999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ON THE SUM OF k-POWER OF ALL DISTANCES IN BIPARTITE GRAPHS

2017-11-06 09:36:38GENGXianyaZHAOHongjinXULili
數(shù)學(xué)雜志 2017年6期
關(guān)鍵詞:數(shù)學(xué)

GENG Xian-ya,ZHAO Hong-jin,XU Li-li

(1.School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan 232001,China)

(2.School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China)

ON THE SUM OFk-POWER OF ALL DISTANCES IN BIPARTITE GRAPHS

GENG Xian-ya1,ZHAO Hong-jin1,XU Li-li2

(1.School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan 232001,China)

(2.School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China)

Denote the sum ofk-power of all distances between all pairs of vertices inGbySk(G).In this paper,by applying the vertex partition method,sharp bound of all connectednvertex bipartite graphs of diameterdon theSk(G)is obtained,and the extremal graphs with the minimalSk(G)are also characterized.

bipartite graph;diameter;extremal graph

1 Introduction

In this paper,we only consider connected,simple and undirected graphs and assume that all graphs are connected,and refer to Bondy and Murty[2]for notation and terminologies used but not de fined here.

LetG=(VG,EG)be a graph with vertex setVGand edge setEG.G?v,G?uvdenote the graph obtained fromGby deleting vertexv∈VGor edgeuv∈EG,respectively(this notation is naturally extended if more than one vertex or edge is deleted).Similarly,G+uvis obtained fromGby adding an edgeuv/∈EG.Forv∈VG,letNG(v)(N(v)for short)denote the set of all the adjacent vertices ofvinGandd(v)=|NG(v)|,the degree ofvinG.

A bipartite graphGis a simple graph,whose vertex setVGcan be partitioned into two disjoint subsetsV1andV2such that every edge ofGjoins a vertex ofV1with a vertex ofV2.A bipartite graph in which every two vertices from different partition classes are adjacent is called complete,which is denoted byKm,n,wherem=|V1|,n=|V2|.

The distanced(u,v)between verticesuandvinGis de fined as the length of a shortest path between them.The diameter ofGis the maximal distance between any two vertices ofG.LetBdnbe the class of all bipartite graphs of ordernwith diameterd.

LetSk=Sk(G)be the sum ofk-power of distances between all pairs of vertices ofG,which is denoted by

whereHG(v)is the sum ofk-power of all diatances fromvinG.

Whenk=1,Skis Wiener index.The Wiener index is popular in chemical literatures.This quantity was introduced by Mustapha Aouchich and Pierre Hansen in[1]and was extensively studied in the monograph.Recently,S2(G)is applied to the research of distance spectral radius.Zhou and Trinajsti?[19]proved an upper bound using the ordernin addition to the sum of the squares of the distancesS2(G),see[18,20].They also proved a lower bound on the distance spectral radius of a graph using onlyS2(G).As a continuance of it,in this paper,we determine the extremal graphs with the minimalSk(G)for the class of all connectedn-vertex bipartite graphs of diameterd.For surveys and some up-to-date papers related to Wiener index of trees and line graphs,see[7,9,11–15,17]and[3,6,8,10,16],respectively.

In this paper we study the quantitySkin the case ofn-vertex bipartite graphs,which is an important class of graphs in graph theory.Based on the structure of bipartite graphs,sharp bounds onSkamongBdnare determined.The corresponding extremal graph is also identified.

Further on we need the following lemma,which is the direct consequence of the de finition ofSk.

Lemma 1.1LetGbe a connected graph of ordernand not isomorphic toKn.Then for each edgeSk(G)>Sk(G+e).

2 The Graph with Minimum Skamong Bdn

LetGbe a graph inClearly there exists a partitionV0,V1,···,VdofVGsuch that|V0|=1 andd(u,v)=ifor each vertexv∈Viandu∈V0(i=0,1,···,d).We callVia block ofVG.Two blocksVi,VjofVGare adjacent if|i?j|=1.For convenience,let|Vi|=lithroughout this section.

Lemma 2.1[15]For any graphwith the above partition ofVG,G[Vi]induces an empty graph(i.e.,containing no edge)for eachi∈(i=0,1,···,d).

Given a complete bipartite graphwith bipartition(X,Y)satisfyingandchoose a vertexx(resp.y)inX(resp.Y)and let?xy,whereG′is depicted in Figure 1.LetG?be the graph obtained fromG′by attaching pathsandatxandy,respectively.It is routine to check thatfor oddd.

Given a complete bipartite graphKp,qwith bipartition(X,Y)satisfying|X|=p≥3,|Y|=q≥2,andp+q=n?d+4,choose two different vertices,sayx,yinXand let

whereG′′is depicted in Figure 1.Letbe the graph obtained fromG′′by attaching pathsandatxandy,respectively.It is routine to check thatfor evend.Set

Figure 1:Graphs G′and G′′

Theorem 2.2LetGbe inwith the minimumSk(G).

(i)Ifd=2,then

(ii)Ifd≥3,thenG≌G?for odddandG∈B for evend,whereG?and B are de fined as above.

ProofChooseG∈Bdnwith bipartition(X,Y)such thatSk(G)is as small as possible.

(i)Ifd=2,then by Lemma 1.1,G≌Kn?t,t,wheret≥2 orn?t≥2.Let|X|=n?t,|Y|=t.Then it is routine to check that,for allx(resp.y)inX(resp.Y),one has

which gives

Ifnis odd,thenwith equality if and only if,o r,i.e.And ifnis even,thenwith equality if and only ifi.e.,,as desired.

(ii)First we show the following facts.

Fact 1G[Vi?1,Vi]induces a complete bipartite subgraph for eachi∈(0,1,···d),and|Vd|=1 ford≥3.

Proof of Fact 1The first part follows directly from Lemmas 1.1 and 2.1.So in what follows,we prove the second part.

Letd≥3,z∈Vdandw∈Vd?3.If|Vd|>2,thenG+zw∈BdnandV0∪V1∪Vd?3{w}∪Vd?2∪Vd?1∪{w}∪Vdis a partition ofVG+zw.By Lemma 1.1Sk(G+zw)<Sk(G),a contradiction.

This completes the proof of Fact 1.

Fact 2Consider the vertex partitionVG=V0∪V1∪···∪VdofG.

(i)Ifdis odd,then

(ii)Ifdis even,then

Proof of Fact 2(i)Note thathere we only show that|V1|=1 holds.Similarly,we can also showwe omit the procedure here.

In fact,ifd=3,our result is trivial.So we consider thatd≥5.If|V1|≥2,then chooseu∈V1and letG′=G?v0u+{ux:x∈V4}.In fact,the vertex partition ofG′isV0∪V1{u}∪V2∪V3∪{u}∪V4∪···∪Vd,in view of Fact 1 and the choice ofG,any two of adjacent blocks ofVG′induce a complete bipartite subgraph and|Vd|=1 ford≥5.

This gives

i.e.,Sk(G)>Sk(G′),a contradiction to the choice ofG.Hence,|V1|=1.

Next we show that ifdis odd,thenWithout loss of generality,we assume thatThen it suffices to show thatIf this is not true,thenChooselet

then the vertex partition ofG′is

and each of the two adjacent blocks ofVG′induces a complete bipartite graph.By direct calculation,we have

a contradiction to the choice ofG.

(ii)By the same discussion as the proof of the first part of(i)as above,we can show thatwe omit the procedure here.

Now,we show that ifdis even,thenWithout loss of generality,we assume thatThen it suffices to show that

then the vertex partition ofG?is

and each of the two adjacent blocks ofVG?induces a complete bipartite graph.By direct calculation,we have

a contradiction to the choice ofG.

This completes the proof of Fact 2.

Now we come back to show the second part of Theorem 2.2.In view of Fact 2(i),ifdis odd,note thattogether withwe obtain thatas desired.

In view of Fact 2(ii),ifdis even,note thattogether withwe obtain thatG∈B.Furthermore,

for evennandfor oddn.

This completes the proof.

[1]Mustapha Aouchiche,Pierre Hansen.Distance spectra of graphs:a survey[J].Lin.Alg.Appl.,2014,458:301–386.

[2]Bondy J A,Murty U S R.Graph theory[M].GTM,Vol.224,American:Springer,2008.

[3]Cohen N,Dimitrov D,Krakovski R,et al.On Wiener index of graphs and their line graphs[J].MATCH Commun.Math.Comput.Chem.,2010,64:683–698.

[4]Wang T,Wu L X.Decomposition of planar graphs without 5-cycles orK4[J].J.Math.,2016,36(2):223–233.

[5]Zhang X E,Jiang W.Complements of distance-regular graphs[J].J.Math.,2016,36:234–238.

[6]Dankelmann P,Gutman I,Mukwembi S,et al.The edge-Wiener index of a graph[J].Disc.Math.,2009,309:3452–3457.

[7]Dobrynin A,Entringer R,Gutman I.Wiener index of trees:theory and applications[J].Acta Appl.Math.,2001,66:211–249.

[8]Don Y,Bian Y,Gao H,et al.The polyphenyl chains with extremal edge-Wiener indices[J].Match Commun.Math.Comput.Chem.,2010,64:757–766.

[9]Gutman I,Klav?ar S,Mohar B,et al.Fifty years of the Wiener index[J].Match Commun.Math.Comput.Chem.,1997,3:51–259.

[10]Iranmanesh A,Kafrani A S.Computation of the first edge-Wiener index ofTUC4C8(S)nanotube[J].Match Commun.Math.Comput.Chem.,2009,62:311–352.

[11]Li S C,Song Y B.On the sum of all distances in bipartite graphs[J].Disc.Appl.Math.,2014,169:176–185.

[12]Liu M,Liu B.On the variable Wiener indices of trees with given maximum degree[J].Math.Comput.Model.,2010,52:1651–1659.

[13]Luo W,Zhou B.On ordinary and reverse Wiener indices of non-caterpillars[J].Math.Comput.Model.,2009,50:188–193.

[14]Merris R.An edge version of the matrix-tree theorem and the Wiener index[J].Lin.Multi.Alg.,1988,25:291–296.

[15]Pisanski T,?erovnik J.Edge-contributions of some topological indices and arboreality of molecular graphs[J].Ars.Math.Contemp.,2009,2:49–58.

[16]Wu B.Wiener index of line graphs[J].Match Commun.Math.Comput.Chem.,2010,64:699–706.

[17]Zhang X D,Liu T,Han M X.Maximum Wiener index of trees with given degree sequence[J].Match Commun.Math.Comput.Chem.,2010,64:661–682.

[18]Zhou B,Trinajsti? N.Mathematical properties of molecular descriptors based on distances[J].Croat.Chem.Acta,2010,83:227–242.

[19]Zhou B,Trinajsti? N.On the largest eigenvalue of the distance matrix of a connected graph[J].Chem.Phys.Lett.,2007,447:384–387.

[20]Zhou B,Trinajsti? N.Further results on the largest eigenvalues of the distance matrix and some distance based matrices of connected(molecular)graphs[J].Intern.Elec.J.Mol.Des.,2007,6:375–384.

[21]Zhang H H,Li S C,Zhao L F.On the further relation between the(revised)Szeged index and the Wiener index of graphs[J].Discr.Appl.Math.,2016,206:152–164.

二部圖的距離k次方和問(wèn)題

耿顯亞1,趙紅錦1,徐李立2
(1.安徽理工大學(xué)數(shù)學(xué)與大數(shù)據(jù)學(xué)院,安徽淮南 232001)
(2.華中師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖北武漢 430079)

本文定義Sk(G)為G中所有點(diǎn)對(duì)之間距離的k次方之和.利用頂點(diǎn)劃分的方法得到了直徑為d的n頂點(diǎn)連通二部圖Sk(G)的下界,并確定了達(dá)到下界所對(duì)應(yīng)的的極圖.

二部圖;直徑;極圖

O157.6

05C50;05C35

A

0255-7797(2017)06-1111-07

date:2017-01-08Accepted date:2017-04-01

Supported by National Natural Science Foundation of China(11401008;61672001;61572035;61402011)and China Postdoctoral Science Foundation(2016M592030).

Biography:Geng Xianya(1981–),male,born at Fuyang,Anhui,associate professor,major in graph theory and its application.

猜你喜歡
數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
我們愛(ài)數(shù)學(xué)
我為什么怕數(shù)學(xué)
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學(xué)到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過(guò),因?yàn)槲铱吹綌?shù)學(xué)就難過(guò)
數(shù)學(xué)也瘋狂
主站蜘蛛池模板: 波多野衣结在线精品二区| 亚洲天堂.com| 永久免费精品视频| 福利一区三区| 国产麻豆精品在线观看| 国产人前露出系列视频| 91综合色区亚洲熟妇p| 免费一级大毛片a一观看不卡| 一级毛片在线免费看| 在线欧美日韩| 国产中文一区a级毛片视频| 亚洲日韩Av中文字幕无码| 72种姿势欧美久久久久大黄蕉| 久久久久国产精品嫩草影院| 亚洲精品第五页| 亚洲欧美日韩另类在线一| 国产精品密蕾丝视频| 国产视频大全| 91精品啪在线观看国产| 精品一区二区三区中文字幕| 丝袜高跟美脚国产1区| 四虎影视库国产精品一区| 9啪在线视频| 国产一级视频在线观看网站| 亚洲女同一区二区| 中国一级特黄大片在线观看| 精品成人免费自拍视频| 中文成人在线视频| 在线欧美一区| 国产日韩AV高潮在线| 亚洲无码精品在线播放| 午夜精品久久久久久久无码软件 | 成年女人a毛片免费视频| 国产性生大片免费观看性欧美| 亚洲综合久久成人AV| 亚洲成人在线网| 中文无码影院| 免费视频在线2021入口| 亚洲欧美国产视频| 97精品国产高清久久久久蜜芽 | 免费国产不卡午夜福在线观看| 欧美中文字幕一区| 国产原创演绎剧情有字幕的| 无码乱人伦一区二区亚洲一| 亚洲精品手机在线| 国产区福利小视频在线观看尤物| 国产91高清视频| 国产精品美女网站| 日本精品视频| 国产SUV精品一区二区| 高清无码一本到东京热| 国产一级片网址| 国产又黄又硬又粗| 色综合天天娱乐综合网| 国产精品污视频| 国产精品私拍99pans大尺度| 18禁高潮出水呻吟娇喘蜜芽| a毛片在线| 婷婷99视频精品全部在线观看| 国产菊爆视频在线观看| jizz在线免费播放| 国产精品高清国产三级囯产AV| 特级毛片8级毛片免费观看| 欧美日本一区二区三区免费| 国产永久在线视频| 亚洲无码高清一区| 亚洲男人在线天堂| 色婷婷综合在线| 波多野结衣爽到高潮漏水大喷| 99成人在线观看| 天天色天天操综合网| 在线日韩日本国产亚洲| 野花国产精品入口| 亚洲乱伦视频| 亚洲91在线精品| 大陆精大陆国产国语精品1024| 亚洲第一网站男人都懂| 91在线精品免费免费播放| 亚洲男女在线| 色窝窝免费一区二区三区| 久久久久国色AV免费观看性色| 精品国产Av电影无码久久久|