999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

BELL POLYNOMIALS AND ITS SOME IDENTITIES

2017-11-06 09:36:38GUOJingLIXiaoxue
數學雜志 2017年6期
關鍵詞:數學方法

GUO Jing,LI Xiao-xue

(1.School of Mathematics and Computer Science,Jiangxi Science&Technology Normal University,Nanchang 330038,China)

(2.School of Mathematics,Northwest University,Xi’an 710127,China)

BELL POLYNOMIALS AND ITS SOME IDENTITIES

GUO Jing1,LI Xiao-xue2

(1.School of Mathematics and Computer Science,Jiangxi Science&Technology Normal University,Nanchang 330038,China)

(2.School of Mathematics,Northwest University,Xi’an 710127,China)

In this paper,we introduce a new polynomial called Bell polynomials.By using the elementary and combinational methods,we prove some identities for this polynomials.As an application of these identities,we give an interesting congruence for Bell numbers.

Bell numbers;Bell polynomials;identity;combinational method

1 Introduction

For any integersn≥k≥0,letS(n,k)denote the number of partitions of a set withnelements intoknonempty blocks.It is clear thatS(n,k)>0 for all 1≤k≤n,andS(n,k)=0 for 1≤n<k.PutS(0,0)=1 andS(0,k)=0 fork≥1,S(n,0)=0 forn≥1.These numbers were introduced by Stirling in his book“Methodus Di ff erentialis”(see[3–5]).Now they are called as the Stirling numbers of the second kind.These numbers satisfy the recurrence relation

The number of all partitions of a set withnelements is

called also a Bell number(or exponential number),related contents can be found in many papers or books.For example,see[6–8].

These numbers satisfy the recurrence formula

whereB(0)=1 by de finition.

The generating function ofB(n)is given by

where exp(y)=ey.

The numbersB(n)can be represented also as the sum of a convergent series(Dobinski’s formula)

see Pólya and Szeg?[9]for these basic properties.

In this paper,we introduce a new polynomialsB(x,n)(called Bell polynomials)as follows

It is clear thatB(0,x)=1,B(1,x)=x,B(2,x)=x+x2,B(3,x)=x+3x2+x3,···.Ifx=1,thenB(n,1)=B(n),the well known Bell numbers.About the properties ofB(n,x),it seems that none had studied it yet,at least we have not seen any related papers before.The problem is interesting,because it can help us to further understand the properties of Bell numbers.

The main purpose of this paper is using the elementary and combinational methods to study the computational problem of the sums

Theorem 1Letkbe a positive integer withk≥1.Then for any positive integern≥1,we have the identity

where the polynomialsB(n,x)satisfy the recurrence formulaB(0,x)=1,B(1,x)=x,B(2,x)=x+x2,B(3,x)=x+3x2+x3,and

For the polynomialsB(n,x),we also have a similar Dobinski’s formula.

Theorem 2For any positive integern≥1,we have the identities

From Theorem 1 and the recurrence formula ofB(n,x),we may immediately deduce the following congruence.

Corollary 1Letpbe an odd prime.Then for any positive integerk≥1 with(k,p)=1,we have the congruence

Corollary 2For any positive integern,we have the identity

2 Proof of the Theorems

In this section,we shall complete the proofs of our theorems.First we give a sample lemma,which are necessary in the proof of our theorems.Hereinafter,we shall use some elementary number theory contents and properties of power series,all of these can be found in references[1]and[2],so they will not be repeated here.

LemmaFor any real numberx,let functionf(t)=exp(x(et?1)),then we havef(n)(0)=B(n,x)for all integersn≥0,wheref(n)(t)denotes thenthderivative off(t)for variablet.

ProofWe prove this lemma by complete induction.It is clear thatf(0)=1=B(0,x),f′(t)=xet·exp(x(et?1))=xet·f(t),andf′(0)=x=B(1,x).So the lemma is true forn=0,1.Assume thatf(n)(0)=B(n,x)for all 0≤n≤r.Then note thatf′(t)=xet·f(t),so from the properties of derivative(Newton-Leibnitz formula),we have

Applying(2.1)and inductive hypothesis,we have

That is,f(r+1)(0)=B(r+1,x).

Now the lemma follows from the complete induction.

Proof of Theorem 1For any positive integerk≥2,it is clear thatfk(t)=exp(kx(et?1)),then from(1.4),we have

On the other hand,letg(t)=fk(t)=exp(kx(et?1)),then from the de finition of the power series and lemma,we also have

Combining(2.2)and(2.3)we may immediately deduce the identity

This proves Theorem 1.

Proof of Theorem 2Applying the power serieswe have

Comparing the coefficients oftnin(1.4)and(2.4),we may immediately deduce the identity

This proves Theorem 2.

Proof of Corollary 1Letpbe an odd prime,taken=p+1 in Theorem 1,then from the properties ofB(n,x)and Theorem 1,we have

or

Note thatk≥2 anda1+a2+···+ak=p+1,so if there are three ofa1,a2,···,akare positive integers,then

If there are only two ofa1,a2,···,akare positive integers,and both of them are greater than one,then we also have

If there are only two ofa1,a2,···,akare positive integers,and one isp,another is 1,then we also have

If only one ofa1,a2,···,akare positive integers,then it must bep+1.This time we have

Combining(2.5)–(2.10)and note that identity

we have

or

This proves the first congruence of Corollary 1.The second congruence follows from the second identity of Corollary 2 withn=p.

Proof of Corollary 2Letf(t,x)=exp(x(et?1)),then from(1.4),we have

On the other hand,from the de finition off(t,x),we also have

Comparing the coefficients oftnin(2.11)and(2.12),we may immediately deduce the identity

Note that the recurrence formulafrom(2.13)we may immediately deduce the identityThis completes the proofs of our all results.

[1]Tom M Apostol.Introduction to analytic number theory[M].New York:Springer-Verlag,1976.

[2]Tom M Apostol.Mathematical analysis(2nd ed.)[M].Boston:Addison-Wesley Publishing Co.,1974.

[3]Stirling J.Methodus differentialis[M].Londini:Sive Tractatus de Summation et Interpolazione Serierum In finitarum,1730.

[4]Boole G.Calculus of finite differences[M].London:Chelsea Publishing Company,1860.

[5]Caralambides C A.On weighted Stirling and other related numbers and come combinatorial applications[J].Fibonacci Quar.,1984,22:296–309.

[6]Conway H J,Guy R K.The book of numbers[M].New York:Copernicus,1996.

[7]Corcino C B.An asymptotic for ther-Bell numbers[J].Matimyás Mat.,2001,24:9–18.

[8]Tan M H,Xiang Y H,Zha Z W.Someinifite summation identities of the second kind[J].J.Math.,2013,33(3):388–392.

[9]Pólya G,Szeg? G.Problems and theorems in analysis I[M].New York:Springer-Verlag,1972.

關于Bell多項式及其它的一些恒等式

過 靜1,李小雪2
(1.江西科技師范大學數學與計算機科學學院,江西南昌 330038)
(2.西北大學數學學院,陜西西安 710127)

本文引入了一個新的多項式,即Bell多項式.利用初等數論及組合方法,證明了包含該多項式的一些恒等式.作為這些恒等式的應用,給出了關于Bell數的同余式.

Bell數;Bell多項式;恒等式;組合方法

O157.1

11B37;11B83

A

0255-7797(2017)06-1201-06

date:2015-04-14Accepted date:2015-07-06

Supported by National Natural Science Foundation of China(11371291);Jiangxi Science and Technology Normal University(xjzd2015002).

Biography:Guo Jing(1973–),female,born at Jinxian,Jiangxi,associate professor,major in mathematics.

猜你喜歡
數學方法
我們愛數學
學習方法
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
捕魚
數學也瘋狂
錯在哪里
主站蜘蛛池模板: 色男人的天堂久久综合| 国产18在线| 黄色网页在线观看| 亚洲高清无码精品| 色婷婷在线影院| 欧美日韩资源| 再看日本中文字幕在线观看| 日韩免费成人| 无码啪啪精品天堂浪潮av| A级全黄试看30分钟小视频| 尤物成AV人片在线观看| 91最新精品视频发布页| 欧美另类第一页| 国产精品亚洲五月天高清| 国产不卡一级毛片视频| 日韩二区三区| 久久久久中文字幕精品视频| 亚洲综合九九| 免费观看男人免费桶女人视频| 免费毛片视频| 四虎永久免费地址在线网站| 99无码中文字幕视频| 伊人久久影视| 国产色偷丝袜婷婷无码麻豆制服| 国产成人精品一区二区免费看京| 欧美视频在线不卡| 91精品最新国内在线播放| 国产免费久久精品44| 国产精品久久久久鬼色| 在线国产三级| 久久人人妻人人爽人人卡片av| 亚洲AV永久无码精品古装片| 国产一区二区色淫影院| 亚洲人成高清| 久久精品aⅴ无码中文字幕| 少妇精品久久久一区二区三区| 欧美一级爱操视频| 亚洲国产亚综合在线区| 欧美97色| 国产麻豆aⅴ精品无码| 国产色爱av资源综合区| 亚洲精品成人7777在线观看| 亚洲午夜18| 亚洲无码精品在线播放| 麻豆精品在线视频| 欧美成人综合在线| 一级不卡毛片| 女同久久精品国产99国| 天天综合网在线| 爱爱影院18禁免费| 亚洲综合在线最大成人| 欧美一区福利| 51国产偷自视频区视频手机观看 | 高清精品美女在线播放| 国产在线八区| 欧美视频在线观看第一页| 国产在线视频导航| 91精品福利自产拍在线观看| 尤物视频一区| 91福利免费| 国产情精品嫩草影院88av| 成人免费视频一区| 综合五月天网| 久久亚洲精少妇毛片午夜无码| 国产高清不卡| 免费人成视频在线观看网站| 女人18毛片一级毛片在线| 国产精品视频第一专区| 乱人伦视频中文字幕在线| 国产精品主播| 国产日韩欧美一区二区三区在线| 欧美精品亚洲精品日韩专区va| 91在线无码精品秘九色APP | 亚洲AV无码久久天堂| 91娇喘视频| 欧美日韩另类在线| 国产成人凹凸视频在线| 国产亚洲成AⅤ人片在线观看| 亚洲啪啪网| 色偷偷av男人的天堂不卡| 一区二区偷拍美女撒尿视频| 欧洲一区二区三区无码|