999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

BELL POLYNOMIALS AND ITS SOME IDENTITIES

2017-11-06 09:36:38GUOJingLIXiaoxue
數學雜志 2017年6期
關鍵詞:數學方法

GUO Jing,LI Xiao-xue

(1.School of Mathematics and Computer Science,Jiangxi Science&Technology Normal University,Nanchang 330038,China)

(2.School of Mathematics,Northwest University,Xi’an 710127,China)

BELL POLYNOMIALS AND ITS SOME IDENTITIES

GUO Jing1,LI Xiao-xue2

(1.School of Mathematics and Computer Science,Jiangxi Science&Technology Normal University,Nanchang 330038,China)

(2.School of Mathematics,Northwest University,Xi’an 710127,China)

In this paper,we introduce a new polynomial called Bell polynomials.By using the elementary and combinational methods,we prove some identities for this polynomials.As an application of these identities,we give an interesting congruence for Bell numbers.

Bell numbers;Bell polynomials;identity;combinational method

1 Introduction

For any integersn≥k≥0,letS(n,k)denote the number of partitions of a set withnelements intoknonempty blocks.It is clear thatS(n,k)>0 for all 1≤k≤n,andS(n,k)=0 for 1≤n<k.PutS(0,0)=1 andS(0,k)=0 fork≥1,S(n,0)=0 forn≥1.These numbers were introduced by Stirling in his book“Methodus Di ff erentialis”(see[3–5]).Now they are called as the Stirling numbers of the second kind.These numbers satisfy the recurrence relation

The number of all partitions of a set withnelements is

called also a Bell number(or exponential number),related contents can be found in many papers or books.For example,see[6–8].

These numbers satisfy the recurrence formula

whereB(0)=1 by de finition.

The generating function ofB(n)is given by

where exp(y)=ey.

The numbersB(n)can be represented also as the sum of a convergent series(Dobinski’s formula)

see Pólya and Szeg?[9]for these basic properties.

In this paper,we introduce a new polynomialsB(x,n)(called Bell polynomials)as follows

It is clear thatB(0,x)=1,B(1,x)=x,B(2,x)=x+x2,B(3,x)=x+3x2+x3,···.Ifx=1,thenB(n,1)=B(n),the well known Bell numbers.About the properties ofB(n,x),it seems that none had studied it yet,at least we have not seen any related papers before.The problem is interesting,because it can help us to further understand the properties of Bell numbers.

The main purpose of this paper is using the elementary and combinational methods to study the computational problem of the sums

Theorem 1Letkbe a positive integer withk≥1.Then for any positive integern≥1,we have the identity

where the polynomialsB(n,x)satisfy the recurrence formulaB(0,x)=1,B(1,x)=x,B(2,x)=x+x2,B(3,x)=x+3x2+x3,and

For the polynomialsB(n,x),we also have a similar Dobinski’s formula.

Theorem 2For any positive integern≥1,we have the identities

From Theorem 1 and the recurrence formula ofB(n,x),we may immediately deduce the following congruence.

Corollary 1Letpbe an odd prime.Then for any positive integerk≥1 with(k,p)=1,we have the congruence

Corollary 2For any positive integern,we have the identity

2 Proof of the Theorems

In this section,we shall complete the proofs of our theorems.First we give a sample lemma,which are necessary in the proof of our theorems.Hereinafter,we shall use some elementary number theory contents and properties of power series,all of these can be found in references[1]and[2],so they will not be repeated here.

LemmaFor any real numberx,let functionf(t)=exp(x(et?1)),then we havef(n)(0)=B(n,x)for all integersn≥0,wheref(n)(t)denotes thenthderivative off(t)for variablet.

ProofWe prove this lemma by complete induction.It is clear thatf(0)=1=B(0,x),f′(t)=xet·exp(x(et?1))=xet·f(t),andf′(0)=x=B(1,x).So the lemma is true forn=0,1.Assume thatf(n)(0)=B(n,x)for all 0≤n≤r.Then note thatf′(t)=xet·f(t),so from the properties of derivative(Newton-Leibnitz formula),we have

Applying(2.1)and inductive hypothesis,we have

That is,f(r+1)(0)=B(r+1,x).

Now the lemma follows from the complete induction.

Proof of Theorem 1For any positive integerk≥2,it is clear thatfk(t)=exp(kx(et?1)),then from(1.4),we have

On the other hand,letg(t)=fk(t)=exp(kx(et?1)),then from the de finition of the power series and lemma,we also have

Combining(2.2)and(2.3)we may immediately deduce the identity

This proves Theorem 1.

Proof of Theorem 2Applying the power serieswe have

Comparing the coefficients oftnin(1.4)and(2.4),we may immediately deduce the identity

This proves Theorem 2.

Proof of Corollary 1Letpbe an odd prime,taken=p+1 in Theorem 1,then from the properties ofB(n,x)and Theorem 1,we have

or

Note thatk≥2 anda1+a2+···+ak=p+1,so if there are three ofa1,a2,···,akare positive integers,then

If there are only two ofa1,a2,···,akare positive integers,and both of them are greater than one,then we also have

If there are only two ofa1,a2,···,akare positive integers,and one isp,another is 1,then we also have

If only one ofa1,a2,···,akare positive integers,then it must bep+1.This time we have

Combining(2.5)–(2.10)and note that identity

we have

or

This proves the first congruence of Corollary 1.The second congruence follows from the second identity of Corollary 2 withn=p.

Proof of Corollary 2Letf(t,x)=exp(x(et?1)),then from(1.4),we have

On the other hand,from the de finition off(t,x),we also have

Comparing the coefficients oftnin(2.11)and(2.12),we may immediately deduce the identity

Note that the recurrence formulafrom(2.13)we may immediately deduce the identityThis completes the proofs of our all results.

[1]Tom M Apostol.Introduction to analytic number theory[M].New York:Springer-Verlag,1976.

[2]Tom M Apostol.Mathematical analysis(2nd ed.)[M].Boston:Addison-Wesley Publishing Co.,1974.

[3]Stirling J.Methodus differentialis[M].Londini:Sive Tractatus de Summation et Interpolazione Serierum In finitarum,1730.

[4]Boole G.Calculus of finite differences[M].London:Chelsea Publishing Company,1860.

[5]Caralambides C A.On weighted Stirling and other related numbers and come combinatorial applications[J].Fibonacci Quar.,1984,22:296–309.

[6]Conway H J,Guy R K.The book of numbers[M].New York:Copernicus,1996.

[7]Corcino C B.An asymptotic for ther-Bell numbers[J].Matimyás Mat.,2001,24:9–18.

[8]Tan M H,Xiang Y H,Zha Z W.Someinifite summation identities of the second kind[J].J.Math.,2013,33(3):388–392.

[9]Pólya G,Szeg? G.Problems and theorems in analysis I[M].New York:Springer-Verlag,1972.

關于Bell多項式及其它的一些恒等式

過 靜1,李小雪2
(1.江西科技師范大學數學與計算機科學學院,江西南昌 330038)
(2.西北大學數學學院,陜西西安 710127)

本文引入了一個新的多項式,即Bell多項式.利用初等數論及組合方法,證明了包含該多項式的一些恒等式.作為這些恒等式的應用,給出了關于Bell數的同余式.

Bell數;Bell多項式;恒等式;組合方法

O157.1

11B37;11B83

A

0255-7797(2017)06-1201-06

date:2015-04-14Accepted date:2015-07-06

Supported by National Natural Science Foundation of China(11371291);Jiangxi Science and Technology Normal University(xjzd2015002).

Biography:Guo Jing(1973–),female,born at Jinxian,Jiangxi,associate professor,major in mathematics.

猜你喜歡
數學方法
我們愛數學
學習方法
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
捕魚
數學也瘋狂
錯在哪里
主站蜘蛛池模板: 中文国产成人精品久久| 欧美日韩高清在线| 国产成人艳妇AA视频在线| 四虎永久免费地址| 日韩成人在线网站| 97国产在线观看| 全部免费毛片免费播放| 三级国产在线观看| 全部毛片免费看| 欧美一级99在线观看国产| 制服丝袜国产精品| 狠狠做深爱婷婷久久一区| 一本一道波多野结衣av黑人在线| 色综合久久无码网| 国产国模一区二区三区四区| 国产在线精品网址你懂的| 欧美中文字幕一区二区三区| 亚洲成人在线网| 玖玖精品视频在线观看| 欧美成人精品一级在线观看| 国产一级毛片网站| 国产在线观看91精品亚瑟| 国产成人一二三| 午夜无码一区二区三区| 亚洲无码精彩视频在线观看| 国产免费久久精品44| 亚洲无线一二三四区男男| 国产91精品久久| 亚洲无码一区在线观看| 毛片视频网址| 91久久夜色精品| 亚洲精品第五页| 黄色网页在线播放| 99ri精品视频在线观看播放| 国产乱子伦无码精品小说| 色一情一乱一伦一区二区三区小说| 久久国产精品无码hdav| 国产女人在线观看| 免费观看男人免费桶女人视频| 国产极品美女在线观看| 9966国产精品视频| 国产亚洲精品无码专| 国产在线日本| 亚洲成人动漫在线| 国产精品女熟高潮视频| 国产精品亚欧美一区二区| 亚洲激情区| 伊人福利视频| 成人国产精品视频频| 国产欧美一区二区三区视频在线观看| 国产麻豆精品在线观看| 免费国产黄线在线观看| 国产精品欧美激情| 日韩一区二区在线电影| 欧美午夜网| 国产欧美日韩视频一区二区三区| 中文字幕欧美日韩高清| 最新国产麻豆aⅴ精品无| 久久久受www免费人成| 国产精品久久久久久久伊一| 国产成人精品免费av| 日韩精品一区二区三区大桥未久| 九色综合伊人久久富二代| 波多野结衣爽到高潮漏水大喷| 岛国精品一区免费视频在线观看| 老司机aⅴ在线精品导航| 久久婷婷六月| 久久久久青草线综合超碰| 免费看美女自慰的网站| 国产精品极品美女自在线网站| 99精品视频播放| 真实国产精品vr专区| 一区二区无码在线视频| a毛片免费在线观看| 蜜芽一区二区国产精品| 国产精品无码翘臀在线看纯欲| 欧美激情视频一区二区三区免费| a网站在线观看| 伊人无码视屏| 亚洲精品国产综合99| 四虎永久免费地址在线网站| 少妇人妻无码首页|