裴杰 褚敏 包鵬甲 閻萍 郭憲
(中國(guó)農(nóng)業(yè)科學(xué)院蘭州畜牧與獸藥研究所 甘肅省牦牛繁育工程重點(diǎn)實(shí)驗(yàn)室,蘭州 730050)
乳鐵蛋白抗菌機(jī)理研究進(jìn)展
裴杰 褚敏 包鵬甲 閻萍 郭憲
(中國(guó)農(nóng)業(yè)科學(xué)院蘭州畜牧與獸藥研究所 甘肅省牦牛繁育工程重點(diǎn)實(shí)驗(yàn)室,蘭州 730050)
乳鐵蛋白(Lactoferrin,LF)是發(fā)現(xiàn)于哺乳動(dòng)物初乳中具有多種生物活性的單體糖蛋白,對(duì)幼體初期免疫具有重要作用。前人研究發(fā)現(xiàn)LF蛋白的酶解后其抗菌活性得到增強(qiáng),是由于酶解后產(chǎn)生了比其本身抗菌能力更強(qiáng)的肽段。目前關(guān)于LF蛋白抗菌活性的報(bào)道很多,但其抗菌的具體分子機(jī)制尚不清楚。以LF蛋白與細(xì)菌細(xì)胞膜的結(jié)合能力和LF蛋白酶解產(chǎn)物的抗菌活性為切入點(diǎn),揭示了LF蛋白行使抗菌功能的過程,認(rèn)為L(zhǎng)F蛋白與細(xì)菌表面相結(jié)合而發(fā)生結(jié)構(gòu)變化,進(jìn)而暴露出敏感的酶切位點(diǎn),經(jīng)酶解而釋放抗菌活性肽,這些抗菌肽破壞細(xì)菌的細(xì)胞膜結(jié)構(gòu),達(dá)到抑菌或殺菌的目的。對(duì)LF蛋白抗菌機(jī)理的闡釋將為研制抗菌能力更強(qiáng)的活性蛋白提供理論依據(jù)。
乳鐵蛋白;抗菌活性;抗菌肽;膜結(jié)合
哺乳動(dòng)物出生后,由于其獲得性免疫的防御系統(tǒng)并不成熟和完善,對(duì)外界病原微生物的抵抗能力非常弱,因此從初乳中獲得抗病原微生物的活性蛋白,便成了其對(duì)抗疾病侵襲的主要防御手段。乳鐵蛋白(Lactoferrin,LF)是發(fā)現(xiàn)于動(dòng)物初乳中具有廣譜抗菌能力的單體糖蛋白,在初乳中的含量是常乳的十幾倍甚至幾十倍[1],這種高濃度的蛋白表達(dá)對(duì)新生動(dòng)物的天然免疫具有重要作用。LF蛋白和其酶解肽段具有普通抗生素所不具備的一系列優(yōu)點(diǎn),包括具有廣譜抗菌、抗病毒、抗真菌和抑殺腫瘤細(xì)胞的功能,對(duì)動(dòng)物細(xì)胞幾乎沒有毒性,不含稀有氨基酸和外源化學(xué)成分[2]。另外,抗菌肽不具有固定的抗菌模式,這使致病菌不易針對(duì)其抗菌作用機(jī)制產(chǎn)生耐藥性。以上優(yōu)點(diǎn)顯示了LF蛋白替代抗生素的巨大潛能,使它被認(rèn)為是一種新型的抗菌、抗病毒、抗癌藥物和極具開發(fā)潛力的食品和飼料添加劑。
本文對(duì)近年來LF蛋白的抗菌研究進(jìn)行了歸納和總結(jié),以LF蛋白的膜結(jié)合能力和LF蛋白酶解產(chǎn)物的抗菌活性為切入點(diǎn),對(duì)LF蛋白的抗菌機(jī)理進(jìn)行深入探討。對(duì)LF蛋白抗菌機(jī)理的剖析將使我們更為深入的了解LF蛋白及其抗菌肽的構(gòu)效關(guān)系,根據(jù)這些LF蛋白分子結(jié)構(gòu)信息,可以人為的設(shè)計(jì)出抗菌功能更強(qiáng)的活性蛋白,為進(jìn)一步開發(fā)新型的抗菌類藥物奠定理論基礎(chǔ)。
LF蛋白是一種分子質(zhì)量為80 kD左右的鐵結(jié)合糖蛋白,產(chǎn)生于約1.25億年前胎盤類動(dòng)物和有袋類動(dòng)物分化之時(shí),因與轉(zhuǎn)鐵蛋白有較高的同源性而被歸于轉(zhuǎn)鐵蛋白家族,是轉(zhuǎn)鐵蛋白家族中最年輕的成員[3]。LF蛋白廣泛存在于外分泌液(乳汁、唾液、淚液、鼻分泌物)、血漿、羊水、子宮分泌物、尿液和中性粒細(xì)胞中,以初乳中含量最高[1]。研究發(fā)現(xiàn),LF蛋白具有多種生物學(xué)功能,包括廣譜抗菌、抗病毒、抗腫瘤[4]作用,并且與體內(nèi)的許多重要生理過程有關(guān),如能調(diào)節(jié)體內(nèi)鐵的平衡、調(diào)節(jié)骨髓細(xì)胞生成、促進(jìn)細(xì)胞生長(zhǎng)、調(diào)節(jié)機(jī)體免疫功能、增強(qiáng)機(jī)體抗病能力、抗高血壓活性、與多種抗生素及抗真菌制劑協(xié)同作用[5-7]。
LF蛋白由兩個(gè)對(duì)稱的N-葉和C-葉組成,兩葉間在氨基酸序列上有顯著的同源性,每葉又分別由兩個(gè)結(jié)構(gòu)域構(gòu)成(圖1),每一葉可以結(jié)合一個(gè)Fe3+離子,每個(gè)鐵結(jié)合部位由4個(gè)氨基酸殘基組成。LF蛋白表面帶有大量的正電荷(圖1),這種特征有利于其與帶負(fù)電的細(xì)胞膜相結(jié)合。在大多數(shù)細(xì)胞中,LF蛋白以無鐵的形式(apo-LF)被分泌到胞外,當(dāng)與過量的三價(jià)鐵離子結(jié)合后變成鐵飽和LF蛋白(holo-LF)。人類LF蛋白有多個(gè)表達(dá)后修飾位點(diǎn),如磷酸化[9]和N-聚糖修飾[10],這些修飾可能使LF蛋白免受水解酶作用和參與受體識(shí)別[11]。

圖1 LF蛋白的二級(jí)結(jié)構(gòu)和表位電荷分布[8]
作為抑菌劑的LF蛋白具有廣譜性,即能抑制革蘭氏陰性菌,如大腸桿菌(Escherichia coli)、幽門螺旋桿菌(Helicobacter pylori)、克雷白氏桿菌(Klebsiella)、沙門氏菌(Salmonella)和志賀氏菌(Shigella)等,又對(duì)革蘭氏陽性菌如金黃色葡萄球菌(Staphylococcus aureus)、枯草芽孢桿菌(Bacillus subtilis)和單增李斯特菌(Listeria monocytogens)具有抗菌作用[12-13]。
不同狀態(tài)下LF蛋白具有不同的抗菌能力[14],而且基因工程表達(dá)的LF蛋白也具有與天然狀態(tài)相似的抗菌活性[15]。對(duì)不同物種的LF蛋白抗菌活性的研究顯示,牛LF蛋白的抗菌能力在哺乳動(dòng)物中是最強(qiáng)的[16]。LF蛋白主要通過鐵剝奪、膜滲透和酶抑制3種途徑發(fā)揮抑菌作用[6,17],但其具體抗菌行使的分子機(jī)制尚不明確,具體作用方式如下:(1)鐵剝奪是LF蛋白最基本的抑菌機(jī)制。不飽和LF蛋白具有極強(qiáng)的鐵結(jié)合性,它可以與病原性微生物競(jìng)爭(zhēng)性地結(jié)合鐵離子,使病原性微生物因失去生長(zhǎng)所需的基本元素鐵而停止生長(zhǎng)甚至死亡;或使微生物由于缺乏鐵離子而不能形成致病性生物膜,降低細(xì)菌濃度,減少發(fā)病率[18]。(2)膜滲透的產(chǎn)生機(jī)制是LF蛋白依靠本身帶有的正電荷與革蘭氏陽性菌細(xì)胞壁上的磷壁酸(Lipoteichoic acid,LTA)或革蘭氏陰性菌的脂多糖(Lipopolysaccharide,LPS)產(chǎn)生靜電吸引,破壞微生物細(xì)胞膜的正常生理功能、通透性增加和脂質(zhì)雙分子層破壞,增加細(xì)胞膜通透性,使細(xì)菌脂多糖滲出,造成內(nèi)容物流失而達(dá)到殺死病原菌的目的[17,19]。LF蛋白這種殺菌作用還可能與LF蛋白結(jié)合鈣、鎂離子的能力有關(guān)[20]。(3)酶抑制機(jī)制是LF蛋白通過其蛋白酶活性降解一些細(xì)菌毒力因子或黏附蛋白,降低病原體結(jié)合和侵入哺乳動(dòng)物細(xì)胞的幾率。LF蛋白表面所攜帶的堿性高密度電荷,很容易與細(xì)菌或宿主細(xì)胞的一些生物分子發(fā)生非特異性結(jié)合,如LF蛋白可以與雙岐桿菌和假單胞菌屬細(xì)胞膜上的結(jié)合蛋白相結(jié)合,從而降低細(xì)菌的感染力[21]。
鐵剝奪可以通過對(duì)鐵離子的剝奪而抑制細(xì)菌的生長(zhǎng),酶抑制可以減少細(xì)菌對(duì)宿主的侵染和減弱毒性分子的毒力,真正可以直接導(dǎo)致細(xì)菌的死亡的還是其膜滲透的抗菌途徑,也是LF蛋白行使抗菌能力的主要途徑。由于膜滲透抗菌活性行使的前提是LF蛋白必須首先與細(xì)菌的細(xì)胞膜結(jié)合,LF蛋白的表位與細(xì)菌的膜表面特征對(duì)這種結(jié)合起著至關(guān)重要的作用。
研究表明,LF蛋白與多種病原微生物的細(xì)胞膜表面存在相互作用,這種膜結(jié)合能力是由LF蛋白與細(xì)菌膜上不同組分的親和力所決定的[22]。由于病原微生物的細(xì)胞膜由多種組分構(gòu)成,其中最主要的有脂質(zhì)、脂多糖和膜蛋白,我們分別對(duì)這些組分與LF蛋白的作用進(jìn)行探討。
3.1 LF蛋白與細(xì)菌細(xì)胞膜上脂質(zhì)的作用
體外實(shí)驗(yàn)顯示,當(dāng)缺少胃蛋白酶時(shí),LF蛋白不能被降解為小的肽段,它通過靜電作用與脂肪乳劑的磷脂界面結(jié)合,有穩(wěn)定脂滴的作用。LF蛋白和其酶解釋放的抗菌肽Lfcin都可以抑制引起牙周炎的牙齦卟啉單胞菌和中間普雷沃菌的生長(zhǎng),但只有LF蛋白可以通過與膜上脂質(zhì)的相互作用而抑制這兩種菌細(xì)胞膜的形成[23]。LF蛋白還可以通過鐵螯合作用使綠膿桿菌的胞膜變得不穩(wěn)定[24],進(jìn)而可以增加綠膿甲單胞菌的通透性,與木糖醇共同作用可以在一定程度上破壞細(xì)胞膜的結(jié)構(gòu),進(jìn)而降低綠膿甲單胞菌的生存能力[25]。
3.2 LF蛋白與細(xì)菌脂多糖作用
革蘭氏陰性菌的外膜是含有大量的脂多糖(在沙門氏菌和大腸桿菌中的含量分別為3/16和7/19),LF蛋白便可以與這些脂多糖相結(jié)合,利用這種結(jié)合能力使大腸桿菌和鼠沙門氏菌的脂多糖從胞膜上釋放[26]。通過抗原表位在空間上較遠(yuǎn)的兩個(gè)抗體的免疫結(jié)合實(shí)驗(yàn)顯示,LF蛋白對(duì)革蘭氏陰性菌的脂多糖和脂質(zhì)A具有結(jié)合能力,兩者具有空間上相近的結(jié)合位點(diǎn),并且對(duì)脂質(zhì)A的結(jié)合能力大于脂多糖[27]。LF蛋白的這種結(jié)合往往是通過其自身表位上的肽段實(shí)現(xiàn)的,如其多肽片段LF11與脂多糖通過靜電力和疏水力相互作用,這種作用可以減弱脂多糖對(duì)機(jī)體的刺激[28]。
3.3 LF蛋白與細(xì)菌膜蛋白的結(jié)合
除了與脂質(zhì)和脂多糖的相互作用外,通過細(xì)菌表面的結(jié)合蛋白也是LF蛋白與膜結(jié)合的重要作用方式。這種與細(xì)菌細(xì)胞膜的結(jié)合方式在多種細(xì)菌中得到體現(xiàn),如LF蛋白與甲單胞菌細(xì)胞表面的LF結(jié)合蛋白相結(jié)合,這種結(jié)合對(duì)細(xì)菌的生長(zhǎng)起抑制作用[29]。晶體結(jié)構(gòu)分析顯示,帶負(fù)電荷肺炎球菌的表面蛋白PspA的N端螺旋結(jié)構(gòu)可以與LF蛋白的N葉帶正電荷的部分相結(jié)合[30],這種結(jié)合阻礙了抗菌肽進(jìn)入胞膜而對(duì)細(xì)菌的殺傷作用[31]。LF蛋白對(duì)溶血性曼氏桿菌有殺菌作用,通過覆蓋檢測(cè)法和雙向電泳分析發(fā)現(xiàn)LF蛋白可以結(jié)合于溶血性曼氏桿菌的兩個(gè)外膜蛋白OmpA和孔蛋白,這兩個(gè)LF結(jié)合蛋白在菌體內(nèi)可以與兩種狀態(tài)的LF蛋白(缺鐵LF蛋白和鐵飽和LF蛋白)相結(jié)合[32]。另外,奈瑟氏菌的LF蛋白結(jié)合蛋白A和B結(jié)合于LF蛋白的C葉,它可能通過這種結(jié)合來獲得鐵離子[33-34]。
3.4 LF蛋白糖基化對(duì)膜結(jié)合能力的影響
LF蛋白的翻譯后修飾同樣對(duì)其活性起著非常重要的作用,如糖基化[10,35-36]和酰胺化[37]。關(guān)于牛LF蛋白糖基化位點(diǎn)存在不同的報(bào)道。Baker等[38]認(rèn)為牛LF蛋白有4個(gè)糖基化位點(diǎn),分別在第233、368、76、545位的天冬酰胺,而Yu[36]報(bào)道牛LF蛋白只有第138和479位的天冬酰胺被糖基化。這種糖基化的變化可能因不同泌乳期各種糖基轉(zhuǎn)移酶的表達(dá)量不同所決定[39]。天然狀態(tài)下的人LF蛋白和轉(zhuǎn)基因牛奶中得到的人LF蛋白存在不同的糖基化[40],重組LF蛋白含有較多的甘露糖,較少的N-乙酰神經(jīng)氨酸和巖藻糖,有些含有乙酰半乳糖胺-乙酰氨基葡萄糖二糖。糖基化與細(xì)菌的膜結(jié)合密切相關(guān)[35],如齦卟啉單胞菌的菌毛只能和糖基化的LF蛋白結(jié)合,只有N-乙酰半乳糖胺和巖藻糖是對(duì)結(jié)合有抑制作用的[41]。人類LF蛋白能夠阻止病原菌的粘附,LF蛋白上結(jié)合的多糖可以降低沙門氏菌對(duì)結(jié)腸上皮細(xì)胞的侵染。LF蛋白的糖基化被基因表達(dá)嚴(yán)格調(diào)控,糖基化的不同與病原菌的調(diào)節(jié)密切相關(guān),在整個(gè)泌乳期巖藻糖轉(zhuǎn)移酶表達(dá)量升高,在泌乳第二周寡糖基轉(zhuǎn)移酶復(fù)合物表達(dá)量開始下降[10]。
LF蛋白雖然可以與多種病源菌的表面物質(zhì)相結(jié)合,但其本身不能充分發(fā)揮殺菌作用,如LF蛋白影響肽聚糖的合成和/或結(jié)合于肽聚糖上的乙酰氨基葡萄糖,并且可與金黃色葡萄球菌的細(xì)胞壁相結(jié)合,影響分裂后的子細(xì)胞散播,但并不能使細(xì)菌裂解。LF蛋白抑制臨床實(shí)驗(yàn)分離的綠膿桿菌細(xì)胞膜的形成,這種抑制作用與其殺菌作用不相關(guān),因?yàn)轶w外實(shí)驗(yàn)顯示多種細(xì)菌對(duì)LF蛋白不敏感[42]。然而,LF蛋白的酶解肽段卻可致使金黃色葡萄球菌的細(xì)胞壁變形,進(jìn)而通過細(xì)胞破裂殺死細(xì)菌[43]。
LF蛋白降解后其抗菌活性會(huì)進(jìn)一步增加,這主要是因?yàn)長(zhǎng)F蛋白降解后產(chǎn)生多種比其本身抗菌能力更強(qiáng)的肽段[13],如牛LF蛋白的胃蛋白酶水解產(chǎn)物具有比LF蛋白本身更強(qiáng)的抗雙歧桿菌、單核細(xì)胞增多性雙歧桿菌、李斯特氏菌和金黃色葡萄球菌的抗菌能力,同時(shí)對(duì)奶酪上的假單孢菌和大腸桿菌具有明顯的抑制作用[44]。LF蛋白的N端的降解片段對(duì)耐藥性的金黃色葡萄球菌和肺炎鏈球菌引起的感染有治療作用,主要是由于其對(duì)細(xì)菌細(xì)胞膜膜滲透的破壞作用,肽段上的前兩個(gè)R氨基酸對(duì)這種破壞作用起著至關(guān)重要的的作用[45]。
4.1 抗菌肽Lfcin
乳鐵蛋白素(Lactoferricin,Lfcin)是LF蛋白在酸性環(huán)境下經(jīng)胃蛋白酶作用,從N端釋放的一段25個(gè)氨基酸殘基的小肽。有人認(rèn)為它是LF蛋白酶解產(chǎn)物中活性最強(qiáng)的抗菌肽。Lfcin除了不能結(jié)合鐵離子外,幾乎具備LF蛋白的所有生物學(xué)活性[46]。在LF蛋白結(jié)構(gòu)內(nèi)部時(shí),Lfcin會(huì)在其表面形成一個(gè)α-螺旋的二級(jí)結(jié)構(gòu)(圖2),而當(dāng)它處于水相溶液時(shí),則主要以兩個(gè)反相平行的β-折疊結(jié)構(gòu)存在(圖3)。造成這種結(jié)構(gòu)的變化是因?yàn)長(zhǎng)fcin在疏水性分子(如脂質(zhì)分子)的作用下發(fā)生了變構(gòu),由β-折疊結(jié)構(gòu)變回α-螺旋結(jié)構(gòu)。這種α-螺旋結(jié)構(gòu)具有與細(xì)胞膜的脂質(zhì)更好的親和性,因此,位于表面的Lfcin對(duì)LF蛋白的膜結(jié)合能力做出了一定的貢獻(xiàn)。Lfcin多肽兩親性二級(jí)結(jié)構(gòu)和陽離子特性是其具有抗菌功能的基礎(chǔ),主要通過與細(xì)菌胞膜結(jié)合以膜滲透的途徑發(fā)揮抗菌活性[1]。

圖2 抗菌肽Lfcin和Lfampin在LF蛋白上的位置[8]
Lfcin對(duì)病原菌的致死作用機(jī)制與抗生素的親膜特性相似,依靠其自身帶有的正電荷與革蘭氏陽性菌細(xì)胞壁上的LTA或革蘭氏陰性菌的LPS產(chǎn)生靜電吸引,使抗菌肽附著于外膜表面,然后利用疏水結(jié)構(gòu)插入細(xì)胞膜,造成細(xì)胞膜脂質(zhì)雙分子層結(jié)構(gòu)改變,形成環(huán)狀孔道,實(shí)現(xiàn)抗菌肽跨膜進(jìn)入細(xì)胞內(nèi);或者多個(gè)抗菌肽聚合到膜區(qū)引發(fā)通道形成,增強(qiáng)細(xì)胞膜通透性,使細(xì)胞膜失去跨膜電荷梯度和pH梯度,或在膜上形成孔洞導(dǎo)致細(xì)胞內(nèi)容物流失達(dá)到殺菌目的[47]。利用熒光信號(hào)分子的實(shí)驗(yàn)也證實(shí),Lfcin可破壞大腸桿菌的細(xì)菌膜致使熒光信號(hào)分子流入,還也可以使大型脂質(zhì)單層囊泡破裂造成熒光分子的釋放[48]。

圖3 Lfcin和Lfampin多肽的分子結(jié)構(gòu)
4.2 抗菌肽Lfampin
Lfampin也是由LF蛋白酶解產(chǎn)生的肽段,位于LF蛋白的268-284部位氨基酸(圖2),肽段的N端形成兩親性的α-螺旋結(jié)構(gòu)(圖3)[51],帶正電荷的C端對(duì)其行使抗菌活性具有重要作用[52]。與許多抗菌相似,Lfampin含有的色氨酸和帶正電荷的氨基酸使它具有廣譜抗菌活性,并且為兩親性分子。Lfampin與細(xì)菌細(xì)胞膜也具有一定的結(jié)合能力,其C端所帶的正電荷先與細(xì)菌脂雙層膜相吸引,然后N端的螺旋結(jié)構(gòu)結(jié)合于膜表面[52]。增加Lfampin的C端的正電荷氨基酸的數(shù)目可以明顯提高其抗菌活性[53],差示掃描量熱法確定它插入膜的疏水核心區(qū)域,熒光光譜學(xué)證實(shí)多肽上的氨基酸殘基決定了肽段與磷脂雙分子層上核心疏水區(qū)的相互作用[53]。Lfampin抗菌肽進(jìn)行適當(dāng)?shù)娜藶楦脑炜梢赃M(jìn)一步提高其抗菌能力,如由Lfcin和Lfampin抗菌肽串聯(lián)組成的LFchimera具有比兩者更強(qiáng)的與帶負(fù)電荷細(xì)胞膜結(jié)合的能力和抗菌活性[54-55]。
4.3 其他LF蛋白抗菌肽
除Lfcin和Lfampin多肽外,LF蛋白的酶解產(chǎn)物中還存在其它一些具有明顯抗菌活性的小肽。源于人類LF蛋白的抗菌肽HLR1r具有抗革蘭氏陰性菌和革蘭氏陽性菌的作用,如耐甲氧金黃色葡萄球菌,同時(shí)具有抗感染的功效[56]。多肽LF11對(duì)細(xì)菌胞膜具有一定的破壞作用,去除多肽LF11的不帶電荷殘基、增加LF11多肽N端的疏水氨基酸或N端的酰化作用都可以提高其抗大腸桿菌的能力,N端酰化的LF11可以結(jié)合革蘭氏陰性菌表面的脂多糖[57]。源于LF蛋白序列的多肽L10對(duì)超廣譜β內(nèi)酰胺酶陽性的革蘭氏陰性菌和多藥耐藥性的真菌均有殺傷作用,電鏡觀察確定了L10肽段可以與兩種菌胞膜的結(jié)合,進(jìn)一步研究確定它可以結(jié)合革蘭氏陰性菌的脂質(zhì)A和脂多糖結(jié)合,并且對(duì)假絲酵母的細(xì)胞具有透化作用[58]。
部分LF蛋白的抗菌多肽對(duì)真菌也有一定的抑制作用,如多肽Lfpep和Kaliocin-1對(duì)白色念珠菌的細(xì)胞膜具有滲透作用,同樣Lfpep也是通過破壞生物膜結(jié)構(gòu)來達(dá)到殺菌的目的[59],LF11也可以抑制白色念珠菌生物膜的形成[60]。由LF蛋白序列衍生出的兩個(gè)肽段HLopt2和HLBD1對(duì)假絲酵母有殺傷作用,HLopt2可以使酵母的生物膜表面形成凹陷,進(jìn)而破壞膜結(jié)構(gòu)達(dá)到殺菌的目的[61]
綜上所述,LF蛋白的總體抗菌活性由其膜結(jié)合能力和其酶解多肽的抗菌活性所決定,因此,作為抗菌蛋白的LF不但是潛在抗菌肽的前體,而且是膜結(jié)合功能的執(zhí)行者和降解酶的優(yōu)秀底物。在此,我們認(rèn)為L(zhǎng)F蛋白行使抗菌功能的過程是,整體LF蛋白先與細(xì)菌的細(xì)胞膜結(jié)合,這種結(jié)合能力的強(qiáng)弱與細(xì)菌細(xì)胞膜的組分和LF蛋白的糖基化密切相關(guān);膜結(jié)合可以使LF蛋白發(fā)生結(jié)構(gòu)改變,進(jìn)而改變其對(duì)蛋白酶的敏感性;LF蛋白變構(gòu)之后被酶解,產(chǎn)生出具有比LF蛋白細(xì)菌細(xì)胞膜破壞能力更強(qiáng)的多種抗菌肽;這些抗菌肽通過增加細(xì)胞膜的通透性使細(xì)胞內(nèi)溶物流失,最終達(dá)到殺菌的效果。
[1]Wakabayashi H, Yamauchi K, Takase M. Lactoferrin research, technology and applications[J]. International Dairy Journal, 2006, 16(11):1241-1251.
[2] 朱艷萍, 滕達(dá), 田子罡, 等. 乳鐵蛋白分子結(jié)構(gòu)及其抗菌機(jī)制[J]. 生物技術(shù)通報(bào), 2010(6):37-42.
[3]Lambert LA. Molecular evolution of the transferrin family and associated receptors[J]. Biochimica Et Biophysica Acta-General Subjects, 2012, 1820(3):244-255.
[4]Duarte DC, Nicolau A, Teixeira JA, et al. The effect of bovine milk lactoferrin on human breast cancer cell lines[J]. Journal of Dairy Science, 2011, 94(1):66-76.
[5] Pierce A, Legrand D. Advances in lactoferrin research Introduction[J]. Biochimie, 2009, 91(1):1-2.
[6]Ochoa TJ, Sizonenko SV. Lactoferrin and prematurity:a promising milk protein?[J]. Biochemistry and Cell Biology, 2017, 95(1):22-30.
[7]Wang X, Wang X, Hao Y, et al. Research and development on lactoferrin and its derivatives in China from 2011-2015[J]. Biochemistry and Cell Biology, 2017, 95(1):162-170.
[8] Moore SA, Anderson BF, Groom CR, et al. Three-dimensional structure of diferric bovine lactoferrin at 2.8 angstrom resolution[J]. Journal of Molecular Biology, 1997, 274(2):222-236.
[9] Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer[J]. Cell, 2007, 131(6):1190-1203.
[10]Barboza M, Pinzon J, Wickramasinghe S, et al. Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria-host interactions[J]. Molecular & Cellular Proteomics, 2012, 11(6).
[11]Mayeur S, Spahis S, Pouliot Y, et al. Lactoferrin, a Pleiotropic Protein in Health and Disease[J]. Antioxidants & Redox Signaling, 2016, 24(14):813-835.
[12]Valenti P, Antonini G. Lactoferrin:an important host defence against microbial and viral attack[J]. Cellular and Molecular Life Sciences, 2005, 62(22):2576-2587.
[13]Del Olmo A, Calzada J, Nunez M. Effect of lactoferrin and its derivatives against gram-positive bacteria in vitro and, combined with high pressure, in chicken breast fillets[J]. Meat Science, 2012, 90(1):71-76.
[14]文鵬程, 余丹丹, 汪昕昕, 等. 不同處理?xiàng)l件對(duì)乳鐵蛋白構(gòu)象的影響研究[J]. 光譜學(xué)與光譜分析, 2012(1):162-165.
[15]Zhang J, Li L, Cai Y, et al. Expression of active recombinant human lactoferrin in the milk of transgenic goats[J]. Protein Expression and Purification, 2008, 57(2):127-135.
[16]Jenssen H, Hancock REW. Antimicrobial properties of lactoferrin[J]. Biochimie, 2009, 91(1):19-29.
[17] Gonzalez-Chavez SA, Arevalo-Gallegos S, Rascon-Cruz Q. Lactoferrin:structure, function and applications[J]. International Journal of Antimicrobial Agents, 2009, 33(4):301-306.
[18] Yen C-C, Shen C-J, Hsu W-H, et al. Lactoferrin:an iron-binding antimicrobial protein against Escherichia coli infection[J]. Biometals, 2011, 24(4):585-594.
[19] Leon-Sicairos N, Canizalez-Roman A, de la Garza M, et al. Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus[J]. Biochimie, 2009, 91(1):133-140.
[20]Mela I, Aumaitre E, Williamson A-M, et al. Charge reversal by saltinduced aggregation in aqueous lactoferrin solutions[J]. Colloids and Surfaces B-Biointerfaces, 2010, 78(1):53-60.
[21] Rahman MM, Kim W-S, Ito T, et al. Growth promotion and cell binding ability of bovine lactoferrin to Bifidobacterium longum[J]. Anaerobe, 2009, 15(4):133-137.
[22]張偉, 任發(fā)政, 葛紹陽, 等. 拉曼光譜研究乳鐵蛋白及其肽段與DPPC、DPPG脂質(zhì)體的相互作用[J]. 光譜學(xué)與光譜分析, 2011(6):1533-1536.
[23] Wakabayashi H, Yamauchi K, Kobayashi T, et al. Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(8):3308-3316.
[24]Ammons MCB, Ward LS, Dowd S, et al. Combined treatment of Pseudomonas aeruginosa biofilm with lactoferrin and xylitol inhibits the ability of bacteria to respond to damage resulting from lactoferrin iron chelation[J]. International Journal of Antimicrobial Agents, 2011, 37(4):316-323.
[25]Ammons MCB, Ward LS, Fisher ST, et al. In vitro susceptibility of established biofilms composed of a clinical wound isolate of Pseudomonas aeruginosa treated with lactoferrin and xylitol[J]. International Journal of Antimicrobial Agents, 2009, 33(3):230-236.
[26]Ellison RT, III, Giehl TJ, LaForce FM. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin[J]. Infection and Immunity, 1988, 56(11):2774-2781.
[27]Caccavo D, Afeltra A, Pece S, et al. Lactoferrin-lipid A-lipopolysaccharide interaction:Inhibition by anti-human lactoferrin monoclonal antibody AGM 10. 14[J]. Infection and Immunity, 1999, 67(9):4668-4672.
[28]Japelj B, Pristovsek P, Majerle A, et al. Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide[J]. Journal of Biological Chemistry, 2005, 280(17):16955-16961.
[29]Kim WS, Rahman MM, Shimazaki KI. Antibacterial activity and binding ability of bovine lactoferrin against Pseudomonas spp. [J]. Journal of Food Safety, 2008, 28(1):23-33.
[30]Andre GO, Politano WR, Mirza S, et al. Combined effects of lactoferrin and lysozyme on Streptococcus pneumoniae killing[J]. Microbial Pathogenesis, 2015, 89:7-17.
[31]Senkovich O, Cook WJ, Mirza S, et al. Structure of a complex of human lactoferrin N-lobe with pneumococcal surface protein A provides insight into microbial defense mechanism[J]. Journal of Molecular Biology, 2007, 370(4):701-713.
[32]Samaniego-Barron L, Luna-Castro S, Pina-Vazquez C, et al. Two outer membrane proteins are bovine lactoferrin-binding proteins in Mannheimia haemolytica A1[J]. Veterinary Research, 2016, 47.
[33]Wong H, Schryvers AB. Bacterial lactoferrin-binding protein A binds to both domains of the human lactoferrin C-lobe[J]. Microbiology-Sgm, 2003, 149:1729-1737.
[34]Ostan N, Morgenthau A, Yu RH, et al. A comparative, crossspecies investigation of the properties and roles of transferrinand lactoferrin-binding protein B from pathogenic bacteria[J]. Biochemistry and Cell Biology, 2017, 95(1):5-11.
[35]Zinger-Yosovich KD, Sudakevitz D, Iluz D, et al. Analyses of diverse mammals’ milk and lactoferrin glycans using five pathogenic bacterial lectins[J]. Food Chemistry, 2011, 124(4):1335-1342.
[36]Yu T, Guo C, Wang J, et al. Comprehensive characterization of the site-specific N-glycosylation of wild-type and recombinant human lactoferrin expressed in the milk of transgenic cloned cattle[J]. Glycobiology, 2011, 21(2):206-224.
[37] Del Olmo A, Calzada J, Nunez M. Short communication:Antimicrobial effect of lactoferrin and its amidated and pepsin-digested derivatives against Salmonella Enteritidis and Pseudomonas fluorescens[J]. Journal of Dairy Science, 2010, 93(9):3965-3969.
[38]Baker EN, Baker HM. A structural framework for understanding the multifunctional character of lactoferrin[J]. Biochimie, 2009, 91(1):3-10.
[39]Morgenthau A, Pogoutse A, Adamiak P, et al. Bacterial receptors for host transferrin and lactoferrin:molecular mechanisms and role in host-microbe interactions[J]. Future Microbiology, 2013, 8(12):1575-1585.
[40]Le Parc A, Karav S, Rouquie C, et al. Characterization of recombinant human lactoferrin N-glycans expressed in the milk of transgenic cows[J]. Plos One, 2017, 12(2).
[41]Sojar HT, Hamada N, Genco RJ. Structures involved in the interaction of Porphyromonas gingivalis fimbriae and human lactoferrin[J]. Febs Letters, 1998, 422(2):205-208.
[42]Kamiya H, Ehara T, Matsumoto T. Inhibitory effects of lactoferrin on biofilm formation in clinical isolates of Pseudomonas aeruginosa[J]. Journal of Infection and Chemotherapy, 2012, 18(1):47-52.
[43]Diarra MS, Lacasse P, Deschenes E, et al. Ultrastructural and cytochemical study of cell wall modification by lactoferrin, lactoferricin and penicillin G against Staphylococcus aureus[J]. Journal of Electron Microscopy, 2003, 52(2):207-215.
[44]Quintieri L, Caputo L, Monaci L, et al. Antimicrobial efficacy of pepsin-digested bovine lactoferrin on spoilage bacteria contaminating traditional Mozzarella cheese[J]. Food Microbiology, 2012, 31(1):64-71.
[45]Nibbering PH, Ravensbergen E, Welling MM, et al. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria[J]. Infection and Immunity, 2001, 69(3):1469-1476.
[46]Tomita M, Wakabayashi H, Shin K, et al. Twenty-five years of research on bovine lactoferrin applications[J]. Biochimie, 2009,91(1):52-57.
[47]Duchardt F, Ruttekolk IR, Verdurmen WPR, et al. A cellpenetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency[J]. Journal of Biological Chemistry, 2009, 284(52):36099-36108.
[48]Moniruzzaman M, Alam JM, Dohra H, et al. Antimicrobial peptide lactoferricin B-induced rapid leakage of internal contents from single giant unilamellar vesicles[J]. Biochemistry, 2015, 54(38):5802-5814.
[49]Hwang PM, Zhou N, Shan X, et al. Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin[J]. Biochemistry, 1998, 37(12):4288-4298.
[50] Ghosh A, Datta A, Jana J, et al. Sequence context induced antimicrobial activity:insight into lipopolysaccharide permeabilization[J]. Molecular Biosystems, 2014, 10(6):1596-1612.
[51] van der Kraan MIA, Groenink J, Nazmi K, et al. Lactoferrampin:a novel antimicrobial peptide in the N1-domain of bovine lactoferrin[J]. Peptides, 2004, 25(2):177-183.
[52]Haney EF, Lau F, Vogel HJ. Solution structures and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin[J]. Biochimica Et Biophysica Acta-Biomembranes, 2007, 1768(10):2355-2364.
[53]Haney EF, Nazmi K, Lau F, et al. Novel lactoferrampin antimicrobial peptides derived from human lactoferrin[J]. Biochimie, 2009, 91(1):141-154.
[54]Bolscher JGM, Adao R, Nazmi K, et al. Bactericidal activity of Lfchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides[J]. Biochimie, 2009, 91(1):123-132.
[55]Haney EF, Nazmi K, Bolscher JGM, et al. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin[J]. Biochimica Et Biophysica Acta-Biomembranes, 2012, 1818(3):762-775.
[56]Bjorn C, Mahlapuu M, Mattsby-Baltzer I, et al. Anti-infective efficacy of the lactoferrin-derived antimicrobial peptide HLR1r[J]. Peptides, 2016, 81:21-28.
[57]Zweytick D, Deutsch G, Andra J, et al. Studies on lactoferricinderived Escherichia coli membrane-active peptides reveal differences in the mechanism of N-acylated versus nonacylated peptides[J]. Journal of Biological Chemistry, 2011, 286(24):21266-21276.
[58]Mishra B, Leishangthem GD, Gill K, et al. A novel antimicrobial peptide derived from modified N-terminal domain of bovine lactoferrin:Design, synthesis, activity against multidrug-resistant bacteria and Candida[J]. Biochimica Et Biophysica Acta-Biomembranes, 2013, 1828(2):677-686.
[59]Viejo-Diaz M, Andres MT, Fierro JF. Different anti-Candida activities of two human lactoferrin-derived peptides, Lfpep and kaliocin-1[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(7):2583-2588.
[60]Morici P, Fais R, Rizzato C, et al. Inhibition of Candida albicans biofilm formation by the synthetic lactoferricin derived peptide hLF1-11[J]. PLoS One, 2016, 11(11).
[61]Kondori N, Baltzer L, Dolphin GT, et al. Fungicidal activity of human lactoferrin-derived peptides based on the antimicrobial alpha beta region[J]. International Journal of Antimicrobial Agents, 2011, 37(1):51-57.
(責(zé)任編輯 狄艷紅)
Research Progress on Antibacterial Mechanism of Lactoferrin
PEI Jie CHU Min BAO Peng-jia YAN Ping GUO Xian
(Key Laboratory of Yak Breeding Project in Gansu Province,Lanzhou Institute of Husbandry and Pharmaceutical Sciences,Chinese Academy of Agricultural Sciences,Lanzhou 730050)
Lactoferrin(LF)is a monomer glycoprotein in mammalian colostrum with multi biological activities,thus it plays a vital role in initial immunologic reconstitution for young mammals. Previous studies have discovered that enzymatic hydrolysates of lactoferrin have enhanced antibacterial activity compared to lactoferrin because more active antibacterial peptides were produced by the enzymolysis. At present,molecular mechanism of antibacterial function of lactoferrin is still unclear although many antibacterial activities of lactoferrin were reported. In this paper,combination of the bacterial cell membranes and the antibacterial activity of enzymatic hydrolysates were taken as the breakthrough point,and the process of LF acting in antibacterial function was explored. It was considered that the mechanism of the antibacterial function of lactoferrin was that the structure of lactoferrin changed following binding to bacterial surface,then the sensitive restriction enzyme cutting sites of lactoferrin were exposed,and many antibacterial peptides were released after enzymolysis;subsequently the peptides destroyed the membrane structures of bacterial cells,and thus the purpose of the bacteriostasis or sterilization achieved. In summary,the elucidation of antibacterial mechanism of lactoferrin provides the theoretical basis for developing active proteins with stronger antibacterial ability.
lactoferrin;antibacterial activity;antimicrobial peptide;membrane binding
10.13560/j.cnki.biotech.bull.1985.2017-0354
2017-05-03
國(guó)家自然科學(xué)基金項(xiàng)目(31402034),國(guó)家現(xiàn)代農(nóng)業(yè)(肉牛牦牛)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-37),牦牛遺傳資源與育種(CAAS-ASTIP-2014-LIHPS-01)
裴杰,男,博士,研究方向:動(dòng)物蛋白質(zhì)結(jié)構(gòu)與功能;E-mail:douglaspei@126.com
閻萍,女,博士,研究方向:動(dòng)物遺傳育種與繁殖;E-mail:pingyan63@126.com郭憲,男,博士,研究方向:動(dòng)物遺傳育種與繁殖;E-mail:guoxian@caas.cn