李昌明,王曉玥,孫 波*
?
基于固態13C核磁共振波譜研究植物殘體分解和轉化機制的進展①
李昌明1,2,王曉玥1,孫 波1*
(1土壤與農業可持續發展國家重點實驗室(中國科學院南京土壤研究所),南京 210008;2 中國科學院大學,北京 100049)
植物殘體在土壤中的分解和轉化影響了其養分歸還和有機質形成過程。由于缺乏高分辨率的分析方法,對不同氣候、植被和土壤類型條件下植物殘體在分解過程中化學結構組成的演變特征和機制仍不清楚。核磁共振波譜技術在解析自然有機物化學組成方面具有獨特的優勢,本文綜述了基于固態13C核磁共振波譜(solid-state13C-NMR spectroscopy)技術評價植物殘體的基質質量、解析植物殘體的分解速率及其官能團組成的變化特征、揭示土壤腐殖質特性等方面的主要進展。未來針對植物殘體分解和有機質形成機制的研究,應該結合穩定性同位素質譜和掃描電鏡分析方法,綜合分析植物殘體中的有機化合物組成和物理結構;從多時空尺度揭示不同類型植物殘體中有機碳官能團的降解路徑;結合高通量測序和基因芯片分析方法,深入研究土壤微生物群落與植物殘體化學結構的協同演變機制,提出不同氣候–土壤–植被類型區促進土壤有機質形成的調控措施。
核磁共振波譜;植物殘體;分解;有機碳官能團;土壤有機質
土壤有機質是陸地生態系統的重要碳庫[1],也是土壤肥力的基礎[2],而植物殘體是土壤有機質的重要來源[3]。植物吸收土壤養分,通過光合作用合成有機物,部分光合產物最終以凋落物和根茬形式進入土壤分解,這一過程是土壤養分元素歸還以及腐殖質形成的主要途徑[4],也是養分元素生物地球化學循環的關鍵環節。以往針對不同氣候、植被和土壤類型條件下的植物殘體分解開展了大量研究,但主要集中在分解速率及其影響因素方面[5-10],對于其化學結構特征和組成變化規律仍不清楚[11-12]。固態13C核磁共振波譜(solid-state13C-NMR spectroscopy)具有同時定性、定量分析有機物質化學組成的優勢,已經廣泛應用于研究天然有機化合物的結構特征,近十年來才開始應用于研究植物殘體的分解機制。本文綜述了基于固態13C核磁共振波譜評價植物殘體基質質量、研究植物殘體官能團的組成變化和分解速率、解析植物殘體分解進入土壤腐殖質路徑等方面的進展,以期為陸地生態系統碳循環過程模擬提供參數支撐,為建立合理的農田秸稈還田措施和土壤有機質培育措施提供理論基礎。
核磁共振(nuclear magnetic resonance,NMR)是指自旋的原子核在磁場中吸收一定頻率的電磁波而產生的能級躍遷的現象。原子質量數為奇數的原子具有自旋特性,被稱為磁性核,如1H、13C、31P和15N。當自旋的原子核放入外加磁場時,其原子核偶極子產生與外加磁場方向相同的低能態(順磁)或相反的高能態(逆磁)兩種趨向,在通過外加電磁波誘導原子核從原來的順磁(低能態)變為逆磁(高能態)的過程中,原子核會吸收能量從低能級躍遷至高能級,即核磁共振現象。通常原子核周圍均包含有電子云,它對原子本身磁場接受外加磁場具有一定的屏蔽作用,使得原子核對電磁波的吸收峰相對于原子核基準物質發生偏移。這種相對于基準物質的偏離程度便是出峰位置,也即化學位移,一般用d表示,單位是ppm。13C-NMR的位移范圍一般為0 ~ 250 ppm。不同類型官能團結構中,由于C(13C的自然豐度約為1.01%,可指示或代表總碳,即13C視為總碳的標記物)所處的化學環境不同,其周圍電子云的密度不同,所產生的屏蔽作用也不同,因此產生的化學位移也存在差異。反之則可根據不同位移值判別13C所處的化學環境,即官能團的種類。13C-NMR核磁共振波譜通常可以解析4大類官能團,這些官能團指征特定種類的生物大分子化合物(表1)。此外,由于13C原子所吸收的電磁波能量會隨原子核數量的增多(濃度高)而正比例變強,即峰面積呈正比例增大,因此核磁共振光譜技術不僅能給出有機化合物化學結構的定性結果,還能夠通過計算得到其官能團的半定量信息[13-14]。

表113C固態核磁共振波譜分析的有機碳官能團種類及對應的生物大分子化合物[18, 35, 67]
注:①含氧烷基碳總體上指征著碳水化合物種類。
與傳統化學提取方法相比,固態核磁共振波譜有如下優點。首先,固態核磁共振波譜可以直接分析植物樣品中表征木質素和纖維素等的官能團組成[15],避免了提取過程所帶來的結構變化問題[16],其分析結果更接近于真實狀態[17]。例如傳統方法(如Proxi-mate analysis, Van Soest serial extraction, temperature- programmed pyroanalysis)在分析前對原始樣品所進行的熱裂解等有針對性提取過程,會破壞樣品的結構組成信息,如在對類木質素-單寧蛋白質復合體的分析中,全局方法由于化學提取、熱反應破壞了氮含量高的多肽類化合物等的檢測結果偏低,但13C-NMR波譜方法可以無損地在147和151 ppm波段上可以檢測到對應峰[18]。另外,傳統提取方法在提取過程中會形成原始樣品所沒有的復雜物質,例如傳統方法提取的木質素會被大量脂類包裹,導致其難以定量分析[16]。其次,核磁共振光譜技術適合分析以烷基為主的復雜大分子化合物結構,能夠很好地區分烷基(聚亞甲基)和含氧烷基(碳水化合物或者脂基相連的)碳之間結構的差異[19]。此外,13C-NMR波譜所需樣品量小[20],因此適合于分析經過長時間分解后剩余量低的植物殘體樣品[21]。
盡管核磁共振技術有諸多優點,但其使用成本高、技術要求復雜,制約了該方法的廣泛應用[20]。同時,13C-NMR波譜僅能獲取碳骨架信息,無法獲得分子單體信息。而且13C-NMR波譜僅能以半定量的形式給出各碳官能團所占的比例。此外,在研究植物殘體分解過程中有機質的來源時,需要借助其他d13C同位素、質譜等手段綜合分析[22]。
植物殘體的分解速率決定著生態系統中養分循環的快慢,在一定程度上決定著土壤養分有效性的高低[23]。除氣候、土壤性質等外部因素以外,植物殘體自身的基質質量(氮、磷、木質素、纖維素、C/N、C/P、木質素/N)也是影響凋落物分解速率的重要因素[24]。利用13C-NMR波譜可以通過區分植物殘體中不同類別的官能團來分析凋落物的基質質量,并預測腐解過程中的有機碳分解速率和殘余量[25]。
13C-NMR波譜解析的官能團中,含氧烷基碳代表容易被分解者微生物代謝利用的碳水化合物,即易分解碳;烷基碳和芳香族碳等則表征難以被利用的木質素、單寧等,即難分解碳[25]。研究表明,難分解碳的含量越高,有機物的分解速率越慢[25]。例如,Lorenz等[26]發現山毛櫸葉片中烷基碳含量高于橡樹葉,而松木針葉中表征木質素的芳香族碳含量高于櫻木葉,高含量的難分解碳降低了山毛櫸葉片和松針的分解速率。此外,進一步計算難分解碳和易分解碳的比值,如含氧烷基/烷基,含氧烷基/甲氧基等,可以更敏感地反映植物殘體的可分解性和分解速率,即其比值越高,植物殘體越容易被分解,分解速率越高[27-28],并且其相關性高于C/N和木質素/N與植物殘體分解速率相關性[28]。植物殘體初始化學組成對其分解量的預測受到腐解時間的影響,例如,Prescott等[29]發現在腐解初期(1年),木質素或者含氧烷基含量與腐解速率顯著相關;但在腐解后期(4 ~ 5年),不同類別植物殘體的殘余量趨于相似。
植物殘體在腐解過程中的殘余量變化符合一階指數衰減模型(方程1),能夠被很好地擬合并計算得到腐解常數(k constant)[30]:
W=0×exp(-) (1)
式中:0是初始時間的植物殘體重量(g),W是時間的植物殘體重量(g)。植物殘體分解過程中,有機碳官能團絕對含量的變化與殘留量變化一致[21],不同官能團的變化速率特征可以采用一階指數衰減模型描述[31-33]。
了解植物殘體在分解過程中各有機碳官能團的動態變化是精確估算陸地生態系統碳循環和平衡的基礎[34]。在植物殘體分解過程中,其化學組成不斷改變,進而影響了殘余物的分解速率隨著植物殘體的分解進程。植物殘體在分解過程中,其含氧烷基碳豐度逐漸降低,而芳香基碳、烷基碳豐度升高[35-36]。同時,植物殘體的分解程度可以用烷基/氧烷基(alkyl/O- alkyl)[37]、芳香率(aromaticity)[38]和炔基碳與甲氧基碳比值(carbonhydrate C : methoxyl C)[39]表征,其比值越高表明植物殘體的腐解程度越大。
由于植物殘體的組成差異,在腐解過程中其有機碳官能團化學結構轉化路徑不同。一方面,轉化路徑的不同表現在不同植物殘體中官能團的分解順序不同。例如,對意大利南部林地刺槐、黑松凋落葉中6種官能團腐解速率的研究表明,在刺槐凋落葉中官能團的分解順序為酚芳基碳>含氧烷基碳=苯環基碳>羰基碳=烷基碳>甲氧基碳,而在黑松凋落葉中官能團的分解順序則表現為含氧烷基碳>烷基碳>羰基碳=酚芳基碳>苯環基碳>甲氧基碳[40]。又如,硬木類凋落物中的芳香基碳比烷基碳更容易分解,而針葉林凋落物中卻相反[32, 41]。
另一方面,轉化路徑的不同表現在一些植物殘體在分解過程中沒有表現出易分解物質下降而難分解物質積累的規律。某些植物殘體分解過程中含氧烷基官能團的豐度變化不大,可能是由于其來源復雜性。例如,亞熱帶人工馬尾松林根部的含氧烷基豐度沒有顯著下降,這是由于根部的含氧烷基不僅來源于易分解的多糖,也源于氧化后的丙烷基側鏈以及甲氧基基團,使含氧烷基在分解過程中處于合成和分解的動態平衡[31]。另外,分解樹木殘體的白腐菌對不同組分碳的無選擇性分解也是各官能團豐度變化不顯著的原因之一[42]。例如,澳大利亞南洋杉葉、莖混合凋落物在2年腐解過程中,氧烷基含量先減后增,而烷基含量則先增后減,其他各個官能團豐度無顯著變化,并沒有出現烷基、芳香基顯著積累的現象[42]。同樣,烷基/氧烷基比值的變化也與植物殘體種類有關,木材中烷基/氧烷基比值并沒有隨分解進程而升高[40],利用烷基/氧烷基指征分解進程時,需要有一定限制條件,即相同植物來源,并不是腐解質量損失越高對應的化學結構變化越大[43]。
除了植物殘體的化學組成,分解過程中的生物和非生物因素也影響了有機碳官能團的轉化路徑。生物因素中,土壤生物顯著影響了植物殘體的分解過程,如大型土壤動物蚯蚓等的進食促進了植物殘體分解,經消化道排泄后使植物殘體與其他小型微生物接觸更均勻,增加了植物殘體的腐解面積,并增強了其對微生物的口適性[17, 44]。土壤微生物群落組成與植物殘體化學結構是協同演變的,但其協同演變的機制仍有待進一步研究[45-46]。目前的研究表明,在低C/N的植物殘體中芳香基碳與微生物群落結構的變化相關性最強,而在高C/N植物殘體中則表現為氧烷基碳與微生物群落結構顯著相關[45, 47]。另外,不同分解時期,微生物與有機組分的相關性也不同;例如,對小麥、桉樹、豌豆腐解過程的研究表明,在腐解60 d時小麥葉和根中的烷基碳與革蘭氏陽性菌含量顯著正相關,腐解150 d時3種植物殘體的雙氧烷基碳與微生物豐度的相關性最強[47]。
非生物因素中,氣候條件和土壤性質均是影響植物殘體分解過程中化學結構變化的重要因素。例如,由于Ca是微生物生長代謝的重要元素,Mn是木質素分解酶的重要組成成分,因此土壤中的Ca,Mn等元素含量也會影響植物殘體中化學組成的變化[31,48]。對綠肥腐解過程的研究表明,不同種類綠肥腐解12周后,土壤微生物群落與綠肥有機碳化學結構同時發生變化,綠肥基質質量和土壤性質共同影響了綠肥的分解過程,但其相對影響隨腐解進程而變化[49]。另外,由于在一定范圍內,土壤中高含水量促進微生物活性,因此含氧烷基碳的豐度與受降雨量影響的土壤濕度顯著正相關[31]。基于不同氣候帶的不同土壤類型的置換試驗研究表明,氣候等地點因素對腐解過程中化學結構變化的影響顯著高于土壤類型的影響[50-51]。溫度升高,通過促進植物殘體分解,促進了易分解物質向難分解物質轉化。同時,植物殘體的化學組成也影響了其分解的溫度敏感性。研究表明,難分解碳組分的溫度敏感性高于易分解碳組分。這是由于溫度–質量(temperature-quality)假說認為難分解碳組分需要更多的反應勢能,反應勢能越高,反應隨溫度變化越明顯[52]。Erhagen等[52]發現凋落物分解的溫度系數(10)與凋落物中烷基和含氧烷基成正比,凋落物化學組成解釋了10變異的90%。因此,13C-NMR獲取的植物殘體化學組成信息,可用于描述凋落物腐解的溫敏性,為模擬全球氣候變化條件下生態系統碳循環的反饋機制提供理論依據。
植物殘體在土壤中分解后,一部分以CO2形式排放至大氣,另一部分通過土壤生物參與的腐殖化作用以及與土壤膠體的蓄留固定作用形成土壤有機質[53]。植物殘體的化學結構組成深刻影響著土壤有機質的化學組成[54]。建立植物殘體化學組成與有機質性質之間的關系,可通過植物殘體屬性的變化預測植物腐解過程中土壤有機質屬性的變化[55]。例如,與硬木樹種相比,針葉樹凋落物中的芳香基碳分解速率較慢,而烷基碳分解較快,導致針葉林下土壤中芳香基碳積累速率更快[33, 41]。橡樹林下土壤有機質以羰基碳為主,針葉林下土壤有機質以烷基碳為主,而石蘭科常綠灌木(manzanita)下土壤有機質則以氧烷基碳為主[56]。此外,Johnson等[57]認為多年生木本植物南杉木(hoop pine)的凋落物(枝、莖、葉)在兩年的分解過程中并沒有出現難分解類型碳的大量積累,因此不適合作為長期固碳類型的樹種。
此外,植物殘體的化學組成也影響了腐殖化進程及土壤中有機質的積累速率[40-41]。植物殘體分解過程中,一部分碳被微生物利用進而轉化為難分解物質持留在土壤中,另一部分碳轉化為CO2排放到大氣中[19]。近年的研究結果表明,微生物分解后的有機碳更容易被土壤黏粒吸附,是土壤穩定有機碳的重要組成成分[58]。易分解碳對土壤中穩定有機碳貢獻更大的可能原因之一是,利用難分解碳的微生物以k-生長型微生物為主,它們的碳源利用率低,因此更多比例的碳以CO2的形式消耗,而不是形成穩定的土壤有機質[58-59]。
此外,由于烷基碳和芳香基碳比較穩定,種植富含此類有機碳官能團的植被或者輸入其植物殘體可以促進土壤有機質的積累[57, 60-61]。Rumpel[62]發現在法國小麥種植區植物殘體經火燒后會產生芳香基(Aromatics)含量較高的黑炭(black carbon),并與土壤中的黏土礦物等無機組分結合,加之年降雨量低,侵蝕和淋失作用弱,從而增加了土壤長期碳固定的潛能。由于13C-NMR可以揭示植物殘體腐解過程中土壤有機質的積累過程和特征,因此可以為建立培肥土壤的間作體系[61]、人工林[63]和經濟作物[64]提供物種選擇的科學依據。
植物殘體在土壤中的腐解過程是生物地球化學循環的重要環節,也是陸地碳循環和平衡的核心[23]。13C-NMR分析可以評價植物殘體基質質量、分解程度,全面分析分解過程中各組分官能團的腐解速率,解析化學結構的分解轉化模式,進而確定進入土壤的有機質組成特征。目前仍需加強以下3個方面的研究:
1) 結合d13C質譜分析[65-66]和掃描電鏡[66]等方法,綜合研究植物殘體中的生物大分子化合物結構和物理結構,全面評價植物殘體的基質質量,預測植物殘體的腐解速率。
2) 從團聚體-土體-景觀-區域的空間尺度和不同的時間尺度,加強多時空尺度下植物殘體有機碳官能團降解路徑的研究,闡明植物殘體屬性和環境因子對其腐解進程中化學結構變化的影響。
3) 結合高通量測序(illumina)和基因芯片(geo-chip)等方法,加強土壤微生物群落結構演替與植物殘體化學結構變化之間協同關系的研究,明確控制植物殘體腐解的關鍵功能微生物及其網絡結構,提出不同區域土壤微生物功能的調控措施。針對我國不同農區土壤有機質提升問題,借助區域尺度的聯網土壤置換實驗,開展10年以上尺度的長期研究,綜合研究不同氣候、土壤、植被類型下植物殘體分解和有機質積累的生物學機制[67-69]。
[1] Baldock J A. Composition and cycling of organic carbon in soil[M]. Leipzig: Springer, 2007: 1–35
[2] Lal R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands[J]. Land Degradation & Development, 2006, 17(2): 197–209
[3] Kergel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter[J]. Soil Biology and Biochemistry, 2002, 34(2): 139–162
[4] Prescott C E. Do rates of litter decomposition tell us anything we really need to know? [J]. Forest Ecology and Management, 2005, 220(1-3): 66–74
[5] Vogel A, Eisenhauer N, Weigelt A, et al. Plant diversity does not buffer drought effects on early-stage litter mass loss rates and microbial properties[J]. Global Change Biology, 2013, 19(9): 2795–2803
[6] García-Palacios P, Maestre F T, Kattge J, et al. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes[J]. Ecology Letters, 2013, 16(8): 1045–1053
[7] Dirks I, Navon Y, Kanas D, et al. Atmospheric water vapor as driver of litter decomposition in Mediterranean shrubland and grassland during rainless seasons[J]. Global Change Biology, 2010, 16(10): 2799–2812
[8] Wieder W R, Cleveland C C, Townsend A R. Controls over leaf litter decomposition in wet tropical forests[J]. Ecology, 2009, 90(12): 3333–3341
[9] Cusack D F, Chou W W, Yang W H, et al. Controls on long-term root and leaf litter decomposition in neotropical forests[J]. Global Change Biology, 2009, 15(5): 1339–1355
[10] H?ttenschwiler S, Gasser P. Soil animals alter plant litter diversity effects on decomposition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(5): 1519–1524
[11] Wickings K, Grandy A S, Reed S C, et al. The origin of litter chemical complexity during decomposition[J]. Ecology Letters, 2012, 15(10): 1180–1188
[12] Parsons S A, Congdon R A, Lawler I R. Determinants of the pathways of litter chemical decomposition in a tropical region[J]. New Phytologist, 2014, 203(3): 873–882
[13] 竇森. 土壤有機質[M]. 北京: 科學出版社, 2010
[14] Conte P, Spaccini R, Piccolo A. State of the art of CPMAS13C-NMR spectroscopy applied to natural organic matter[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2004, 44(3-4): 215–223
[15] Nordén B, Berg B. A non-destructive method (solid state13C-NMR) for determining organic chemical components of decomposing litter[J]. Soil Biology and Biochemistry, 1990, 22(2): 271–275
[16] Nelson P N. Baldock J A. Estimating the molecular composition of a diverse range of natural organic materials from solid-state (13)C NMR and elemental analyses[J]. Biogeochemistry, 2005, 72(1): 1–34
[17] Berg B, McClaugherty C. Plant litter: Decomposition, humus formation, carbon sequestration[M]. 3rd ed. Heidelberg: Springer, 2013
[18] Trinsoutrot I, Monrozier L J, Cellier J, et al. Assessment of the biochemical composition of oilseed rape (L.) C-13-labelled residues by global methods, FTIR and13C NMR CP/MAS[J]. Plant and Soil, 2001, 234(1): 61–72
[19] Almendros G, Dorado J, González-Vila F J, et al.13C NMR assessment of decomposition patterns during composting of forest and shrub biomass[J]. Soil Biology and Biochemistry, 2000, 32(6): 793–804
[20] Faz Cano A, Mermut A R, Ortiz R, et al.13C CP/MAS- NMR spectra of organic matter as influenced by vegetation, climate, and soil characteristics in soils from Murcia, Spain[J]. Canadian Journal of Soil Science, 2002, 82(4): 403–411
[21] Cogle A, Saffigna P, Barron P. The use of13C-NMR for studies of wheat straw decomposition[J]. Plant and soil, 1989, 113(1): 125–128
[22] Wang G, Zhang L, Zhang X, et al. Chemical and carbon isotopic dynamics of grass organic matter during litter decompositions: A litterbag experiment[J]. Organic Geochemistry, 2014, 69(2): 106–113
[23] Berg B, McClaugherty C. Plant litter[M]. Berlin Heidelberg: Springer, 2003: 1–9
[24] 劉強, 彭少麟. 植物凋落物生態學[M]. 北京: 科學出版社, 2010
[25] Preston C M, Trofymow J A. Variability in litter quality and its relationship to litter decay in Canadian forests[J]. Canadian Journal of Botany, 2000, 78(10): 1269–1287
[26] Lorenz K, Preston C M, Krumrei S, et al. Decomposition of needle/leaf litter from Scots pine, black cherry, common oak and European beech at a conurbation forest site[J]. European Journal of Forest Research, 2004, 123(3): 177–188
[27] Webster E A, Chudek J A, Hopkins D W. Carbon transformations during decomposition of different components of plant leaves in soil[J]. Soil Biology & Biochemistry, 2000, 32(3): 301–314
[28] Bonanomi G, Incerti G, Giannino F, et al. Litter quality assessed by solid state13C NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios[J]. Soil Biology & Biochemistry, 2013, 56: 40–48
[29] Prescott C E, Vesterdal L, Preston C M, et al. Influence of initial chemistry on decomposition of foliar litter in contrasting forest types in British Columbia[J]. Canadian Journal of Forest Research, 2004, 34(8): 1714–1729
[30] Olson J S. Energy-storage and balance of producers and decomposers in ecological-systems[J]. Ecology, 1963, 44(2): 322–331
[31] Wang H, Liu S, Wang J, et al. Dynamics and speciation of organic carbon during decomposition of leaf litter and fine roots in four subtropical plantations of China[J]. Forest Ecology and Management, 2013, 300(4): 43–52
[32] Ono K, Hiradate S, Morita S, et al. Fate of organic carbon during decomposition of different litter types in Japan[J]. Biogeochemistry, 2013, 112(1-3): 7–21
[33] Ono K, Hirai K, Morita S, et al. Organic carbon accumulation processes on a forest floor during an early humification stage in a temperate deciduous forest in Japan: Evaluations of chemical compositional changes by13C NMR and their decomposition rates from litterbag experiment[J]. Geoderma, 2009, 151(3): 351–356
[34] Preston C M, Nault J R, Trofymow J. Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2.13C abundance, solid-state13C NMR spectroscopy and the meaning of “lignin” [J]. Ecosystems, 2009, 12(7): 1078–1102
[35] Parfitt R L, Newman R H.13C-NMR study of pine needle decomposition[J]. Plant and Soil, 2000, 219(1-2): 273–278
[36] Lemma B, Nilsson I, Kleja D B, et al. Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia[J]. Soil Biology and Biochemistry, 2007, 39(9): 2317–2328
[37] Baldock J A, Oades J M, Nelson P N, et al. Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy[J]. Australian Journal of Soil Research, 1997, 35: 1061–1083
[38] Adiku S G K, Amon N K, Jones J W, et al. Simple formulation of the soil water effect on residue decomposition[J]. Communications in Soil Science and Plant Analysis, 2010, 41(3): 267–276
[39] Mathers N J, Jalota R K, Dalal R C, et al.13C-NMR analysis of decomposing litter and fine roots in the semi-arid Mulga Lands of southern Queensland[J]. Soil Biology and Biochemistry, 2007, 39(5): 993–1006
[40] De Marco A, Spaccini R, Vittozzi P, et al. Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy[J]. Soil Biology and Biochemistry, 2012, 51: 1–15
[41] Ono K, Hiradate S, Morita S, et al. Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaec-yparis obtusa) plantations in Japan[J]. Plant and soil, 2011, 338(1-2): 171–181
[42] Johnson C E, Blumfield T J, Boyd S, et al. A13C NMR study of decomposing logging residues in an Australian hoop pine plantation[J]. Journal of Soils and Sediments, 2013, 13(5): 854–862
[43] Li Y F, Chen N, Harmon M E, et al. Plant species rather than climate greatly alters the temporal pattern of litter chemical composition during long-term decomposition[J]. Scientific Reports, 2015, 5, doi: 10.1038/srep15783
[44] Swift M J, Heal O W, Anderson J M. Decomposition in terrestrial ecosystems[M]. Oakland, California: University of California Press, 1979
[45] Baumann K, Marschner P, Kuhn T K, et al. Microbial community structure and residue chemistry during decomposition of shoots and roots of young and mature wheat (L.) in sand[J]. European Journal of Soil Science, 2011, 62(5): 666–675
[46] Wickings K, Grandy A S, Reed S, et al. Management intensity alters decomposition via biological pathways[J]. Biogeochemistry, 2011, 104(1-3): 365–379
[47] Baumann K, Marschner P, Smernik R J, et al. Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues[J]. Soil Biology and Biochemistry, 2009, 41(9): 1966–1975
[48] Berg B, Erhagen B, Johansson M B, et al. Manganese in the litter fall-forest floor continuum of boreal and temperate pine and spruce forest ecosystems–A review[J]. Forest Ecology and Management, 2015, 358: 248–260
[49] Ng E L, Patti A F, Rose M T, et al. Does the chemical nature of soil carbon drive the structure and functioning of soil microbial communities? [J]. Soil Biology and Biochemistry, 2014, 70: 54–61
[50] Wang X, Sun B, Mao J, et al. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions[J]. Environmental Science & Technology, 2012, 46(13): 7159–7165
[51] Sun B, Wang X Y, Wang F, et al. Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition[J]. Applied and Environmental Microbiology, 2013, 79(11): 3327–3335
[52] Erhagen B, ?quist M, Sparrman T, et al. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material[J]. Global Change Biology, 2013, 19(12): 3858–3871
[53] Prescott C E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils?[J]. Biogeochemistry, 2010, 101(1-3): 133–149
[54] Clemente J S, Simpson M J, Simpson A J, et al. Comparison of soil organic matter composition after incubation with maize leaves, roots, and stems[J]. Geoderma, 2013, 192: 86–96
[55] Pisani O, Hills K M, Courtier-Murias D, et al. Molecular level analysis of long term vegetative shifts and relationships to soil organic matter composition[J]. Organic Geochemistry, 2013, 62: 7–16
[56] Quideau S A, Chadwick O A, Benesi A, et al. A direct link between forest vegetation type and soil organic matter composition[J]. Geoderma, 2001, 104(1): 41–60
[57] Johnson C E, Blumfield T J, Boyd S, et al. A13C NMR study of decomposing logging residues in an Australian hoop pine plantation[J]. Journal of Soils and Sediments, 2013, 13(5): 854–862
[58] Cotrufo M F, Wallenstein M D, Boot C M, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19: 988–995
[59] Chen R, Senbayram M, Blagodatsky S, et al. Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories[J].
Global Change Biology, 2014, 20: 2356–2367
[60] Lorenz K, Lal R, Preston C M, et al. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio (macro) molecules[J]. Geoderma, 2007, 142(1): 1–10
[61] Carvalho A D, Bustamante M D C, Alcantara F D, et al. Characterization by solid-state CPMAS13C NMR spectroscopy of decomposing plant residues in conventional and no-tillage systems in Central Brazil[J]. Soil and Tillage Research, 2009, 102(1): 144–150
[62] Rumpel C. Does burning of harvesting residues increase soil carbon storage[J]. Journal of Soil Science and Plant Nutrition, 2008, 8: 44–51
[63] Zhang Y, Jiang P, Li Y, et al. Chemistry of decomposing mulching materials and the effect on soil carbon dynamics under a Phyllostachys praecox bamboo stand[J]. Journal of Soils and Sediments, 2013, 13(1): 24–33
[64] Zhang M, Schaefer D A, Chan O C, et al. Decomposition differences of labile carbon from litter to soil in a tropical rain forest and rubber plantation of Xishuangbanna, southwest China[J]. European Journal of Soil Biology, 2013, 55: 55–61
[65] Haddix M L, Paul E A, Cotrufo M F. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter[J]. Global Change Biology, 2016, 22(6): 2301–2312
[66] Vidal A, Remusat L, Watteau F, et al. Incorporation of13C labelled shoot residues in Lumbricus terrestris casts: A combination of transmission electron microscopy and nanoscale secondary ion mass spectrometry[J]. Soil Biology and Biochemistry, 2016, 93: 8–16
[67] Liang Y T, Jiang Y, Wang F, et al. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover[J]. The ISME Journal, 2015, 9(12): 2561–2572
[68] Wang F, Liang Y, Jiang Y, et al. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling[J]. Scientific Reports, 2015, 5: 14345
[69] Shi Shun A L, Tykwinski R R. Synthesis of naturally occurring polyynes[J]. Angew Chem Int. Ed. 2006, 45(7): 1034–1057
Advances in Studying Mechanisms of Plant Residue Decomposition and Turnover Based on Solid-State13C Nuclear Magnetic Resonance Spectroscopy
LI Changming1, 2, WANG Xiaoyue1, SUN Bo1*
(1 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 2 University of Chinese Academy of Sciences, Beijing 100049)
Decomposition and turnover of plant residues in soil play critical roles in the nutrient release and organic matter formation. Due to the deficit of high-resolution detection method, the characteristics and mechanisms of chemical structure of plant residues changing with climate, vegetation and soil conditions during their decomposition process remain unclear. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to elucidate direct information on chemical composition of nature organic matter. The recent progresses were reviewed in evaluating the quality of plant residues, predicting the decomposition rate and the transformation of functional groups of organic carbon, and analyzing the characteristics of soil humus by using the solid-state13C NMR spectroscopy. To deepen our understanding of mechanisms of plant residue decomposition and organic matter formation, the composition and structure of biological macromolecules in plant residues should be comprehensively analyzed by using combinedd13C mass spectrometry and scanning electron microscopy. Then the decomposition pathway of functional groups of organic carbon could be studied at different temporal and spatial scales. And the synergetic change of microbial community composition and chemical structure of plant residues could be revealed by using high-throughput sequencing and gene chip methods. These will be helpful to put forwards the best management practices to promote the soil organic matter formation under different climate, soil and plant conditions.
Nuclear magnetic resonance; Plant residue; Decomposition; Organic carbon components; Soil organic matter
10.13758/j.cnki.tr.2017.04.003
154;Q958
A
國家重點研發計劃項目(2016YFD0200300)和國家自然科學基金項目(41271258)資助。
(bsun@issas.ac.cn)
李昌明(1987—),男,甘肅蘭州人,博士研究生,主要從事土壤生態學方面的研究。E–mail:cmli@issas.ac.cn