李志剛 劉丹丹 張小栓
(1.石河子大學(xué)信息科學(xué)與技術(shù)學(xué)院, 石河子 832000; 2.中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院, 北京 100083)
基于分簇?cái)?shù)據(jù)融合的農(nóng)產(chǎn)品冷鏈溫度監(jiān)控方法
李志剛1劉丹丹1張小栓2
(1.石河子大學(xué)信息科學(xué)與技術(shù)學(xué)院, 石河子 832000; 2.中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院, 北京 100083)
針對(duì)現(xiàn)有基于無(wú)線傳感網(wǎng)絡(luò)的農(nóng)產(chǎn)品冷鏈物流監(jiān)測(cè)系統(tǒng),傳感器節(jié)點(diǎn)數(shù)據(jù)傳輸量大,帶寬利用率低、能耗高,網(wǎng)絡(luò)生命周期短的問(wèn)題,提出了一種基于算術(shù)平均值與分批估計(jì)的簇內(nèi)數(shù)據(jù)融合及自適應(yīng)加權(quán)的簇間數(shù)據(jù)融合冷鏈溫度監(jiān)測(cè)方法。首先利用疏失誤差對(duì)采集數(shù)據(jù)進(jìn)行預(yù)處理,然后利用平均值與分批估計(jì)方法對(duì)簇成員節(jié)點(diǎn)發(fā)送的數(shù)據(jù)進(jìn)行融合處理,最后簇頭節(jié)點(diǎn)利用自適應(yīng)加權(quán)算法對(duì)接收到的成員節(jié)點(diǎn)數(shù)據(jù)進(jìn)行進(jìn)一步的融合處理。實(shí)驗(yàn)證明,基于該數(shù)據(jù)融合方法的冷鏈監(jiān)測(cè)系統(tǒng)網(wǎng)絡(luò)生存周期相比傳統(tǒng)方法提高了34.2%,穩(wěn)定周期相比于傳統(tǒng)低功耗自適應(yīng)集簇分層型協(xié)議提高了11.4%,數(shù)據(jù)融合精度高于傳統(tǒng)算術(shù)平均值法7.6%,系統(tǒng)能耗每輪降低約32.5%。能夠有效降低冗余和可信度較差的數(shù)據(jù)對(duì)測(cè)量結(jié)果帶來(lái)的影響,減少不必要數(shù)據(jù)傳輸損耗,降低了冷鏈物流成本,提高了農(nóng)產(chǎn)品冷鏈物流信息化程度。
WSN無(wú)線傳感網(wǎng); 分簇融合; 冷鏈監(jiān)測(cè)
生活水平的提高和飲食結(jié)構(gòu)的顯著變化,使消費(fèi)者對(duì)新鮮特色農(nóng)產(chǎn)品的需求日益增大。但由于農(nóng)產(chǎn)品本身鮮活的品質(zhì)特性,當(dāng)農(nóng)產(chǎn)品在庫(kù)冷藏和冷鏈運(yùn)輸環(huán)境中溫濕度及各氣體比例失衡時(shí),都會(huì)造成產(chǎn)品軟化變質(zhì)、果實(shí)衰老、果粒脫落、果實(shí)營(yíng)養(yǎng)物質(zhì)損耗和感官評(píng)價(jià)等級(jí)下降等,大大降低了農(nóng)產(chǎn)品的營(yíng)養(yǎng)價(jià)值和商業(yè)價(jià)值[1]。冷鏈物流的全程無(wú)縫監(jiān)管與追溯是保障農(nóng)產(chǎn)品品質(zhì)安全的關(guān)鍵[2]。
無(wú)線傳感網(wǎng)絡(luò)(Wireless sensor network,WSN)能夠在任何地點(diǎn)和環(huán)境條件下多節(jié)點(diǎn)采集海量數(shù)據(jù)的特點(diǎn)使得該技術(shù)向冷鏈物流監(jiān)控領(lǐng)域的滲透成為趨勢(shì)[3]。文獻(xiàn)[4-5]利用ZigBee技術(shù)進(jìn)行了冷鏈物流溫度監(jiān)測(cè)方法的研究,實(shí)現(xiàn)了冷鏈物流中溫度的實(shí)時(shí)采集與傳輸。文獻(xiàn)[6-10]以ZigBee協(xié)議為基礎(chǔ),圍繞 CC2530型無(wú)線傳感片上系統(tǒng),設(shè)計(jì)了基于WSN技術(shù)的冷鏈物流實(shí)時(shí)監(jiān)控系統(tǒng)。文獻(xiàn)[11-13]提出并開(kāi)發(fā)了一種基于WSN與射頻識(shí)別技術(shù)(Radio frequency identification, RFID)的農(nóng)產(chǎn)品冷鏈物流實(shí)時(shí)監(jiān)測(cè)系統(tǒng)。該系統(tǒng)能夠?qū)崟r(shí)地對(duì)物流過(guò)程中產(chǎn)品的品質(zhì)、標(biāo)識(shí)和溫度等進(jìn)行監(jiān)控,同時(shí)可以提高倉(cāng)儲(chǔ)和冷鏈配送的效率及準(zhǔn)確性。文獻(xiàn)[14]研究了集成WSN與自適應(yīng)按需加權(quán)(AOW)技術(shù)的冷鏈監(jiān)測(cè)系統(tǒng)對(duì)葡萄品質(zhì)的影響,利用AOW實(shí)現(xiàn)了感知節(jié)點(diǎn)監(jiān)測(cè)數(shù)據(jù)的融合,減少了網(wǎng)內(nèi)數(shù)據(jù)的傳輸。文獻(xiàn)[15]構(gòu)建了一種基于WSN和壓縮感知的冷鏈物流監(jiān)測(cè)方法,該方法根據(jù)感知數(shù)據(jù)特征構(gòu)建了雙正交小波變換稀疏矩陣,實(shí)現(xiàn)了數(shù)據(jù)的壓縮采樣傳輸。上述研究都能很好地實(shí)現(xiàn)冷鏈物流環(huán)境的實(shí)時(shí)監(jiān)測(cè)與反饋,同時(shí)對(duì)冷鏈監(jiān)測(cè)系統(tǒng)的深入探索起到了一定的推動(dòng)作用。但大部分研究并未考慮到監(jiān)測(cè)系統(tǒng)中節(jié)點(diǎn)能耗問(wèn)題,部分關(guān)于監(jiān)測(cè)系統(tǒng)數(shù)據(jù)融合的研究中,對(duì)于節(jié)點(diǎn)間的分簇融合方法考慮較為缺乏。基于WSN的冷鏈物流監(jiān)控系統(tǒng)中,傳感節(jié)點(diǎn)由電池驅(qū)動(dòng),能源非常有限[16]。相關(guān)實(shí)驗(yàn)表明,WSN無(wú)線傳感網(wǎng)絡(luò)中的能量消耗主要有計(jì)算和通信耗費(fèi),兩者的能耗比大約為1∶3 000[17]。因此,利用節(jié)點(diǎn)的計(jì)算能力進(jìn)行節(jié)點(diǎn)分簇與數(shù)據(jù)融合,通過(guò)減少網(wǎng)內(nèi)異常冗余數(shù)據(jù)的射頻收發(fā)來(lái)減少網(wǎng)絡(luò)通信量[18],是亟需解決的問(wèn)題。
針對(duì)傳統(tǒng)冷鏈物流監(jiān)測(cè)方法的不足,本文集成WSN及節(jié)點(diǎn)分簇融合技術(shù)優(yōu)勢(shì),進(jìn)行農(nóng)產(chǎn)品冷鏈物流監(jiān)測(cè)方法研究。
WSN無(wú)線傳感網(wǎng)絡(luò)中的節(jié)點(diǎn)大部分都是通過(guò)多跳方式將數(shù)據(jù)傳輸給節(jié)點(diǎn)。節(jié)點(diǎn)在整個(gè)網(wǎng)絡(luò)的地位是相同的沒(méi)有任何擔(dān)任管理任務(wù)的節(jié)點(diǎn),節(jié)點(diǎn)都是獨(dú)立工作難以發(fā)揮網(wǎng)絡(luò)中節(jié)點(diǎn)之間相互協(xié)調(diào)、共同完成任務(wù)的優(yōu)勢(shì),同時(shí)也不利于進(jìn)行數(shù)據(jù)壓縮技術(shù)和數(shù)據(jù)融合方法的應(yīng)用。為了能解決這些問(wèn)題,且不降低服務(wù)的質(zhì)量,基于分簇的數(shù)據(jù)融合研究成為焦點(diǎn)。
1.1 分簇路由協(xié)議
在無(wú)線傳感網(wǎng)分簇路由算法中,簇群內(nèi)的節(jié)點(diǎn)分為簇頭節(jié)點(diǎn)和非簇頭節(jié)點(diǎn)。在分簇路由算法中WSN的簇群形成是以簇頭產(chǎn)生為前提,該簇頭節(jié)點(diǎn)則起到管理站的作用,對(duì)該簇群中的節(jié)點(diǎn)和數(shù)據(jù)進(jìn)行有效的管理。網(wǎng)絡(luò)中簇頭產(chǎn)生后,簇成員節(jié)點(diǎn)根據(jù)簇頭的位置或者能量等重要信息加入相應(yīng)的簇,從而形成相應(yīng)的簇群。在簇群內(nèi)部,簇成員節(jié)點(diǎn)通過(guò)一跳或者多跳的方式與簇頭節(jié)點(diǎn)進(jìn)行通信。在簇群之間,簇頭節(jié)點(diǎn)通過(guò)單跳或多跳的方式與節(jié)點(diǎn)進(jìn)行數(shù)據(jù)通信[19],這樣會(huì)大幅度地減少數(shù)據(jù)通信量,并節(jié)省網(wǎng)絡(luò)能量。
本文主要針對(duì)傳統(tǒng)低功耗自適應(yīng)集簇分層型協(xié)議(Low energy adaptive clustering hierarchy, LEACH)簇頭節(jié)點(diǎn)在整個(gè)網(wǎng)絡(luò)中分布不均勻,產(chǎn)生局部過(guò)稀疏的情況,以及已經(jīng)當(dāng)選過(guò)簇頭的節(jié)點(diǎn)和能量低的節(jié)點(diǎn)有可能再一次被當(dāng)選,加快能量消耗,導(dǎo)致節(jié)點(diǎn)過(guò)早死亡,在網(wǎng)絡(luò)中產(chǎn)生盲區(qū)等問(wèn)題。利用改進(jìn)LEACH路由協(xié)議,考慮到無(wú)線傳感器網(wǎng)絡(luò)中節(jié)點(diǎn)初始能量和剩余能量的異構(gòu)特性,為了在一定程度上避免網(wǎng)絡(luò)中初始能量較小的節(jié)點(diǎn)過(guò)早死亡,將無(wú)線傳感節(jié)點(diǎn)分為高能量節(jié)點(diǎn)和普通節(jié)點(diǎn),利用相關(guān)算法使高能量節(jié)點(diǎn)被選為簇頭的機(jī)會(huì)大于普通節(jié)點(diǎn),高能量節(jié)點(diǎn)輪轉(zhuǎn)周期短于普通節(jié)點(diǎn)。在理想情況下,這種加權(quán)輪轉(zhuǎn)分簇方法使得高能量節(jié)點(diǎn)和普通節(jié)點(diǎn)幾乎在同一時(shí)間死掉,從而延長(zhǎng)了整個(gè)網(wǎng)絡(luò)系統(tǒng)的穩(wěn)定運(yùn)行時(shí)間。
1.2 疏失誤差的處理
傳統(tǒng)的異常數(shù)據(jù)判斷方法主要有萊特準(zhǔn)則、格羅貝斯判據(jù)準(zhǔn)則和分布圖法。萊特準(zhǔn)則是建立在測(cè)量次數(shù)n趨于無(wú)限大的情況下,當(dāng)n較小時(shí),采用萊特準(zhǔn)則的方法就很不可靠[20]。格羅貝斯準(zhǔn)則是一種基于被測(cè)值服從正態(tài)分布的遞歸算法,但此方法一次只能剔除一個(gè)誤差值,需多次反復(fù)運(yùn)算才能消除多個(gè)誤差,增加了算法運(yùn)行時(shí)間。實(shí)踐證明,對(duì)于可用傳感器較少時(shí)得到的溫度測(cè)量數(shù)據(jù),利用分布圖法可以很好地剔除疏忽誤差[21],且軟件設(shè)計(jì)相對(duì)容易實(shí)現(xiàn),故該研究中采用分布圖法對(duì)含有疏失誤差的冷鏈監(jiān)測(cè)溫度數(shù)據(jù)進(jìn)行處理。
具體步驟如下:
(1)將所測(cè)得的N個(gè)測(cè)量數(shù)據(jù)Ti按遞增進(jìn)行排序,得到一數(shù)據(jù)序列:T1,T2,…,TN,其中T1為下限值,TN為上限值。
(2)定義中位數(shù):TM=T(N+1)/2(N為奇數(shù));TM=(TN/(2+1)+TN/2)/2(N為偶數(shù))。
(3)同理定義上四分位數(shù)TH為[TM,TN]的中位數(shù),下四分位數(shù)TL為[T1,TM]的中位數(shù),四分位數(shù)離散度dT=TH-TL。
由于TM、TH和TL的選取和數(shù)據(jù)列的極值點(diǎn)無(wú)關(guān),僅取決于測(cè)量數(shù)據(jù)的位置分布,從而增強(qiáng)了其后要進(jìn)行的數(shù)據(jù)融合處理的魯棒性。
1.3 基于算術(shù)平均值與分批估計(jì)的簇內(nèi)融合
利用疏失誤差對(duì)數(shù)據(jù)預(yù)處理之后,為了找到一個(gè)能真實(shí)反映當(dāng)前情況的數(shù)據(jù),同時(shí)減少數(shù)據(jù)傳輸量,在簇頭處利用平均值與分批估計(jì)方法對(duì)簇成員節(jié)點(diǎn)發(fā)送來(lái)的數(shù)據(jù)進(jìn)行融合處理,將每一簇內(nèi)數(shù)據(jù)按其傳感器安裝位置分為2組,為了減小數(shù)據(jù)處理誤差,相鄰兩傳感器盡量不被分在同一組,對(duì)簇內(nèi)2組數(shù)據(jù)的平均值采用分批估計(jì)算法,估計(jì)出接近溫度真值的融合值T+,以消除測(cè)量過(guò)程中的不確定性。
具體方法是:
設(shè)將利用分布圖法得到的簇內(nèi)一致性數(shù)據(jù)分為組:①T11,T12,…,T1m(m≤N/2);②T21,T22,…,T2c(c≤N/2)。
簇內(nèi)2組數(shù)據(jù)算術(shù)平均值為
(1)
(2)
相應(yīng)的標(biāo)準(zhǔn)偏差分別為
(3)
(4)
則根據(jù)分批估計(jì)理論可得到溫度融合值的方差為
(5)
最后得出溫度估算值T+為
(6)
由上述融合原理可知,進(jìn)行簇內(nèi)分批估計(jì)數(shù)據(jù)融合處理之后,每個(gè)簇內(nèi)的若干個(gè)簇成員數(shù)據(jù)變?yōu)橐粋€(gè)簇頭數(shù)據(jù),這樣簇內(nèi)由大量節(jié)點(diǎn)采集的多節(jié)點(diǎn)數(shù)據(jù)變?yōu)榕c簇頭數(shù)目相等的幾個(gè)數(shù)據(jù),從而大大減少通信數(shù)據(jù)量。
1.4 基于自適應(yīng)加權(quán)的簇頭數(shù)據(jù)融合

(7)
(8)
總均方誤差為
(9)
因?yàn)閄1,X2,…,Xn相互獨(dú)立,并且為X的無(wú)偏估計(jì),所以
E[(X-Xp)(X-Xq)]=0
(p≠q;p=1,2,…n;q=1,2,…,n)
(10)
故σ2可寫(xiě)成
(11)
由式(8)~(11)可知,均方誤差σ2為多元二次函數(shù),因此σ2必然存在最小值,根據(jù)多元函數(shù)極值理論,權(quán)重因子最小值為
(12)
所對(duì)應(yīng)的最小均方誤差為
(13)
經(jīng)過(guò)自適應(yīng)加權(quán)數(shù)據(jù)處理后,各個(gè)簇頭數(shù)據(jù)在基站處融合為一個(gè)數(shù)據(jù)后發(fā)送至監(jiān)控管理中心。監(jiān)控管理中心以此數(shù)據(jù)為基準(zhǔn),進(jìn)行后續(xù)的冷鏈監(jiān)測(cè)和管理。節(jié)點(diǎn)分簇與數(shù)據(jù)融合步驟如圖1所示。

圖1 分簇融合流程圖Fig.1 Flow chart of cluster fusion
1.5 網(wǎng)絡(luò)能量消耗
由于WSN無(wú)線傳感網(wǎng)能量消耗主要集中在數(shù)據(jù)傳輸階段,因此本文主要著眼于研究傳輸階段的能量消耗。如圖2所示即為無(wú)線傳感器節(jié)點(diǎn)的數(shù)據(jù)無(wú)線發(fā)射及接收過(guò)程。

圖2 無(wú)線電數(shù)據(jù)傳輸過(guò)程Fig.2 Process of radio data transmission
無(wú)線傳輸能量損耗為
(14)
式中Eelec——每發(fā)送1 bit數(shù)據(jù)消耗的能量fs——簇內(nèi)節(jié)點(diǎn)到簇頭的單位數(shù)據(jù)傳輸能量損耗
d——發(fā)送方與接收方之間的距離
d0——距離閾值L——數(shù)據(jù)包長(zhǎng)度

圖3 系統(tǒng)數(shù)據(jù)傳輸過(guò)程Fig.3 Process of system data transmission
2.1 系統(tǒng)總體結(jié)構(gòu)
冷鏈物流監(jiān)測(cè)系統(tǒng)總體結(jié)構(gòu)如圖3所示,布置在冷庫(kù)或冷藏車(chē)廂內(nèi)的傳感節(jié)點(diǎn)和網(wǎng)關(guān)組成終端采集模塊,負(fù)責(zé)冷鏈環(huán)境信息的采集、傳輸和處理;數(shù)據(jù)庫(kù)服務(wù)器、應(yīng)用服務(wù)器、路由器和防火墻作為系統(tǒng)服務(wù)層,負(fù)責(zé)接收采集層上傳的各項(xiàng)監(jiān)測(cè)信息;管理計(jì)算機(jī)作為用戶訪問(wèn)層,負(fù)責(zé)實(shí)時(shí)向用戶提供冷鏈監(jiān)測(cè)信息。
2.2 系統(tǒng)硬件設(shè)計(jì)
基于WSN無(wú)線傳感網(wǎng)絡(luò)的冷鏈物流監(jiān)控系統(tǒng)硬件框圖如圖4所示,主要由環(huán)境感知節(jié)點(diǎn)、數(shù)據(jù)匯集節(jié)點(diǎn)和管理終端組成。環(huán)境感知節(jié)點(diǎn)以設(shè)定的時(shí)間間隔完成冷鏈環(huán)境的感知與數(shù)據(jù)采集傳輸,之后進(jìn)入休眠狀態(tài),主要由微控制模塊、射頻收發(fā)模塊、傳感模塊和電源模塊組成。匯聚節(jié)點(diǎn)主要用來(lái)組建網(wǎng)絡(luò)、喚醒休眠狀態(tài)的感知節(jié)點(diǎn)及接收簇頭節(jié)點(diǎn)發(fā)送的數(shù)據(jù),并以一定的發(fā)送間隔將接收到的數(shù)據(jù)傳輸?shù)焦芾碇行摹?/p>
為提高系統(tǒng)集成度和可靠性,優(yōu)化電路整體設(shè)計(jì),系統(tǒng)選用德州儀器公司生產(chǎn)的支持2.4 GHz IEEE 802.15.4、ZigBee和RF4CE應(yīng)用的CC2530型無(wú)線傳感網(wǎng)絡(luò)片上系統(tǒng)作為處理器模塊和射頻模塊的解決方[22]。采用體積小,硬件成本低,抗干擾能力強(qiáng)的DS18B20作為傳感模塊,具有單總線、體積小、分辨率高、抗干擾強(qiáng)等特點(diǎn)[23],其相對(duì)溫度測(cè)量范圍為-55~125℃,工作電源為3.0~5.5 V。采用功耗低、溫寬大的M590E作為GPRS模塊。

圖4 系統(tǒng)硬件框圖 Fig.4 Block diagram of system hardware
3.1 實(shí)驗(yàn)環(huán)境與參數(shù)設(shè)定
實(shí)驗(yàn)在中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院進(jìn)行,為了驗(yàn)證融合性能的特性,將選取27個(gè)溫度傳感器節(jié)點(diǎn)按照一定方式部署[24]在模擬冷藏車(chē)廂內(nèi)進(jìn)行溫度信息的實(shí)時(shí)監(jiān)測(cè)與數(shù)據(jù)采集,節(jié)點(diǎn)分布情況如圖5所示。在理想情況下,將整個(gè)網(wǎng)絡(luò)區(qū)域分為3簇,設(shè)置簇成員節(jié)點(diǎn)向簇頭發(fā)送數(shù)據(jù)的時(shí)間間隔為3 s,簇頭向基站發(fā)送數(shù)據(jù)的時(shí)間間隔為1 min,所有節(jié)點(diǎn)發(fā)送數(shù)據(jù)包長(zhǎng)度為9個(gè)字節(jié),其中節(jié)點(diǎn)ID號(hào)占用一個(gè)字節(jié),溫度與電池電量分別占4個(gè)字節(jié)。

圖5 節(jié)點(diǎn)部署圖Fig.5 Diagram of node deployment
3.2 數(shù)據(jù)融合性能分析
3.2.1 融合誤差分析
經(jīng)過(guò)基于算術(shù)平均值與分批估計(jì)的數(shù)據(jù)融合處理后的數(shù)據(jù)如表1所示,系統(tǒng)數(shù)據(jù)融合值為
(15)
算術(shù)平均值法測(cè)量誤差、加權(quán)融合法測(cè)量誤差及自適應(yīng)加權(quán)融合法測(cè)量誤差分別為0.105 0、0.100 7和0.097 0。
通過(guò)上述分析,本文首先利用分布圖法對(duì)原始感知數(shù)據(jù)進(jìn)行預(yù)處理,剔除疏忽誤差,然后利用算術(shù)平均值與分批估計(jì)方法進(jìn)行簇內(nèi)數(shù)據(jù)融合,最后基于自適應(yīng)加權(quán)進(jìn)行簇間數(shù)據(jù)融合處理,最終得到的數(shù)據(jù)精度優(yōu)于傳統(tǒng)加權(quán)融合及算術(shù)平均值法。

表1 簇內(nèi)融合處理后的數(shù)據(jù)Tab.1 Data within cluster fusion
3.2.2 網(wǎng)路生命周期分析
圖6所示為不同方法對(duì)監(jiān)測(cè)系統(tǒng)網(wǎng)絡(luò)生命周期的影響,網(wǎng)絡(luò)生命周期是一種更近似的能量消耗衡量機(jī)制,是指由于節(jié)點(diǎn)能量耗盡而導(dǎo)致網(wǎng)絡(luò)結(jié)構(gòu)被破壞的時(shí)間。

圖6 網(wǎng)絡(luò)生命周期Fig.6 Life cycle of network
仿真結(jié)果表明,未分簇融合之前匯聚節(jié)點(diǎn)附近的節(jié)點(diǎn)會(huì)承擔(dān)大部分的數(shù)據(jù)傳輸量,使能量損耗加快,縮短了網(wǎng)絡(luò)壽命。本文所采用的改進(jìn)LEACH分簇協(xié)議及自適應(yīng)數(shù)據(jù)融合算法,生命穩(wěn)定期相比前2種算法分別提高了34.2%與11.4%。
由圖7可知,與未搭建融合算法及傳統(tǒng)融合算法相比,該監(jiān)測(cè)網(wǎng)絡(luò)系統(tǒng)數(shù)據(jù)傳輸量分別減少了63.4%與59.5%。

圖7 系統(tǒng)數(shù)據(jù)傳輸量Fig.7 Amount of system data transmission
3.2.3 系統(tǒng)能耗分析

圖8 系統(tǒng)能耗Fig.8 Energy consumption of system
結(jié)果表明,與傳統(tǒng)數(shù)據(jù)融合算法相比,文中所采用的分簇融合算法每輪能耗降低了約32.5%。
由圖9可知,該文所采用的分簇?cái)?shù)據(jù)融合機(jī)制可以使簇頭節(jié)點(diǎn)的平均能耗變小,即提高了每一輪的能耗負(fù)載平衡度。
(1)基于分布圖法的自適應(yīng)加權(quán)融合數(shù)據(jù)處理算法,先對(duì)傳感節(jié)點(diǎn)采集到的原始數(shù)據(jù)用分布圖法剔除疏失誤差,然后采用算術(shù)平均值與分批估計(jì)的融合方法對(duì)簇內(nèi)數(shù)據(jù)進(jìn)行預(yù)處理,再用自適應(yīng)加權(quán)數(shù)據(jù)融合方法進(jìn)行簇頭數(shù)據(jù)融合處理,雖然處理過(guò)程較為繁瑣,但處理誤差相比與傳統(tǒng)方法減小了7.6%。
(2)在WSN節(jié)點(diǎn)分簇過(guò)程中采用改進(jìn)LEACH協(xié)議,相比于傳統(tǒng)LEACH協(xié)議,其在計(jì)算和數(shù)據(jù)處理過(guò)程中要消耗一定的能量,但是其生命穩(wěn)定期相比前兩種算法分別提高了34.2%與11.4%,同時(shí)數(shù)據(jù)傳輸量分別減少了63.4%與59.5%。同時(shí)在每一輪分簇融合過(guò)程中,其網(wǎng)絡(luò)負(fù)載均衡得到很大改善,彌補(bǔ)了WSN無(wú)線傳感網(wǎng)絡(luò)在計(jì)算和通信過(guò)程中能耗的不平衡問(wèn)題。延長(zhǎng)了整個(gè)冷鏈監(jiān)測(cè)系統(tǒng)網(wǎng)絡(luò)生命周期。
1 WENG Xingang, YANG Hui, WANG Lei. Research on cold chain logistics traceable system for fresh agricultural products [J]. American Journal of Industrial and Business Management,2015, 5(12):728-729.
2 梁琨,肖宏偉,杜瑩瑩,等.基于物聯(lián)網(wǎng)技術(shù)的果蔬冷鏈物流實(shí)時(shí)監(jiān)測(cè)系統(tǒng)[J].江蘇農(nóng)業(yè)科學(xué),2015(11):519-520. LIANG Kun, XIAO Hongwei, DU Yingying ,et al. The real-time monitoring system of fruit and vegetable cold chain logistics based on internet of things technology[J]. Journal of Jiangsu Agricultural Sciences, 2015(11):519-520.(in Chinese)
3 齊林,田東,張健,等.基于SPC 的農(nóng)產(chǎn)品冷鏈物流感知數(shù)據(jù)壓縮方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2011,42(10):130-131. QI Lin, TIAN Dong, ZHANG Jian ,et al. Compression method of agricultural products cold chain logistics based on SPC[J].Transactions of the Chinese Society for Agricultural Machinery, 2011,42(10):130-131.(in Chinese)
4 張銳,王燕,王以忠,等.基于ZigBee的冷鏈溫度監(jiān)測(cè)系統(tǒng)的研究[J].保鮮與加工,2013(3):12-16. ZHANG Rui, WANG Yan, WANG Yizhong ,et al. Research on cold chain temperature monitoring system based on ZigBee[J]. Preservation and Processing, 2013(3):12-16.(in Chinese)
5 RUIZ-GARCIA L,BARREIRO P, ROBLA J I. Performance of ZigBee-based wireless sensor nodes for real-time monitoring of fruit logistics[J]. Journal of Food Engineering, 2008,87(3):405-410.
6 齊林,韓玉冰,張小栓,等.基于WSN的水產(chǎn)品冷鏈物流實(shí)時(shí)監(jiān)測(cè)系統(tǒng)[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(8):135-140.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20120825&flag=1.DOI:10.6041 / j.issn.1000-1298.2012.08.025. QI Lin, HAN Yubing, ZHANG Xiaoshuan, et al. Real time monitoring system for aquatic cold-chain logistics based on WSN[J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2012,43(8):135-140.(in Chinese)
7 袁浩浩,蔣聯(lián)源,張聯(lián)盟.基于WSN的冷鏈物流監(jiān)控溯源系統(tǒng)[J].物流技術(shù),2014(11):369-371. YUAN Haohao, JIANG Lianyuan, ZHANG Lianmeng. Cold chain logistics monitoring traceability system based on WSN [J]. Logistics Technology, 2014(11):369-371.(in Chinese)
8 肖新清,齊林,張雷,等.面向鮮食葡萄冷鏈物流的無(wú)線實(shí)時(shí)監(jiān)測(cè)系統(tǒng)術(shù)[J].電子技術(shù)應(yīng)用,2013,39(8): 77-79. XIAO Xinqing, QI Lin, ZHANG Lei, et al. Wireless real-time monitoring system for table grape cold-chain logistics[J].Application of Electronic Technique,2013,39(8): 77-79.(in Chinese)
9 CARULLO A, CORBELLINI S, PARVIS M,et al. Wireless sensor network for cold-chain monitoring[J].IEEE Transactions on Instrumentation & Measurement,2009,58(5):1405-1411.
10 ZHANG J, ZHANG X S, ZHANG L, et al. Design on wireless SO2sensor node based on CC2530 for monitoring table grape logistics[J].Journal of Food Agriculture & Environment,2013,11(1):115-117.
11 王義勇.農(nóng)產(chǎn)品冷鏈物流實(shí)時(shí)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[J].計(jì)算機(jī)時(shí)代,2015(2):38-39. WANG Yiyong. System design of real-time monitoring for cold chain logistics of agricultural products [J] .Computer Age,2015(2):38-39.(in Chinese)
12 周開(kāi).基于WSN和RFID的冷鏈物流監(jiān)控系統(tǒng)的研究[D].成都:西南科技大學(xué),2012. ZHOU Kai. Research on cold chain logistics monitoring system based on WSN and RFID [D]. Chengdu: Southwest University of Science and Technology,2012.(in Chinese)
13 劉國(guó)梅,孫新德.基于WSN和RFID的農(nóng)產(chǎn)品冷鏈物流監(jiān)控追蹤系統(tǒng)[J].農(nóng)機(jī)化研究,2011(4):179-182. LIU Guomei, SUN Xinde.Monitoring and tracking system of agricultural products cold chain logistics based on WSN and RFID[J]. Research on Agricultural Mechanization, 2011(4):179-182.(in Chinese)
14 XIAO Xinqing, WANG Xiang, ZHANG Xiaoshuan, et al.Effect of the quality property of table grapes in cold chain logistics-integrated WSN and AOW[J]. Applied Sciences,2015,5(4):747-760.
15 XIAO Xinqing, LI Zhigang, MATETIC M, et al.Energy-efficient sensing method for table grapes cold chain management[J]. Journal of Cleaner Production,2017,152:77-87.
16 張聚偉,王宇,楊挺.基于數(shù)據(jù)融合的有向傳感器網(wǎng)絡(luò)全覆蓋部署[J].傳感技術(shù)學(xué)報(bào),2017,30(1):139-140. ZHANG Juwei, WANG Yu, YANG Ting. Full-coverage deployment of directed sensor networks based on data fusion[J]. Chinese Journal of Sensors and Actuators, 2017,30(1):139-140.(in Chinese)
17 SOHIL G, ANKER S, YANG Xiaojian, et al. Optimal energy aware clustering in sensor networks[J]. Sensors, 2002,2(7):258-269.
18 劉永星,趙涓涓,常曉敏.基于數(shù)據(jù)融合的無(wú)線傳感器網(wǎng)絡(luò)林火監(jiān)控算法[J].計(jì)算機(jī)科學(xué),2015(11):156-158. LIU Yongxing, ZHAO Juanjuan, CHANG Xiaomin. Forest fire monitoring algorithm for wireless sensor networks based on data fusion[J]. Computer Science, 2015(11):156-158.(in Chinese)
19 尹湘源.無(wú)線傳感器網(wǎng)絡(luò)低能耗分簇路由算法關(guān)鍵技術(shù)研究[D].上海:華東理工大學(xué),2014. YIN Xiangyuan. Research on key technologies of low energy clustering routing algorithm in wireless sensor networks[D].Shanghai: East China University of Science and Technology,2014.(in Chinese)
20 唐亞鵬.基于自適應(yīng)加權(quán)數(shù)據(jù)融合算法的數(shù)據(jù)處理[J].計(jì)算機(jī)技術(shù)與發(fā)展,2015(4):53-54. TANG Yapeng.Data processing based on adaptive weighted data fusion algorithm[J]. Computer Technology and Development, 2015(4):53-54.(in Chinese)
21 張?zhí)m勇,陸晴,耿文杰,等.基于貼近度及分布圖法的數(shù)據(jù)深度融合算法研究[J].兵器裝備工程學(xué)報(bào),2016,37(11): 50-51. ZHANG Lanyong, LU Qing, GENG Wenjie, et al. Research on data depth fusion algorithm based on close degree and distribution graph method[J]. Journal of Weapon and Equipment Engineering, 2016,37(11):50-51.(in Chinese)
22 馮賀平,吳梅梅.基于WSN的果蔬冷鏈物流實(shí)時(shí)監(jiān)測(cè)系統(tǒng)研究[J].保鮮與加工,2016(5):104-105. FENG Heping, WU Meimei. Studying on real-time monitoring system of fruit and vegetable cold chain logistics based on WSN [J]. Preservation and Processing, 2016(5):104-105.(in Chinese)
23 湯鍇杰,栗燦,王迪,等.基于DS18B20的數(shù)字式溫度采集報(bào)警系統(tǒng)設(shè)計(jì)[J].傳感器與微系統(tǒng),2014,33(3):99-100. TANG Kaijie, LI Can, WANG Di, et al. Design of digital temperature acquisition alarm system based on DS18B20[J]. Sensors and Microsystems, 2014,33(3):99-100.(in Chinese)
24 劉靜,張小栓,肖新清,等.基于多目標(biāo)決策模糊物元法的冷藏車(chē)傳感器布點(diǎn)優(yōu)化[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(10):215-217.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20141033&flag=1.DOI:10.6041/j.issn.1000-1298.2014.10.033. LIU Jing,ZHANG Xiaoshuan,XIAO Xinqing,et al. Optimal sensor layout in refrigerator car based on multi-objective fuzzy matter element method[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(10):215-217.(in Chinese)
Cold Chain Temperature Monitoring Method of Agricultural Products Based on Clustered Data Fusion
LI Zhigang1LIU Dandan1ZHANG Xiaoshuan2
(1.CollegeofInformationScienceandTechnology,ShiheziUniversity,Shihezi832000,China2.CollegeofInformationandElectricalEngineering,ChinaAgriculturalUniversity,Beijing100083,China)
In order to reduce the data transmission and energy consumption of sensor nodes and improve the broadband utilization and life cycle in real-time cold chain logistics monitoring system for agri-food based on wireless sensor networks, a clustering fusion method based on arithmetic mean and batch estimation for the cold chain temperature monitoring of agricultural products was proposed, Firstly, the mistake errors of the collected data was eliminated, and then the data which were sent from the cluster member nodes were merged by the mean and the batch estimation method. Secondly, the cluster head node used the adaptive weighting algorithm to further analyze the fusion data of the member nodes. The experimental results showed that the network lifetime of the cold chain monitoring system based on the data fusion method was 34.2% higher than that of the traditional method, and the stability period was 11.4% higher than that of the traditional low power adaptive cluster clustering protocol. Compared with the traditional arithmetic average method, the accuracy of data fusion was improved by 7.6%, the system energy consumption was decreased by about 32.5% per round, which can not only reduce the influence of redundancy and less reliable data on the measurement results, but also reduce the unnecessary data transmission loss, as well as reduce the cost of cold chain logistics and improve the degree of informatization of cold chain logistics to a certain extent.
WSN wireless sensor network;clustering fusion;cold chain monitoring
10.6041/j.issn.1000-1298.2017.08.035
2017-04-17
2017-05-23
國(guó)家自然科學(xué)基金項(xiàng)目(71261021)
李志剛(1970—),男,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)信息技術(shù)及系統(tǒng)開(kāi)發(fā)研究,E-mail: lzg_inf@shzu.edu.cn
S126; TS205.7
A
1000-1298(2017)08-0302-07