999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

T-STRUCTURES INDUCED BY HALF RECOLLEMENTS

2017-11-06 09:36:38YINYouqi
數(shù)學雜志 2017年6期
關鍵詞:結(jié)構

YIN You-qi

(Department of Mathematics,Shanghai Jiao Tong University,Shanghai 200240,China)

(Department of Mathematics,Shaoxing College of Arts and Sciences,Shaoxing 312000,China)

T-STRUCTURES INDUCED BY HALF RECOLLEMENTS

YIN You-qi

(Department of Mathematics,Shanghai Jiao Tong University,Shanghai 200240,China)

(Department of Mathematics,Shaoxing College of Arts and Sciences,Shaoxing 312000,China)

LetC′,CandC′′be triangulated categories.In this paper,we consider how to inducet-structures onC′andC′′from at-structure onCgiven an upper(resp.lower)recollement ofCrelative toC′andC′′.By the concept of left(right)t-exact,we give a sufficient condition such that at-structure onCmay inducet-structures onC′andC′′,which generalizes some results concerning recollements to upper(resp.lower)recollements.

triangulated category;upper(lower)recollement;stablet-structure

1 Introductio n

Recollements of triangulated categories play an important role in algebraic geometry(see[1]),representation theory(see[2–5]),etc.A recollement(C′,C,C′′)of triangulated categories provides a platform for various questions concerning the three terms in arecollement.For examples,given arecollement of a triangulated categoryCrelative toC′andC′′,t-structures(C′≤0,C′≥0)and(C′′≤0,C′′≥0)ofC′andC′′,respectively,Beilinson,Bernstein and Deligne[1]proved thatCalso has at-structure(C≤0,C≥0),where

On the other hand,Lin[6]proved that certaint-structure onCmay inducet-structures onC′andC′′.Chen[7]studied the relationship of cotorsion pairs among three triangulated categories in arecollement.She proved the following results:cotorsion pairs onCmay be obtained from cotorsion pairs onC′andC′′and certain cotorsion pairs onCmay induce cotorsion pairs onC′andC′′.More relevant results can be seen in[8–11],etc.

In a viewpoint of Beilinson,Ginsburg and Schechtman(see[12]),upper and lower recollements are more fundamental than arecollement(upper and lower recollements arecalled steps in[8]).For a given upper(lower)recollement ofCrelative toC′andC′′,a sufficient condition thatt-structures onC′andC′′may be induced by at-structure onCis given in this paper.

2 Preliminaries

Recall the following de finitions.

De finition 2.1LetC′,CandC′′be triangulated categories.

(1)[1]A recollement ofCrelative toC′andC′′is a diagram of triangle functors

such that

(R1)(i?,i?),(i?,i!),(j!,j?)and(j?,j?)are adjoint pairs;

(R2)i?,j!andj?are fully faithful;

(R3)j?i?=0;

(R4)for eachX∈C,there are distinguished triangles

where∈Xis the counit of(j!,j?),ηXis the unit of(i?,i?),ωXis the counit of(i?,i!),andζXis the unit of(j?,j?).

(2)[5,12,13]LetC′,CandC′′be triangulated categories.An upper recollement ofCrelative toC′andC′′is a diagram of triangle functors

such that the conditions involvedi?,i?,j!,j?in(1)are satisfied.

(3)[5,12,13]LetC′,CandC′′be triangulated categories.An lower recollement ofCrelative toC′andC′′is a diagram of triangle functors

such that the conditions involvedi?,i!,j?,j?in(1)are satisfied.

For short,we denote respectively the recollement(2.1),upper recollement(2.2)and lower recollement(2.3)by(C′,C,C′,i?,i?,i!,j!,j?,j?),(C′,C,C′,i?,i?,j!,j?)and(C′,C,C′,i?,i!,j?,j?),or uniformly by(C′,C,C′′).

We need the following fact.

Lemma 2.2(see[14])Let(C′,C,C′′)be an upper recollement.Then there exists a triangle-equivalencesuch thatwhereV:C→C/i?C′is the Verdier functor.

The subcategories in this section are full subcategories closed under isomorphisms.

De finition 2.3[1]LetCbe a triangulated category with the shift functor[1].Atstructure onDis a pair of full subcategories(D≤0,D≥0)with the following properties:

If we putD≤n:=D≤0[?n]andD≥n:=D≥0[?n],?n∈Z,we have

(t1)HomD(X,Y)=0,?X∈D≤0,Y∈D≥1;

(t2)D≤0?D≤1andD≥1?D≥0;

(t3)For eachX∈D,there is a distinguished triangle

whereA∈D≤0,B∈D≥1.

Let(U,V)be at-structure onC.We call(U,V)a stablet-structure,ifUandVare triangulated subcategories ofC(see[15,De finition 0.2]).

Here are basic properties of stablet-structures.

Lemma 2.4(see[15])LetDbe a triangulated category,Ca thick subcategory ofD,andQ:D→D/Cthe canonical quotient.For a stablet-structure(U,V)onD,the following are equivalent.

(i)(Q(U),Q(V))is a stablet-structure onD/C,whereQ(U)(resp.Q(V))is the full subcategory ofD/Cconsisting of objectsQ(X)forX∈U(resp.Q(Y)forY∈V);

(ii)(U∩C,V∩C)is a stablet-structure onC.

De finition 2.5[1] LetCandDbe two triangulated categories witht-structures(C≤0,C≥0)and(D≤0,D≥0).An triangle functorF:C?→Dis

(i)leftt-exact ifF(C≥0)?D≥0;

(ii)rightt-exact ifF(C≤0)?D≤0.

3 t-Structure Induced by Upper Recollement

This section aims to prove the main result of this paper.LetC′,CandC′′be triangulated categories.Given a upper recollement ofCrelative toC′andC′′,at-structure onCinducest-structures onC′andC′′under some conditions.

Proposition 3.6LetC′,CandC′′be triangulated categories,let diagram(2.2)be an upper recollement ofCrelative toC′andC′′,and let(C≤0,C≥0)be at-structure onC.Ifi?i?is leftt-exact andj!j?is rightt-exact,then

(i)(i?(C≤0),i?(C≥0))is at-structure onC′;

(ii)(j?(C≤0),j?(C≥0))is at-structure onC′′;

(iii)If(C≤0,C≥0)and(i?(C≤0),i?(C≥0))are stablet-structures onCandC′,respectively,then(j?(C≤0),j?(C≥0))is a stablet-structure onC′.

Proof(i)ForX∈C≤0,Y∈C≥1,since(i?,i?)is an adjoint pair andi?i?is leftt-exact,we have HomC′(i?X,i?Y)≌HomC(X,i?i?Y)=0.Thus(t1)hold.

Condition(t2)follows from the closure ofC≤0andC≥0under the shifts[1]and[-1],respectively.

LetX′ ∈C′.There is a distinguished triangleA→i?X′→B→A[1]inC,whereA∈C≤0,B∈C≥1.Applyingi?to this triangle,we havei?A→i?i?X′→i?B→i?A[1],wherei?A∈i?(C≤0),i?B∈i?(C≥1).Sincei?is fully faithful and(i?,i?)is an adjoint pair,we havei?i?X′≌X′.Therefore,the distinguished trianglei?A→X′→i?B→i?A[1]is thet-decomposition ofX′.We have condition(t3).

(ii)Similarly,we obtain argument(ii).

(iii)We prove the last statement by three steps.

Step 1j!j?is rightt-exact?i?i?is rightt-exact.

LetX∈C≤0,forY∈C≥1.Applying cohomological functor HomC(?,Y)to the distinguished triangle

we get an exact sequence

Since HomC(X,Y)=HomC(X[1],Y)=0,we get HomC(i?i?X,Y)≌HomC(j!j?X[1],Y)=0.

Step 2We claimi?i?(C≤0)=i?C′∩C≤0andi?i?(C≥0)=i?C′∩C≥0.

By Step 1 we havei?i?is rightt-exact,i.e.i?i?(C≤0)?C≤0.Therefore,i?i?(C≤0)?i?C′∩C≤0.Conversely,forX∈i?C′∩C≤0,there exists a distinguished trianglej!j?X→X→i?i?X→(j!j?X)[1].SinceX∈i?C′,it followsj!j?X=0.SinceXis inC≤0,we haveX≌i?i?X?i?i?(C≤0).

Similarly we havei?i?(C≥0)=i?C′∩C≥0.

Therefore,(i?C′∩C≤0,i?C′∩C≥0)=(i?i?(C≤0),i?i?(C≥0)).

Step 3Assume that(i?(C≤0),i?(C≥0))is a stablet-structure onC′.Sincei?is fully faithful,(i?i?(C≤0),i?i?(C≥0))is a stablet-structure oni?C′.By Step 2,(i?C′∩C≤0,i?C′∩C≥0)is a stablet-structure oni?C′.Hence(Q(C≤0),Q(C≥0))is a stablet-structure onC/i?C′by Lemma 2.4.There exists a triangle-equivalenceej?:C/i?C′≌C′′such thatj?=ej?Q,so(j?(C≤0),j?(C≥0))is a stablet-structure onC′′.The proof is completed.

By the similar argument we have statements for lower recollements.

Corollary 3.7LetC′,CandC′′be triangulated categories,let diagram(2.3)be a lower recollement ofCrelative toC′andC′′,and let(C≤0,C≥0)at-structure onC.Ifi?i!is rightt-exact andj?j?is leftt-exact,then

(i)(i!(C≤0),i!(C≥0))is at-structure onC′;

(ii)(j?(C≤0),j?(C≥0))is at-structure onC′′;

(iii)If(C≤0,C≥0)and(i!(C≤0),i!(C≥0))are stablet-structures onCandC′,respectively,then(j?(C≤0),j?(C≥0))is a stablet-structure onC′′.

[1]Beilinson A,Bernstein J,Deligne P.Faisceaux pervers[J].Astérisque,1982,100:5–171.

[2]Cline E,Parshall B,Scott L.Algebraic stratification in representation categories[J].J.Alg.,1988,117:504–521.

[3]Cline E,Parshall B,Scott L.Finite dimensional algebras and highest weight categories[J].J.Reine Angew.Math.,1988,391:85–99.

[4]Jφrgensen P.Recollement for differential graded algebras[J].J.Alg.,2006,299:589–601.

[5]K?nig S.Tilting complexes,perpendicular categories and recollements of derived module categories of rings[J].J.Pure Appl.Alg.,1991,73:211–232.

[6]Lin Zengqiang.t-structure and recollement of hearts[J].J.Huaqiao Univ.(Nat.Sci.),2010,31(3):356–360.

[7]Chen Jianmin.Cotorsion pairs in arecollement of triangulated categories[J].Comm.Alg.,2013,41:2903–2915.

[8]Wiedemann A.On stratifications of derived module categories[J].Canad.Math.Bull.,1991,34(2):275–280.

[9]Happel D.Reduction techniques for homological conjectures[J].Tsukuba J.Math.,1993,17(1):115–130.

[10]Han Yang.Recollement and Hochschild theory[J].J.Alg.,2014,197:535–547.

[11]Lin Ji,Yao Yunfei.Torsion theory of triangulated categories and abelian categories[J].J.Math.,2014,34(6):1134–1140.

[12]Beilinson A,Ginsburg V,Schechtman V.Koszul duality[J].J.Geom.Phys.,1998,5(3):317–350.

[13]Parshall B.Finite dimensional algebras and algebraic groups[J].Contemp.Math.,1989,82:97–114.

[14]Zhang P.Triangulated categories and derived categories[M].Beijing:Science press,2015.

[15]Iyama O,Kato K,Miyachi J.Recollement on homotopy categories and Cohen-Macaulay modules[J].J.K-Theory,2011,8(3):507–542.

半粘合誘導的t-結(jié)構

尹幼奇
(上海交通大學數(shù)學系,上海 200240)
(紹興文理學院數(shù)學系,浙江紹興 312000)

本文研究了對于給定的一個三角范疇的上(下)粘合(C′,C,C′′),如何由C的一個t-結(jié)構誘導C′和C′′的t-結(jié)構的問題.利用左(右)t-正合函子的概念,給出了由C的一個t-結(jié)構可誘導出C′和C′′的t-結(jié)構的充分條件.將粘合的一些相關結(jié)果推廣到了上(下)粘合的情形.

三角范疇;上(下)粘合;穩(wěn)定t-結(jié)構

O153.3

18A40;18E35;18E30

A

0255-7797(2017)06-1215-05

date:2015-11-11Accepted date:2016-02-18

Supported by National Natural Science Foundation of China(11271251;11431010;11571239);Zhejiang Provincial Natural Science Foundation(LY14A010006).

Biography:Yin Youqi(1979–),female,born at Shengzhou,Zhejiang,lecturer,major in represent theory of algebras.

猜你喜歡
結(jié)構
DNA結(jié)構的發(fā)現(xiàn)
《形而上學》△卷的結(jié)構和位置
哲學評論(2021年2期)2021-08-22 01:53:34
論結(jié)構
中華詩詞(2019年7期)2019-11-25 01:43:04
新型平衡塊結(jié)構的應用
模具制造(2019年3期)2019-06-06 02:10:54
循環(huán)結(jié)構謹防“死循環(huán)”
論《日出》的結(jié)構
縱向結(jié)構
縱向結(jié)構
我國社會結(jié)構的重建
人間(2015年21期)2015-03-11 15:23:21
創(chuàng)新治理結(jié)構促進中小企業(yè)持續(xù)成長
主站蜘蛛池模板: 五月婷婷导航| 玖玖精品视频在线观看| 在线中文字幕日韩| 欧洲成人在线观看| 亚洲av无码成人专区| 啪啪免费视频一区二区| 国产精品密蕾丝视频| 欧美日一级片| 无码AV日韩一二三区| 久久国产精品嫖妓| 国产女人在线观看| 精品福利视频导航| 欧美有码在线| 色噜噜中文网| WWW丫丫国产成人精品| 99久久精品免费观看国产| 亚洲无卡视频| 亚洲日韩精品伊甸| 99精品欧美一区| 91精品国产麻豆国产自产在线| 亚洲成人网在线观看| av色爱 天堂网| 欧美成a人片在线观看| 在线人成精品免费视频| 国产另类视频| 伊人成人在线视频| 天天综合网亚洲网站| 热re99久久精品国99热| 国产精品hd在线播放| 色屁屁一区二区三区视频国产| 少妇被粗大的猛烈进出免费视频| 天天摸夜夜操| 黄色一级视频欧美| 欧美黄网在线| 99re在线视频观看| 国产嫩草在线观看| 国产精品香蕉在线| 国产午夜福利亚洲第一| 亚洲自拍另类| www.精品国产| 国产精品视频a| 亚洲国产成人综合精品2020 | 五月婷婷欧美| 四虎亚洲精品| 亚洲人成网7777777国产| 黄色免费在线网址| 色成人亚洲| 日韩黄色在线| 免费 国产 无码久久久| 日韩欧美中文| 99热这里只有精品久久免费| 中字无码av在线电影| 视频一区视频二区日韩专区| 手机看片1024久久精品你懂的| 亚洲综合中文字幕国产精品欧美| 99久久99视频| 中文字幕日韩视频欧美一区| 国产精品综合色区在线观看| 五月天综合网亚洲综合天堂网| 亚洲成人77777| 亚洲性日韩精品一区二区| 午夜天堂视频| 亚洲午夜片| 中国一级特黄大片在线观看| 国产爽爽视频| 视频国产精品丝袜第一页| 露脸国产精品自产在线播| 福利国产微拍广场一区视频在线| 婷婷伊人五月| AⅤ色综合久久天堂AV色综合| 欧美日韩综合网| 91欧美在线| 国产午夜福利在线小视频| 国产三级国产精品国产普男人| 麻豆国产在线观看一区二区 | 国产精品丝袜视频| 爽爽影院十八禁在线观看| 激情五月婷婷综合网| 久久天天躁狠狠躁夜夜躁| 日本人又色又爽的视频| 免费高清毛片| 国产免费高清无需播放器|