李帥,蔣西子,梁偉芳,陳思涵,張享享,左登攀,胡亞會,江彤
(安徽農業大學植物保護學院,合肥 230036)
植物保護
利用酵母雙雜交系統篩選與草莓鑲脈病毒P6蛋白互作的森林草莓寄主因子
李帥,蔣西子,梁偉芳,陳思涵,張享享,左登攀,胡亞會,江彤
(安徽農業大學植物保護學院,合肥 230036)
【目的】草莓鑲脈病毒(Strawberry vein banding virus,SVBV)是侵染草莓的主要病毒,但其侵染草莓的機制尚不清楚。論文以SVBV的P6蛋白為誘餌篩選森林草莓(Fragaria vesca)cDNA文庫的寄主因子,為解析SVBV侵染草莓的分子機制提供理論依據。【方法】SVBV接種森林草莓,提取出現明顯癥狀葉片的總RNA,DnaseI處理后,用SMART法反轉錄合成ds cDNA,均一化處理cDNA并酶切純化,將<400 bp的短片段去除,其余片段連接到pGAD-T7質粒載體上,構建森林草莓初級cDNA文庫。同時將SVBV P6構建到酵母雙雜交誘餌載體pGBK-T7上,再將pGBK-P6和pGBK-T7分別轉化酵母菌株AH109,陽性酵母菌株接種SD/-Trp液體培養基,鑒定誘餌載體對酵母細胞的毒性。將轉化pGBK-P6的酵母菌分別涂布SD/-Trp、SD/-Leu-Trp和SD/-His-Trp平板,測定菌落生長情況,分析P6蛋白對酵母報告基因的自激活活性。然后用森林草莓初級cDNA文庫質粒轉化含有誘餌載體pGBK-P6的AH109酵母菌株,共轉化子依次涂布SD/-Leu-Trp、SD/-Leu-Trp-His和SD/-Trp-Leu-His-Ade/X-α-Gal平板,最終篩選藍色且長勢較好的陽性菌落,提取酵母質粒并測序,GenBank中初步比對候選基因,利用Uniprot在線網站的gene ontology(GO)通路注釋互作蛋白因子,分析互作蛋白的生物學功能。【結果】3種cDNA文庫平均庫容超過2.0×106cfu,平均文庫重組率為97%,文庫插入片段平均擴增長度>1 kb,表明森林草莓cDNA文庫符合試驗標準。最終利用SD/-Trp-Leu-His-Ade/X-α-Gal培養基篩選得到230個酵母陽性克隆,經過序列相似性比對,除去重復序列、載體序列和移碼序列,共篩得15個與SVBV P6互作的寄主因子。GO通路注釋結果表明這些寄主因子參與了13種生物過程,包括泛素化、轉錄因子調節、防御反應、代謝過程、氧化還原和胞內氨基酸代謝等過程;這15個寄主因子的分子功能多樣,包括乙酰轉移酶活性、萜烯合酶活性、脫氫酶活性、金屬離子結合活性、蛋白激酶活性和水解酶活性等。【結論】成功構建了森林草莓酵母cDNA文庫,篩選出15個與SVBV P6互作的森林草莓寄主因子,為進一步探明SVBV與森林草莓互作的分子機理提供了理論依據。
草莓鑲脈病毒;森林草莓;cDNA文庫;酵母雙雜交;篩選;寄主因子
Abstract:【Objective】Strawberry vein banding virus (SVBV) is a main virus infecting woodland strawberry (Fragaria vesca),but the SVBV infection mechanisms on woodland strawberry remains unknown. The objective of this study is to provide a theoretical basis for studying the SVBV infection mechanisms on woodland strawberry, SVBV P6 was used as a bait protein toscreen the host factors from the cDNA library of woodland strawberry. 【Method】 Woodland strawberries were inoculated with SVBV, and total RNA was extracted from the leaves showed obvious disease symptoms. The total RNA was treated with DnaseI and double-stranded cDNA was synthesized using SMART technology. cDNA was treated with homogenization and enzymatic digestion,and the short fragments with length less than 400 bp were removed. Then the other cDNA fragments were ligated to plasmid vector pGAD-T7 to construct the primary cDNA library of woodland strawberry. Simultaneously, SVBV P6 was ligated into the yeast two-hybrid bait vector pGBK-T7, and the plasmids of pGBK-P6 and pGBK-T7 were transformed into AH109, respectively. The positive yeast clones were grown in the SD/-Trp liquid medium for identifying the toxicity of pGBK-P6 on the yeast AH109. The yeast transformed with pGBK-P6 was grown on the plate of SD/-Trp, SD/-Leu-Trp and SD/-His-Trp medium, respectively, and then the growth situation of the yeast was tested and the self-activating effect of pGBK-P6 on the reporter gene of yeast was analyzed.Then the AH109 containing bait vector pGBK-P6 was transformed with the primary cDNA library of woodland strawberry, the co-transformed yeasts were coated on the plate of SD/-Leu-Trp, SD/-Leu-Trp-His and SD/-Trp-Leu-His-Ade/X-α-Gal medium in turn. Finally, the blue and well grown positive clones were selected. The plasmids of positive yeast clones were extracted and sequenced. The candidate genes were preliminarily compared in the GenBank, and the interacted protein factors were annotated and the protein’s biological functions were analyzed with gene ontology (GO) pathway of Uniprot online websites. 【Result】 Three libraries with the average capacity more than 2.0×106cfu were constructed, and the average library recombination rate was 97% and the average amplification sizes of inserts fragment of cDNA library were above 1 kb. It demonstrated that the cDNA library of woodland strawberry measured up to the experiment standard. The 230 positive clones were finally selected by using the SD/-Trp-Leu-His-Ade/X-α-Gal medium. After sequence similarity comparison, removing the repetitive sequences, the vector sequences and the frameshift sequences, the 15 host factors interacted with SVBV P6 were screened. GO pathway annotation showed that the 15 host factors were involved in 13 biological processes, including protein ubiquitination, regulation of transcription factor process, defense response, protein catabolic process, oxidation-reduction process and cellular amino acid metabolic process, etc.Moreover, molecular functions of the 15 host factors are mutiple, including acetyltransferase activity, terpene synthase activity,dehydrogenase activity, metalion binding activity, protease activity and hydrolase activity, etc.【Conclusion】The cDNA library of woodland strawberry was constructed successfully, and 15 host factors of woodland strawberry interacted with SVBV P6 were preliminarily screened. This work can provide a theoretical basis for further exploring the molecular interaction mechanism between SVBV and woodland strawberry.
Key words:Strawberry vein banding virus; woodland strawberry; cDNA library; yeast two-hybrid; screen; host factors
【研究意義】草莓鑲脈病毒(Strawberry vein banding virus,SVBV)是侵染草莓的主要病毒之一,在美洲、歐洲、澳大利亞和日本等多個國家和地區廣泛分布[1-2],中國河南、河北、吉林和浙江等省也均有報道,給草莓生產造成嚴重損失[3]。自然條件下,SVBV主要借助蚜蟲以半持久性方式傳染[4]。SVBV侵染森林草莓(Fragaria vesca)表現出沿著葉脈黃化、小葉扭曲等癥狀[5];侵染栽培草莓可造成植株生長衰弱,匍匐莖數量減少,果實偏小,產量和品質大幅度降低[6]。實驗室前期研究發現SVBV編碼的P6蛋白是一個多功能蛋白,既是病毒 RNA沉默抑制子,又是癥狀決定子,在病毒侵染寄主和致病過程中起到重要的作用。明確與SVBV P6蛋白互作的寄主因子,對探明病毒致病機理、解析寄主如何抵御病毒侵染均具有重要意義。【前人研究進展】SVBV為花椰菜花葉病毒科(Caulimovidae)花椰菜花葉病毒屬(Caulimovirus)的重要成員[7],是一種大小為45—50 nm的環狀ds DNA病毒。PETRZIK等[8]于20世紀90年代完成了第一個SVBV美國分離物全基因組序列測定,SVBV核苷酸序列全長7 876 nt,基因組結構與同屬的花椰菜花葉病毒(Cauliflower mosaic virus,CaMV)的結構相似,包含7個開放閱讀框(open reading frame,ORF)[9]。有關SVBV各個ORF的功能研究目前在全世界范圍內均未見報道,只能根據CaMV相應ORF功能進行推測。在線預測SVBV保守功能域,ORF I可能編碼移動蛋白(movement protein,MP);ORF II編碼一個與蚜蟲傳染有關的蛋白;ORF III可能編碼一個非序列專化性的 DNA結合蛋白;ORF IV編碼病毒的外殼蛋白(coat protein,CP);ORF V編碼逆轉錄酶蛋白;ORF VI編碼一個多功能蛋白;ORF VII編碼蛋白的功能尚不明確[10-11]。CaMV ORF VI編碼的P6蛋白功能多樣,相關研究較深入。CaMV P6蛋白是一個反式激活因子,能夠與翻譯起始因子eIF3以及60S核糖體的L18和L24蛋白亞基互作,調控35S RNA下游蛋白的翻譯[12];P6蛋白是病毒內含體的主要組分,也是一個 RNA沉默抑制子,決定癥狀類型和癥狀嚴重度以及寄主范圍[13];P6蛋白還能調控寄主植物多個基因mRNA的表達量[14]。而關于SVBV P6蛋白的功能研究至今尚未見報道。近年來,酵母雙雜交系統(yeast two-hybrid system,Y2H)廣泛應用于病毒蛋白與寄主因子互作研究,Y2H應用于病毒核酸復制及病毒基因表達調控、病毒介體傳播的分子機制、病毒致病機制等方面的研究已見報道[15]。構建感病寄主酵母cDNA文庫,再用誘餌載體篩選出與病毒蛋白互作的寄主因子,可為進一步研究互作蛋白的功能提供理論依據。何乙坤等[16]利用 Y2H技術篩選出蘋果褪綠葉斑病毒(Apple chlorotic leaf spot virus,ACLSV)CP可以與光系統 II(PSII)的裝配因子蛋白互作,推測ACLSV影響植物光系統的穩定性及葉綠素的形成,導致蘋果樹產生褪綠癥狀;樓望淮等[17]篩選到與菊花 B病毒(Chrysanthemum virus B,CVB)CP蛋白互作的E3泛素連接酶ARIADNE-like蛋白和ATP結合蛋白,推測CP可能參與泛素-蛋白酶體降解途徑(UPP),并在病毒的侵染過程中起關鍵作用;趙藝澤等[18]構建了異沙葉蟬(Psammotettix alienus)cDNA文庫,篩選得到9個與小麥矮縮病毒(Wheat dwarf virus,WDV)CP蛋白互作的寄主因子,這些寄主因子參與介體體內多條重要的代謝通路,可能與病毒突破昆蟲介體中腸屏障,進入血淋巴循環有重要關系,為進一步深入研究病毒與昆蟲介體的相互作用打下了基礎;肖冬來等[19]利用水稻酵母文庫篩選出了與水稻黑條矮縮病毒(Rice black-streaked dwarf virus,RBSDV)P6蛋白互作的水稻代謝途徑關鍵酶 tAPX、IM和 A1EP,推測 P6可能參與水稻的相關代謝途徑。【本研究切入點】研究病毒致病因子與寄主因子的互作關系,對探明病毒致病機理、解析寄主如何抵御病毒侵染十分重要,這也是當前植物病毒學研究的熱點問題。目前運用酵母雙雜交體系研究病毒蛋白與寄主因子互作的方法已經很成熟,筆者實驗室已證明SVBV ORF VI基因編碼的P6蛋白是一個致病因子,能夠抑制GFP局部沉默和系統沉默,加重寄主的癥狀表型,與病毒的致病性密切相關。而關于SVBV 致病因子P6蛋白與寄主因子互作機理尚未見報道。因此,發現與P6蛋白互作的寄主因子是探明 SVBV致病機理的關鍵。【擬解決的關鍵問題】構建森林草莓葉片酵母cDNA文庫,以SVBV P6為誘餌蛋白,篩選出與P6互作的寄主因子。再進一步研究寄主因子的生物學功能,為探明SVBV致病特征,明晰病毒與寄主的互作機理提供依據。
試驗于 2015—2016年在安徽農業大學植物保護學院植物病毒實驗室完成。
森林草莓種植于溫室大棚,感病草莓cDNA文庫由寶生物工程(大連)有限公司構建;SVBV-T simple-P6質粒和SVBV侵染性克隆pBIN-1.25SVBVUS由筆者實驗室保存,酵母菌株AH109,pGAD-T7和pGBK-T7等質粒購自Clontech公司;酵母質粒小提試劑盒、大腸桿菌DH5α感受態細胞購自北京康為世紀公司;Primer STAR GXL DNA聚合酶、pMD18-T simple載體、T4-DNA連接酶、Nde I、Sal I限制性內切酶和瓊脂糖凝膠回收試劑盒等購自寶生物工程(大連)有限公司;引物合成與序列測序由上海生工生物股份有限公司完成。
1.2.1 森林草莓的接種及 cDNA文庫的構建 利用SVBV全長基因組侵染性克隆pBIN-1.25SVBV-US接種森林草莓,8周后系統葉表現出沿葉脈黃化癥狀,SDS法提取草莓顯癥葉片總RNA,具體步驟詳見說明書,使用1%瓊脂糖凝膠電泳檢測RNA的完整性,將RNA樣本送寶生物工程(大連)有限公司構建森林草莓cDNA文庫。
1.2.2 P6擴增和誘餌載體 pGBK-P6的構建 設計SVBV P6特異性引物 P6-Nde I-F/P6-Sal I-R,以SVBV-P6-T simple質粒為模板擴增P6,膠回收純化P6基因片段,連接pMD18-T simple載體,轉化DH5α感受態細胞,涂布于氨芐青霉素抗性LB平板,菌落PCR篩選陽性克隆,提取質粒命名為 pMD-P6。用Nde I和Sal I酶雙酶切重組質粒pMD-P6,將P6插入pGBK-T7,篩選陽性克隆,命名為pGBK-P6。
1.2.3 誘餌載體 pGBK-P6毒性及自激活檢測 醋酸鋰法制備酵母菌AH109感受態細胞,分別轉化誘餌載體pGBK-P6和空載體pGBK-T7。涂布SD/-Trp培養基,30℃倒置培養3—5 d,挑取單菌落并篩選陽性克隆,鑒定誘餌載體pGBK-P6是否成功轉化至AH109。
含有pGBK-P6和空載體pGBK-T7的酵母菌分別接種于 50 mL SD/-Trp(20 μg·mL-1)液體培養基中,30℃ 250 r/min 振蕩培養24 h,檢測菌液的OD600,鑒定誘餌載體對細胞的毒性;將含有pGBK-P6重組質粒的酵母菌株AH109分別涂布SD/-Trp、SD/-Trp-His和SD/-Trp-Ade平板,30℃倒置培養3—5 d,觀察平板菌落生長情況,分析pGBK-P6對酵母細胞的自激活活性。
1.2.4 cDNA文庫質粒轉化攜帶 pGBK-P6的酵母菌醋酸鋰法制備含有pGBK-P6的酵母菌AH109感受態細胞,再將插入森林草莓cDNA片段的pGAD-T7文庫質粒轉化到 AH109感受態細胞,轉化產物涂布于SD/-Trp-Leu固體培養板,30℃倒置培養3—5 d;無菌水收集 SD/-Trp-Leu上的酵母菌落,再涂布于SD/-His-Leu-Trp固體培養基,30℃倒置培養 3—5 d后;挑取SD/-His-Leu-Trp固體培養基上長勢良好的酵母單菌落,轉移到SD/-Trp-Leu-His-Ade/X-α-Gal固體培養基,30℃倒置培養。
1.2.5 cDNA文庫陽性克隆的鑒定 挑取 SD/-Trp-Leu-His-Ade/X-α-Gal上顯藍色的酵母單菌落,接種于5.0 mL SD/-Leu(20 μg·mL-1)液體培養基,30℃,250 r/min振蕩擴繁1—2 d后,提取酵母質粒。
1.2.6 陽性克隆的序列分析與生物信息學分析 通用引物(T7-Promoter:5′-CTATTCGATGATGAAGAT ACCCCACCAAACCC-3′;3′ AD:5′-GTGAACTTGCG GGGTTTTTCAGTATCTACGATT-3′)PCR 擴增酵母質粒中的插入片段,選擇插入片段>400 bp的酵母質粒,轉化大腸桿菌DH5α,送上海生工生物公司測序,利用GenBank網站(http://blast.ncbi.nlm.nih.gov/Blast.Cgi)分析插入片段所屬基因,再用Uniprot在線網站GO通路注釋(http://www.uniprot.org/)該基因編碼的蛋白因子。
提取感病森林草莓總RNA,瓊脂糖凝膠電泳檢測發現,5.8S、18S和28S條帶清晰,完整性好(圖1)。NanoDrop檢測 RNA OD260/OD280=1.97,OD260/OD230=2.19,RNA濃度為2 086.4 ng·μL-1,說明RNA質量較好,可以用于文庫構建。森林草莓 cDNA文庫報告結果顯示,3個讀碼框初級文庫庫容分別為 1.5×106、2.5×106和2.0×106cfu,文庫重組率為97%,均一化處理ds cDNA并酶切純化,顯示合成的ds cDNA呈彌散狀分布,其片段大小分布范圍為0.5—3.0 kb(圖2)。文庫質粒轉入大腸桿菌DH5α,隨機挑取16個克隆,PCR擴增插入片段,平均長度>1 kb(圖3)。

圖1 SVBV侵染的森林草莓總RNA瓊脂糖凝膠電泳Fig. 1 Agarose gel electrophoresis of RNA of woodland strawberry infected with SVBV

圖2 森林草莓ds cDNA純化后的電泳圖Fig. 2 Electrophoresis of purified ds cDNA of woodland strawberry
以 SVBV-P6-simple模板,用引物 P6-NdeI-F、P6-SalI-R進行PCR擴增,可擴增出1條約為1 600 bp的特異性條帶,片段大小與預期結果相符。將此特異性條帶克隆并測序,證明插入pMD19-T simple的P6沒有發生變異。再將P6克隆到酵母載體pGBK-T7上,PCR篩選pGBK-P6陽性克隆,Nde I和Sal I雙酶切驗證pGBK-P6質粒,片段大小和理論值完全相符(圖4),第2次測序進一步驗證P6基因序列未發生突變,說明插入的P6讀碼框正確。pGBK-P6質粒轉化酵母菌株AH109,提取酵母質粒,PCR擴增得到大小約1 600 bp的特異性條帶(圖5),證明pGBK-P6質粒已成功轉化到酵母菌株AH109。

圖 3 cDNA文庫插入片段的PCR鑒定Fig. 3 PCR identification of inserts in the cDNA library

圖4 pGBK-P6重組質粒酶切電泳圖譜Fig. 4 Electrophoresis patterns of recombinant plasmid pGBK-P6 digested with restriction endonuclease enzymes

圖5 重組質粒pGBK-P6轉化酵母菌陽性克隆的PCR鑒定Fig. 5 Positive clone verification of recombinant plasmid pGBK-P6 expression in yeast by PCR
pGBK-P6和pGBK-T7質粒分別轉化AH109感受態細胞,2組轉化菌在SD/-Trp培養基上均生長良好,菌落無明顯差異(圖6);2組轉化菌在SD/-Trp(20 μg·mL-1)液體培養基培養 24 h 后,菌液 OD600均>0.8,說明 pGBK-P6載體對酵母細胞沒有毒性。將含有pGBK-P6的酵母菌分別涂布于SD/-Trp、SD/-Trp-His和SD/-Trp-Ade培養基,發現酵母菌能在SD/-Trp培養基上生長,而不能在 SD/-Trp-His和 SD/-Trp-Ade培養基上生長,說明pGBK-P6不能激活報告基因His及Ade的表達,沒有自激活活性(圖7),可進行下游篩庫試驗。
將森林草莓cDNA文庫質粒轉化到含有pGBK-P6誘餌載體的酵母菌AH109感受態細胞中,轉化產物經SD/-Trp-Leu、SD/-His-Leu-Trp和 SD/-Trp-Leu-His-Ade/X-α-Gal固體培養基順次篩選后,最終在SD/-Trp-Leu-His-Ade/X-α-Gal培養基篩選到230個生長狀況良好且顯藍色的菌落(圖8)。
擴繁230個顯藍色菌落的菌株,分別提取質粒,轉化大腸桿菌 DH5α,PCR篩選陽性菌株,其中 180個菌株呈陽性,可擴增出約1 kb的特異性片段。測序并進行序列比對,除去重復序列、載體序列和移碼序列,最終獲得174個有效序列,共對應15個寄主基因,這15個基因編碼的寄主因子可能與P6蛋白互作(表1)。這15個寄主因子篩選豐度差異較大,篩選頻率最高的是CHY型鋅指蛋白(CHY zinc finger protein,ZFP),其次是低溫誘導的半胱氨酸蛋白酶(lowtemperature-induced cysteine proteinase,LTICP),然后是3S,6E-橙花叔醇合酶1(3S,6E-nerolidol synthase 1,36NS),這3個寄主因子的篩選頻數達118次,占篩選總數174個有效序列的67.8%。

圖6 轉化pGBK-P6和pGBK-T7質粒的酵母菌在SD/-Trp培養基的生長情況Fig. 6 The growth situation of yeast containing plasmids pGBK-P6 and pGBK-T7 in SD/-Trp medium
利用Uniprot在線網站的GO通路注釋這15個森林草莓寄主因子(圖9),發現這15個寄主因子參與了13種生物過程,包括泛素化、轉錄因子調節、防御反應、代謝過程、氧化還原、胞內氨基酸代謝、蛋白水解、生物合成、胞內信號轉導、蛋白質磷酸化、誘導系統抗性、光系統II修復和細胞分裂等過程;其分子功能有12種,包括乙酰轉移酶活性、萜烯合酶活性、脫氫酶活性、金屬離子結合活性、蛋白激酶活性、水解酶活性、氧化還原酶活性、磷酸酶活性、DNA結合活性、ATP結合活性、蛋白自身結合和肽鏈內切酶抑制劑活性。

表1 15個與SVBV P6互作的森林草莓寄主因子Table 1 Fifteen host factors of woodland strawberry interacting with SVBV P6

圖9 Gene ontology注釋Fig. 9 Annotation by gene ontology
目前,世界范圍內已經鑒定出了30多種植物病毒沉默抑制子,其功能主要為增加病毒的積累、協助病毒的胞間運動及促進病毒的長距離運輸等[20]。而SVBV P6蛋白作為沉默抑制子的主要功能及作用機理尚不清楚。本試驗構建了高質量的森林草莓 cDNA文庫,以SVBV P6為誘餌蛋白,從感染SVBV的森林草莓酵母cDNA文庫中篩選與P6互作的寄主因子,為進一步探究SVBV的致病機理,解析病毒與寄主的分子互作機制打下了基礎。
本研究共篩得15個寄主因子,序列比對發現15個寄主因子中,ZFP篩選豐度最高,篩選比率達到46%,說明ZFP與P6密切互作,具有較高的研究參考價值。鋅指蛋白ZFP是一類結合鋅離子折疊成手指狀結構域的蛋白,廣泛分布于動植物和微生物[21]。主要由半胱氨酸(Csy)和/或組氨酸(His)組成,與鋅離子結合形成“指”狀四面體結構,鋅離子在穩定鋅指蛋白結構和發揮調控功能方面具有關鍵作用[22]。鋅指蛋白可以與靶分子DNA、RNA、DNA-RNA的序列特異性結合[23],在轉錄和翻譯水平上調控基因的表達、細胞分化以及胚胎發育等[24]。
鋅指蛋白ZFP在調節植物生長發育和抵御病原物侵染過程中均發揮重要的作用。將棉花鋅指蛋白基因GhZFP1轉入煙草,GhZFP1能夠上調煙草抗病相關蛋白(resistance related protein)GZIRD21A和GZIPR5的表達,提高煙草對立枯絲核菌(Rhizoctonia solani)侵染的抗性[25]。稻瘟病菌(Magnaporthe oryzae)侵染水稻,水稻鋅指蛋白 OsSYP71能提高病程相關基因PR-1b的表達,同時增強過氧化物酶的活性,清除寄主體內的過氧化氫(H2O2),抵御病菌的侵染[26]。煙草花葉病毒(Tobacco mosaic virus,TMV)侵染普通煙(Nicotiana tabacum)時,寄主WRKY轉錄因子鋅指蛋白 TIZZ的表達量提高,誘導寄主產生過敏性壞死反應(hypersensitive response,HR),抵御病毒的進一步侵染[27]。黃瓜花葉病毒(Cucumber mosaic virus,CMV)侵染普通煙,鋅指蛋白Tsip1能夠與CMV的復制復合體在液泡膜上互作,影響病毒的胞間運輸,Tsip1還能與CMV 1a和CMV 2a形成復合體,干擾病毒的復制和轉移[28]。SVBV的復制的機理與CaMV極為相似,P6作為一個反式激活因子,可在細胞質中調控35S RNA翻譯出病毒其余蛋白[29]。因此,推測鋅指蛋白ZFP和SVBV致病因子P6蛋白的互作,能夠干擾P6蛋白與35S RNA的結合能力,影響病毒的復制過程,抵御病毒的侵染。
半胱氨酸蛋白酶(cysteine protease)作為一類重要的蛋白酶家族,廣泛參與植物的各種生理過程[30]。研究發現,半胱氨酸蛋白酶在各種衰老的植物器官中大量表達,可降解光合作用必需酶 Rubisco(1,5-二磷酸核酮糖脫羧/加氧酶)大亞基,抑制光合作用,促進植物衰老[31]。當植物受到病原菌侵染時,半胱氨酸蛋白酶mRNA含量會顯著增加,參與響應寄主的過敏性壞死反應,誘導植物細胞的程序性死亡(PCD),阻止病原菌在寄主的進一步擴散[32]。因此,筆者推測受SVBV侵染后,P6蛋白與半胱氨酸蛋白酶RD21a結合,上調RD21a的表達,抑制葉片光合作用,使植物提前衰老,進一步表現出沿著葉脈黃化、小葉扭曲等感病癥狀。
植物SNF1激酶(SNF1-related protein kinase)是動物AMP激活蛋白激酶的同源物,為體內代謝的全局調控因子,在消耗ATP的脅迫反應中起重要作用[33]。SUNTER等[34]將番茄金色花葉病毒(Tomato golden mosaic virus,TGMV)AC2和甜菜曲頂病毒(Beet curly top virus,BCTV)的C2分別轉入煙草,發現轉基因植株對TGMV、BCTV和TMV的感病性增加,進一步利用酵母雙雜交技術驗證蛋白互作,發現 TGMV AC2和 BCTV的 C2蛋白與擬南芥(Arabidopsis thaliana)的蔗糖非發酵激酶SNF1互作,并在體外和體內抑制SNF1激酶的活性,表達反義SNF1的擬南芥對雙生病毒的感病性增強,而過量表達正義 SNF1的擬南芥對雙生病毒表現出抗性。表達 AC2/C2的擬南芥對雙生病毒的感病性增強,但在擬南芥中表達缺失與SNF1激酶互作結構域的AC2/C2則不能增強對雙生病毒的感病性[35]。這些結果表明植物代謝通路的調節可能是植物應對病毒侵染的一種重要防衛反應。由此推測SVBV P6蛋白可能與寄主SNF1激酶互作,抑制SNF1的活性,調節寄主代謝通路,影響草莓的正常生理代謝,導致草莓表現出生長衰弱、匍匐莖數量減少等不良生長狀況。
成功構建了高質量的森林草莓cDNA文庫,篩選得到了15個與SVBV P6蛋白互作的寄主因子,這些蛋白因子生物功能多樣,可能參與SVBV侵染寄主過程中的多條重要通路,在協助寄主抵御病毒侵染,減輕發病癥狀等方面發揮重要作用,為進一步深入研究SVBV與寄主的相互作用打下了理論基礎。
[1]RATTI C, PISI A, AUTONELL C R, BABINI A, VICCHI V. First report of Strawberry vein banding virus on strawberry in Italy. Plant Disease, 2009, 93(6): 675.
[2]HONETSLEGROVA J, MRAZ I, SPAK J. Detection and isolation of Strawberry vein banding virus in the Czech Republic. Acta Horticulturae,1995, 385: 29-32.
[3]肖敏, 張志宏. 草莓鑲脈病毒研究進展. 遼寧農業科學, 2005(4):36-38.XIAO M, ZHANG Z H. Research advance in Strawberry vein banding virus. Liaoning Agricultural Sciences, 2005(4): 36-38. (in Chinese)
[4]MORRIS T J, MULLIN R H, SCHLEGEL D E, COLE A, ALOSI M C. Isolation of a Caulimovirus from strawberry tissue infected with Strawberry vein banding virus. Phytopathology, 1980, 70(2): 156-160.
[5]PETRZIK K, MRAZ I, DULIC-MARKOVIC I. Quarantine Strawberry vein banding virus firstly detected in Slovakia and Serbia.Acta Virologica, 1998, 42(2): 87-89.
[6]FRAZIER N W. Detection of graft-transmissible diseases in strawberry by a modified leaf grafting technique. Plant Disease Reporter, 1974, 58: 203-207.
[7]洪健, 李德葆, 周雪平. 植物病毒分類圖譜. 北京: 科學出版社,2001: 12.HONG J, LI D B, ZHOU X P. Classification Atlas of Plant Viruses.Beijing: Science Press, 2001: 12. (in Chinese)
[8]PETRZIK K, BENES V, MRAZ I, HONETSLEGROVA F J,ANSORGE W, SPAK J. Strawberry vein banding virus-definitive member of the genus Caulimovirus. Virus Genes, 1998, 16(3):303-305.
[9]PAPPU H R, DRUFFEL K L. Use of conserved genomic regions and degenerate primers in a PCR-based assay for the detection of members of the genus Caulimovirus. Journal of Virological Methods, 2009,157(1): 102-104.
[10]KAREL P, VLADIMIR B, IVAN M, HONETSLEGROVA- FRANOVA J,ANSORGE W, SPAK J. Strawberry vein banding virus-definitive member of the genus Caulimovirus. Virus Genes, 1998, 16(3):303-305.
[11]LEH V, YOT P, KELLER M. The Cauliflower mosaic virus translational transactivator interacts with the 60S ribosomal subunit protein L18 of Arabidopsis thaliana. Virology, 2000, 266(1): 1-7.
[12]ANDREW J L, JANET L, JUSTIN H, HAMILTON A J,SADANANDOM A, MILNER J J. Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. Journal of General Virology,2007, 88(12): 3439-3444.
[13]GAIL A B, JERRY D J, STEPHEN H H. Cauliflower mosaic virus gene VI produces a symptomatic phenotype in transgenic tobacco plants. Proceeding of the National Academy Sciences of the United States of America, 1988, 85(3): 733-737.
[14]CHIARA G, CECCHINI E, MARIA E G,SIMON N C, JOEL J M.Altered patterns of gene expression in Arabidopsis elicited by Cauliflower mosaic virus (CaMV) infection and by a CaMV gene VI transgene. Molecular Plant, 1999, 12(5): 377-384.
[15]吳建國, 蔡麗君, 胡梅群, 謝荔巖, 林奇英, 吳祖建, 謝聯輝. 水稻瘤矮病毒 P3、P7、P8、Pn9、Pn10、Pnl1、Pnl2的酵母雙雜交載體的構建及自激活效應檢測. 熱帶作物學報, 2009, 30(9):1364-1368.WU J G, CAI L J, HU M Q, XIE L Y, LIN Q Y, WU Z J, XIE L H.Construction of yeast two-hybrid vectors of P3, P7, P8, Pn9, Pn10,Pn11 and Pn12 of Rice gall dwarf virus and identification of their self-activation. Chinese Journal of Tropical Crops, 2009, 30(9):1364-1368. (in Chinese)
[16]何乙坤, 鐘敏, 胡同樂, 王樹桐, 段豪, 丁麗, 王亞南, 曹克強. 利用酵母雙雜交篩選與蘋果褪綠葉斑病毒CP互作的寄主因子. 中國農業科學, 2014, 47(24): 4821-4829.HE Y K, ZHONG M, HU T L, WANG S T, DUAN H, DING L,WANG Y N, CAO K Q. Screening of the host factors interacting with CP of Apple chlorotic leaf spot virus by yeast two-hybrid system.Scientia Agricultura Sinica, 2014, 47(24): 4821-4829. (in Chinese)
[17]樓望淮, 蔣甲福, 陳素梅, 房偉民, 陳發棣, 管志勇, 廖園. 菊花 B病毒外殼蛋白互作蛋白的篩選. 南京農業大學學報, 2013, 36(4):43-48.LOU W H, JIANG J F, CHEN S M, FANG W M, CHEN F D, GUAN Z Y, LIAO Y. Screening of proteins interacting with the coat protein of Chrysanthemum virus B. Journal of Nanjing Agricultural University, 2013, 36(4): 43-48. (in Chinese)
[18]趙藝澤, 劉艷, 王錫鋒. 利用酵母雙雜交系統篩選介體異沙葉蟬中與小麥矮縮病毒外殼蛋白互作的蛋白質. 中國農業科學, 2015,48(12): 2354-2363.ZHAO Y Z, LIU Y, WANG X F. Screening of putative proteins in vector Psammotettix alienus L. that are interacted with coat protein of Wheat dwarf virus by a split-ubiquitin yeast membrane system.Scientia Agricultura Sinica, 2015, 48(12): 2354-2363. (in Chinese)
[19]肖冬來, 鄧慧穎, 謝荔巖, 吳祖建, 謝聯輝. 酵母雙雜交系統篩選與水稻黑條矮縮病毒 P6互作的水稻蛋白. 熱帶作物學報, 2010,31(3): 435-438.XIAO D L, DENG H Y, XIE L Y, WU Z J, XIE L H. Screening of rice proteins interacting with P6 of Rice black-streaked dwarf virusfrom rice cDNA library by yeast two hybrid system. Chinese Journal of Tropical Crops, 2010, 31(3): 435-438. (in Chinese)
[20]蔣琳, 魏春紅, 李毅. 病毒基因沉默抑制子及其作用機制. 中國科學: 生命科學, 2012, 42(1): 16-28.JIANG L, WEI C H, LI Y. Viral suppressor of RNA silencing. Scientia Sinica Vitae, 2012, 42(1): 16-28. (in Chinese)
[21]FRANKEI A D, PABO C O. Fingering too many proteins. Cell, 1998,53(6): 675.
[22]HOOVERS J M, MANNENS M, JOHN R, BLIEK J, VERONICA V H, PORTEOUS D J, LESCHOT N J, WESTERETVELD A, LITTLE P F. High-resolution localization of 69 potential human zinc finger protein genes: a number are clustered. Genomics, 1992, 12(2):254-263.
[23]ESPINOSA J M, PORTAL D, LOBO G S, PEREIRA C A, ALONSO G D, GOMEZ E B, LAN G H, POMAR R, FLAWIA M M, TORRES H N. Trypanosoma cruzi poly-zinc finger protein: a novel DNA/RNA-binding CCHC-zinc finger protein. Molecular and Biochemical Parasitology, 2003, 131(1): 35-44.
[24]JAUCH R, BOURENKOV G P, CHUNG H R, URLAUB H, REIDT U, JACKLE H, WAHL M C. The zinc finger associated domain of the Drosophila transcription factor grauzone is a novel zinc-coordinating protein-protein interaction modules. Structure, 2003, 11(11):1393-1402.
[25]GUO Y H, YU Y P, WANG D, WU C A, YANG G D, HUANG J G,ZHENG C C. GhZFP1, A novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytologist, 2009, 183(1): 62-75.
[26]BAO Y M, SUN S J, LI M, LI L, CAO W L, LUO J, TANG H J,HUANG J, WANG Z F, WANG J F. Overexpression of the Qc-SNARE gene OsSYP71 enhances tolerance to oxidative stress and resistance to rice blast in rice (Oryza sativa). Gene, 2012, 504(2):238-244.
[27]YODA H, OGAWA M, YAMAGUCHI Y, KOIZUMI N, KUSANO T,SANO H. Identification of early-responsive genes associated with the hypersensitive response to Tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants. Molecular Genetics and Genomics, 2002, 267(2): 154-161.
[28]HUH S U, KIM M J, HAM B K, PAEK K H. A zinc finger protein Tsip1 controls Cucumber mosaic virus infection by interacting with the replication complex on vacuolar membranes of the tobacco plant.New Phytologist, 2011, 191(3): 746-762.
[29]MURIEL H, MARINA B, ANGèLE G, PIERRE Y, MARIO K.Cauliflower mosaic virus: still in the news. Molecular Plant Pathology,2002, 3(6): 419-429.
[30]李思濱, 劉英, 祖元剛. 半胱氨酸蛋白酶在植物細胞程序性死亡中的作用. 植物生理學通訊, 2008, 44(2): 345-349.LI S B, LIU Y, ZU Y G. Role of cysteine proteinase in programmed cell death of plant. Plant Physiology Communications, 2008, 44(2):345-349. (in Chinese)
[31]WANG W, ZHANG L, GUO N, ZHANG X, ZHANG C, SUN G, XIE J. Functional properties of a cysteine proteinase from pineapple fruit with improved resistance to fungal pathogens in Arabidopsis thaliana.Molecules, 2014, 19: 2374-2389.
[32]HARRAK H, AZELMAT S, BAKER E N, TABAEIZADEH Z.Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum). Genome, 2001,44: 368-374.
[33]NIGEL G H, GRAHAME D H. SNF1-related protein kinases: global regulators of carbon metabolism in plants. Plant Molecular Biology,1998, 37: 735-748.
[34]SUNTER G, SUNTER J L, BISARO D M. Plants expressing Tomato golden mosaic virus AL2 or Beet curly top virus L2 transgenes show enhanced susceptibility to infection by DNA and RNA viruses.Virology, 2001, 285: 59-70.
[35]HAO L H, WANG H, SUNTER G, BISARO D M. Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. The Plant Cell, 2003, 15(4): 1034-1048.
(責任編輯 岳梅)
Screening of the Host Factors of Woodland Strawberry Interacting with P6 of Strawberry vein banding virus by Yeast Two-Hybrid System
LI Shuai, JIANG XiZi, LIANG WeiFang, CHEN SiHan, ZHANG XiangXiang,ZUO DengPan, HU YaHui, JIANG Tong
(School of Plant Protection, Anhui Agricultural University, Hefei 230036)
2017-03-20;接受日期:2017-05-09
國家公益性行業(農業)科研專項(201303028)、國家自然科學基金(31671999,31371915)
聯系方式:李帥,E-mail:18356086590@163.com。通信作者江彤,E-mail:jiangtong4650@sina.com