑病病原菌的生物學特性及其致病性觀察[J].華中農業大學學報,2009,(12):680-684.

YANG Xiao-ping, HU Hong-ju, WANG You-ping, et al. (2009). Biological characteristics and pathogencity of pear black spot byAlternariaalternate(Fr.) Keissl [J].JournalofHuazhongAgriculturalUniversity, (12):680-684. (in Chinese)

[29]謝莉,張鐸,張麗萍,等. 拮抗梨黑斑病菌的鏈霉菌的篩選及鑒定[J].河北師范大學學報(自然科學版),2008,32(4):526-529.

XIE Li, ZHANG Duo, ZHANG Li-ping, et al. (2008). Isolation and identification of an antagonisticStreptomycesstrain againstAlternariaalternate. [J].JournalofHebeiNormalUniversity(NaturalScienceEd.) , 32(4): 526-529. (in Chinese)

[30]嚴進,施宗偉,宋福,等. 河北和山東鴨梨果實上鏈格孢菌鑒定[J].植物保護學報,2009,36(1) :37-43.

YAN Jin, SHI Zong-wei, SONG Fu, et al. (2009). Identification ofAlternariaisolates from Ya-pear fruits in Hebei and Shandong provinces [J].JournalofPlantProtection, 36( 1) :37-43. (in Chinese)

[31]史文景,趙齊陽,張耀海,等. 超高效液相色譜結合分散液液微萃取同時測定果汁中的7種真菌毒素[C]//. 中國儀器儀表學會分析儀器分會、中國儀器儀表行業協會分析儀器分會、中國儀器儀表學會檢驗檢疫儀器應用技術分會第三屆中國食品與農產品質量安全檢測技術國際論壇暨展覽會論文集.北京: 中國北京雄鷹國際展覽有限公司,2014:13-19.

SHI Wen-jing, ZHAO Qi-yang, ZHANG Yao-hai, et al. (2014).SimultaneousDeterminationofSevenMycotoxinsinFruitJuicebyUltraPerformanceLiquidchromatographyCombinedwithModifiedDispersiveLiquid-LiquidMicroextraction[C]//. China Instrument Society Analysis Instrument Branch, China Instrument Industry Association Analysis Instrument Branch, China Instrument Society inspection and quarantine instrument application technology branch. The third Chinese food and agricultural products quality and safety testing technology international forum and Exhibition proceedings. Beijing, Beijing Lanneret International Exhibition Co, Ltd. : 13-19. (in Chinese)

[32]陳月萌,李建華,張靜,等. 高效液相色譜-熒光檢測法同時測定水果中的3種鏈格孢霉毒素[J]. 分析試驗室,2012,(6):70-73.

CHEN Yue-meng, LI Jian-hua, ZHANF Jing, et al. (2016). Simultaneous determination of threeAlternariasin fruits by HPLC with fluorescence detection [J].ChineseJournalofAnalysisLaboratory, (6):70-73. (in Chinese)

[33] Andersen, B., Nielsen, K. F., Pinto, V. F., & Patriarca, A. (2015). Characterization of alternaria, strains from argentinean blueberry, tomato, walnut and wheat.InternationalJournalofFoodMicrobiology: (196): 1-10.

[34] Scott, P. M., Zhao, W., Feng, S., & Lau, P. Y. (2012). Alternaria, toxins alternariol and alternariol monomethyl ether in grain foods in canada.MycotoxinResearch, 28(4):261-266.

[35]張棟海,李克福,趙思峰.新疆南疆矮化密植棗園三種紅棗病害發生規律及其影響因素研究[J].北方園藝,2015,(3):105-108.

ZHANG Dong-hai, LI Ke-fu, ZHAO Si-feng. (2015). Study on law and its influence factors of three main jujube disease in south xinjiang under dwarf and close-planting managements [J].NorthernHorticulture, (3):105-108. (in Chinese)

[36]趙燕,郭慶元,王洪凱,等.新疆紅棗病害種類及田間發生[J].新疆農業科學, 2015,52(3):511-516,589.

ZHAO Yan, GUO Qin-yuan, WANG Hong-kai, et al. (2015). Investigation of Chinese jujube diseases and their field occurrence in Xinjiang [J],XinjiangAgriculturalSciences, 52(3):511-516,589. (in Chinese)

[37]王志霞,孫潔,趙思峰,等.新疆矮化密植棗園紅棗葉斑病病原鑒定[J].中國森林病蟲,2013,32(4):1-5.

WANG Zhi-xia, SUN Jie, ZHAO Si-feng, et al. (2013). Identification of the pathogenic fungus causing leaf spot ofZizyphusjujubein dwarf and close-planting orchards in Xinjiang [J].ForestPestandDisease, 32(4):1-5. (in Chinese)

[38]蔣黎艷,趙其陽,龔蕾,等.超高效液相色譜串聯質譜法快速檢測柑橘中的5種鏈格孢霉毒素[J].分析化學,2015,(12): 1 851-1 858.

JIANG Li-yan, ZHAO Qi-yang, GONG Lei, et al. (2015). Rapid Determination of fiveAlternariaMycotoxins in citrus by ultra-high performance liquid chromatography-tandem mass spectrometry [J].AnalyticalChemistry, (12):1,851-1,858. (in Chinese)

Mycotoxin Analysis of Main PathogenAlternariaalternateof Jujube Fruit Shrink and Determination of Black Spot Disease Toxin Content in Xinjiang

HE Li,GUO Kai-fa,Ainiguli Yiming,ZHAO Si-feng

(KeyLaboratoryforOasisAgriculturalPestManagementandPlantResourceUtilizationatUniversitiesofXinjiangUygurAutonomousRegion/CollegeofAgronomy,ShiheziUniversity,ShiheziXinjiang832003,China)

【Objective】 In order to make clear mycotoxins species and content of mainly pathogenAlternariaalternateof jujube fruit shrink, jujube black spot, and mycotoxins species and content of jujube black spot diseased fruits, this study aims to provide the basis for the safety evaluation of jujube processing and consumption in Xinjiang.【Method】Utra-performance liquid chromatography-tandem mass spectrometry was established as the method to determine the variation and content of mycotoxins from 10Alternariastrains and the onset fruit of jujube black spot in different severities and the species and content of toxin in artificially inoculated fruits.【Result】The results showed that 10Alternariastrains could produce 4 kinds ofAlternariamycotoxins: alternariol (AOH), alternariol monomethylether (AME), altenuene(ALT) and tenuazonic acid (TeA).TeA, ALT, AME and AOH were detected in different disease onset of jujube fruit which were affected byA.alternateand artificial cultivation conditions, the highest content of TeA, range of 3.1×103-5.5×103mg/kg; AME, AOH and ALT were 7.2×102-6.4×102mg/kg, 1.2-3.8×102mg/kg and 0.09-5.08 mg/kg. After inoculation withA.alternaria, alarge number of TeA were not only detected injuring jujube fruit, but also detected in the uninjured jujube fruit. Not only the toxin was detected in the onset jujube fruit, but also a large amount of toxin was found in the jujube without injury, although there was a small amount ofAlternariatoxin in healthy jujube fruit.【Conclusion】The main pathogens (Alternariaalternate) leading to jujube fruit shrink and jujube black spot in Xinjiangcan produce a lot ofAlternariamycotoxins, which have such great influence on the production and value of Xinjiang red jujube that it was inedible. Therefore, it should be paid more attention to in fresh jujube processing and risk assessment, and to reduce the infection of pathogens in jujube planting and storage, so as to avoid more pollution. So in jujube planting and storage period, the pathogen infection must be reduced in order to avoid more contamination.

jujube; short ultivars; growth stages; major gene plus polygene inheritance; genetic analysis

ZHAO Si-feng (1975- ), male, native place: Bazhong Sichuan. Professor, PhD. research field: Biological control of plant pest. (E-mail)Zhsf_agr@shzu.edu.cn

10.6048/j.issn.1001-4330.2017.06.014

2017-03-09

國家星火計劃“南疆紅棗主要病蟲害綠色防控技術示范與推廣”(2015GA891007)

何麗(1991-),女,四川南充人,碩士研究生,研究方向為植物病理學,(E-mail)602157044@qq.com

趙思峰(1975-),男,教授,博士,博士生導師,研究方向為植物病蟲害生物防治,(E-mail)zhsf_agr@shzu.edu.cn

S432.4+2

A

1001-4330(2017)06-1076-09

Supported by: The National Spark Program of China "Demonstration and Popularization of Green Prevention and Control Technology for Main Diseases and Pests of Jujube in Southern Xinjiang"(2015GA891007)

主站蜘蛛池模板: 日本一区二区三区精品视频| 亚洲三级成人| 亚洲男人的天堂网| 久久天天躁夜夜躁狠狠| 免费看黄片一区二区三区| 人人艹人人爽| 亚洲欧洲日韩综合| 国产女人水多毛片18| 久无码久无码av无码| 无码综合天天久久综合网| 色天天综合久久久久综合片| 欧美日韩成人在线观看| 欧美在线国产| 国产精品无码AⅤ在线观看播放| 国产黄色片在线看| 日韩午夜福利在线观看| 午夜日b视频| 青草精品视频| 综合天天色| 亚洲无码91视频| 国产福利在线观看精品| 99草精品视频| www精品久久| 思思热精品在线8| 色AV色 综合网站| 欧美激情第一欧美在线| a级毛片一区二区免费视频| 国产日韩欧美中文| 国产91丝袜在线观看| 午夜少妇精品视频小电影| 香蕉国产精品视频| 欧美亚洲国产日韩电影在线| 女人天堂av免费| 亚洲AV无码乱码在线观看裸奔| 日本手机在线视频| 久青草网站| 亚洲国产欧美自拍| 狠狠色丁香婷婷综合| 久青草免费视频| 国产人成在线观看| 第一区免费在线观看| 日韩天堂视频| 久久亚洲中文字幕精品一区 | 国产本道久久一区二区三区| 欧美精品亚洲精品日韩专区| 波多野结衣第一页| 亚洲色无码专线精品观看| 亚洲精品无码日韩国产不卡| 久久一日本道色综合久久| 亚洲第一香蕉视频| 欧洲亚洲欧美国产日本高清| 无码免费视频| 综合色天天| 亚洲精品国产自在现线最新| 99视频在线精品免费观看6| 国产精品无码久久久久AV| 毛片视频网| 国产日本欧美亚洲精品视| 日韩小视频网站hq| 成年人国产网站| 国产精品网曝门免费视频| 亚洲女同欧美在线| 91黄视频在线观看| 亚洲毛片在线看| 在线国产毛片| 国产精品毛片一区视频播| 欧美成人怡春院在线激情| 亚洲欧美成人在线视频| 精品视频在线观看你懂的一区| 无码国产伊人| 色综合日本| 国产精品粉嫩| 美女被操91视频| 国产在线观看精品| 欧美一区二区人人喊爽| 另类欧美日韩| 中文字幕精品一区二区三区视频 | 国产一级毛片在线| 亚洲狼网站狼狼鲁亚洲下载| 成人国产一区二区三区| 真实国产精品vr专区| 青青草原国产免费av观看|