999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

BELL POLYNOMIALS AND ITS SOME IDENTITIES

2017-11-06 09:36:38GUOJingLIXiaoxue
數學雜志 2017年6期
關鍵詞:數學方法

GUO Jing,LI Xiao-xue

(1.School of Mathematics and Computer Science,Jiangxi Science&Technology Normal University,Nanchang 330038,China)

(2.School of Mathematics,Northwest University,Xi’an 710127,China)

BELL POLYNOMIALS AND ITS SOME IDENTITIES

GUO Jing1,LI Xiao-xue2

(1.School of Mathematics and Computer Science,Jiangxi Science&Technology Normal University,Nanchang 330038,China)

(2.School of Mathematics,Northwest University,Xi’an 710127,China)

In this paper,we introduce a new polynomial called Bell polynomials.By using the elementary and combinational methods,we prove some identities for this polynomials.As an application of these identities,we give an interesting congruence for Bell numbers.

Bell numbers;Bell polynomials;identity;combinational method

1 Introduction

For any integersn≥k≥0,letS(n,k)denote the number of partitions of a set withnelements intoknonempty blocks.It is clear thatS(n,k)>0 for all 1≤k≤n,andS(n,k)=0 for 1≤n<k.PutS(0,0)=1 andS(0,k)=0 fork≥1,S(n,0)=0 forn≥1.These numbers were introduced by Stirling in his book“Methodus Di ff erentialis”(see[3–5]).Now they are called as the Stirling numbers of the second kind.These numbers satisfy the recurrence relation

The number of all partitions of a set withnelements is

called also a Bell number(or exponential number),related contents can be found in many papers or books.For example,see[6–8].

These numbers satisfy the recurrence formula

whereB(0)=1 by de finition.

The generating function ofB(n)is given by

where exp(y)=ey.

The numbersB(n)can be represented also as the sum of a convergent series(Dobinski’s formula)

see Pólya and Szeg?[9]for these basic properties.

In this paper,we introduce a new polynomialsB(x,n)(called Bell polynomials)as follows

It is clear thatB(0,x)=1,B(1,x)=x,B(2,x)=x+x2,B(3,x)=x+3x2+x3,···.Ifx=1,thenB(n,1)=B(n),the well known Bell numbers.About the properties ofB(n,x),it seems that none had studied it yet,at least we have not seen any related papers before.The problem is interesting,because it can help us to further understand the properties of Bell numbers.

The main purpose of this paper is using the elementary and combinational methods to study the computational problem of the sums

Theorem 1Letkbe a positive integer withk≥1.Then for any positive integern≥1,we have the identity

where the polynomialsB(n,x)satisfy the recurrence formulaB(0,x)=1,B(1,x)=x,B(2,x)=x+x2,B(3,x)=x+3x2+x3,and

For the polynomialsB(n,x),we also have a similar Dobinski’s formula.

Theorem 2For any positive integern≥1,we have the identities

From Theorem 1 and the recurrence formula ofB(n,x),we may immediately deduce the following congruence.

Corollary 1Letpbe an odd prime.Then for any positive integerk≥1 with(k,p)=1,we have the congruence

Corollary 2For any positive integern,we have the identity

2 Proof of the Theorems

In this section,we shall complete the proofs of our theorems.First we give a sample lemma,which are necessary in the proof of our theorems.Hereinafter,we shall use some elementary number theory contents and properties of power series,all of these can be found in references[1]and[2],so they will not be repeated here.

LemmaFor any real numberx,let functionf(t)=exp(x(et?1)),then we havef(n)(0)=B(n,x)for all integersn≥0,wheref(n)(t)denotes thenthderivative off(t)for variablet.

ProofWe prove this lemma by complete induction.It is clear thatf(0)=1=B(0,x),f′(t)=xet·exp(x(et?1))=xet·f(t),andf′(0)=x=B(1,x).So the lemma is true forn=0,1.Assume thatf(n)(0)=B(n,x)for all 0≤n≤r.Then note thatf′(t)=xet·f(t),so from the properties of derivative(Newton-Leibnitz formula),we have

Applying(2.1)and inductive hypothesis,we have

That is,f(r+1)(0)=B(r+1,x).

Now the lemma follows from the complete induction.

Proof of Theorem 1For any positive integerk≥2,it is clear thatfk(t)=exp(kx(et?1)),then from(1.4),we have

On the other hand,letg(t)=fk(t)=exp(kx(et?1)),then from the de finition of the power series and lemma,we also have

Combining(2.2)and(2.3)we may immediately deduce the identity

This proves Theorem 1.

Proof of Theorem 2Applying the power serieswe have

Comparing the coefficients oftnin(1.4)and(2.4),we may immediately deduce the identity

This proves Theorem 2.

Proof of Corollary 1Letpbe an odd prime,taken=p+1 in Theorem 1,then from the properties ofB(n,x)and Theorem 1,we have

or

Note thatk≥2 anda1+a2+···+ak=p+1,so if there are three ofa1,a2,···,akare positive integers,then

If there are only two ofa1,a2,···,akare positive integers,and both of them are greater than one,then we also have

If there are only two ofa1,a2,···,akare positive integers,and one isp,another is 1,then we also have

If only one ofa1,a2,···,akare positive integers,then it must bep+1.This time we have

Combining(2.5)–(2.10)and note that identity

we have

or

This proves the first congruence of Corollary 1.The second congruence follows from the second identity of Corollary 2 withn=p.

Proof of Corollary 2Letf(t,x)=exp(x(et?1)),then from(1.4),we have

On the other hand,from the de finition off(t,x),we also have

Comparing the coefficients oftnin(2.11)and(2.12),we may immediately deduce the identity

Note that the recurrence formulafrom(2.13)we may immediately deduce the identityThis completes the proofs of our all results.

[1]Tom M Apostol.Introduction to analytic number theory[M].New York:Springer-Verlag,1976.

[2]Tom M Apostol.Mathematical analysis(2nd ed.)[M].Boston:Addison-Wesley Publishing Co.,1974.

[3]Stirling J.Methodus differentialis[M].Londini:Sive Tractatus de Summation et Interpolazione Serierum In finitarum,1730.

[4]Boole G.Calculus of finite differences[M].London:Chelsea Publishing Company,1860.

[5]Caralambides C A.On weighted Stirling and other related numbers and come combinatorial applications[J].Fibonacci Quar.,1984,22:296–309.

[6]Conway H J,Guy R K.The book of numbers[M].New York:Copernicus,1996.

[7]Corcino C B.An asymptotic for ther-Bell numbers[J].Matimyás Mat.,2001,24:9–18.

[8]Tan M H,Xiang Y H,Zha Z W.Someinifite summation identities of the second kind[J].J.Math.,2013,33(3):388–392.

[9]Pólya G,Szeg? G.Problems and theorems in analysis I[M].New York:Springer-Verlag,1972.

關于Bell多項式及其它的一些恒等式

過 靜1,李小雪2
(1.江西科技師范大學數學與計算機科學學院,江西南昌 330038)
(2.西北大學數學學院,陜西西安 710127)

本文引入了一個新的多項式,即Bell多項式.利用初等數論及組合方法,證明了包含該多項式的一些恒等式.作為這些恒等式的應用,給出了關于Bell數的同余式.

Bell數;Bell多項式;恒等式;組合方法

O157.1

11B37;11B83

A

0255-7797(2017)06-1201-06

date:2015-04-14Accepted date:2015-07-06

Supported by National Natural Science Foundation of China(11371291);Jiangxi Science and Technology Normal University(xjzd2015002).

Biography:Guo Jing(1973–),female,born at Jinxian,Jiangxi,associate professor,major in mathematics.

猜你喜歡
數學方法
我們愛數學
學習方法
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
捕魚
數學也瘋狂
錯在哪里
主站蜘蛛池模板: 国产福利在线免费| 国产99在线观看| 538国产视频| 国产粉嫩粉嫩的18在线播放91 | 2021天堂在线亚洲精品专区| 伊人久久久久久久| 青青操视频在线| 国产精品男人的天堂| 亚洲av无码人妻| 人妻无码AⅤ中文字| 99re视频在线| 影音先锋丝袜制服| 国产真实乱人视频| 国产午夜在线观看视频| 美女扒开下面流白浆在线试听 | 真人高潮娇喘嗯啊在线观看 | 国产欧美精品专区一区二区| 国产精品蜜芽在线观看| 亚洲人成日本在线观看| 国产xxxxx免费视频| 久久久久久尹人网香蕉| 欧美成人一级| 午夜啪啪福利| 五月婷婷精品| 99精品久久精品| 精品国产福利在线| 在线播放真实国产乱子伦| AV片亚洲国产男人的天堂| 国产视频你懂得| 国产高清在线观看91精品| 在线视频精品一区| 91视频99| 激情六月丁香婷婷| 精品国产毛片| 国产真实乱子伦视频播放| 亚洲欧洲日产国产无码AV| 2021最新国产精品网站| 日韩专区第一页| 国产精品成人免费视频99| 久久香蕉国产线看观看式| 中文字幕不卡免费高清视频| 国产裸舞福利在线视频合集| 毛片三级在线观看| 国产xx在线观看| 久久久久久久久久国产精品| 亚洲av成人无码网站在线观看| 一本久道热中字伊人| 国产视频一区二区在线观看| 视频二区亚洲精品| 久久人妻xunleige无码| 日韩成人免费网站| 国产人妖视频一区在线观看| 国产精品亚洲专区一区| 亚洲欧美日韩天堂| 国产精欧美一区二区三区| 欧美日韩国产在线人| 国产1区2区在线观看| 国产va欧美va在线观看| 国产成人精品高清不卡在线| 亚洲第一国产综合| 亚洲精品国产首次亮相| 亚洲欧洲美色一区二区三区| 国产高清在线观看91精品| Aⅴ无码专区在线观看| 欧美日韩国产在线观看一区二区三区| 国产欧美日韩综合一区在线播放| 萌白酱国产一区二区| 亚洲综合色婷婷中文字幕| 亚洲女人在线| 91人人妻人人做人人爽男同| 玩两个丰满老熟女久久网| 人妻中文久热无码丝袜| 久久精品欧美一区二区| 性欧美在线| 国产情侣一区| 91精品视频播放| 国产男人天堂| 国产免费精彩视频| 欧美一区中文字幕| 99ri国产在线| 国产精品片在线观看手机版| 高h视频在线|