999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

QUASISYMMETRICALLY PACKING-MINIMAL MORAN SETS

2017-11-06 09:36:37LIYanzheHEQihan
數學雜志 2017年6期
關鍵詞:數學

LI Yan-zhe,HE Qi-han

(Colledge of Mathematics and Information Science,Guangxi University,Nanning 530004,China)

QUASISYMMETRICALLY PACKING-MINIMAL MORAN SETS

LI Yan-zhe,HE Qi-han

(Colledge of Mathematics and Information Science,Guangxi University,Nanning 530004,China)

In this paper,we study the problem of packing-minimality of 1-dimensional Moran sets.By using the principle of mass distribution,we obtain that a large class of Moran sets on the line with packing dimension 1 is quasisymmetrically packing-minimal,which extends a known result of quasisymmetrically packing-minimality.

quasisymmetric mapping;packing dimension;Moran set

1 Introduction

A homeomorphism mappingf:X→Y,whereXandYare two metric spaces,is said to be quasisymmetric if there is a homeomorphismη:[0,∞)→[0,∞)such that

for all triplesa,b,xof distinct points inX.Here we follow the notation in Heinonen[1]by using|x?y|to denote the distance between the two pointsxandyin every metric space.In particular,we also say thatfis ann-dimensional quasisymmetric mapping whenX=Y=Rn.

De finition 1We call a setE?Rnquasisymmetrically packing-minimal,if dimPf(E)≥dimPEfor anyn-dimensional quasisymmetric mappingf.

In this paper,we will show that a large class of Moran sets in R1of packing dimension 1 have quasisymmetric packing-minimality.

Similarly,we call a setE?Rnis quasisymmetrically Hausdor ff-minimal,if dimHf(E)≥dimHEfor anyn-dimensional quasisymmetric mappingf.Recall some results on the Hausdor ffdimensions of quasisymmetric images.First,n-dimensional quasisymmetric mappings are locally H?lder continuous[2],so if dimHE=0,then dimHf(E)=0 andEis quasisymmetrically Hausdor ff-minimal.In Euclidean space Rnwithn≥2,Gehring[3,4]obtainedthat for any subsetE?Rnof Hausdor ffdimensionn,its quasisymmetric image also has Hausdor ffdimensionn,soEis quasisymmetrically Hausdor ff-minimal.If 0<dimHE<1,there are 1-dimensional quasisymmetric mappingsfεandFεsuch that dimHfε(E)< ε(see[5])and dimHFε(E)>1?ε(see[6]),that is anyE?R1satisfies 0<dimHE<1 is not quasisymmetrically Hausdor ff-minimal.

For R1,Tukia[7]found an interesting fact,quite different from Gehring’s result for Rnwithn≥2,that there existsE?R1such that dimHE=1 and dimHf(E)<1 for some 1-dimensional quasisymmetric mappingf,soEis not quasisymmetrically Hausdor ff-minimal.

There is a question:what kinds of sets in R1are quasisymmetrically Hausdor ff-minimal?

For R1,many works were devoted to the quasisymmetrically Hausdor ff-minimal set,i.e.,the subsetE?R1satisfying dimHf(E)≥dimHEfor any 1-dimensional quasisymmetric mappingf.

Kovalev[5]showed that any quasisymmetrically Hausdor ff-minimal set in R1with dimHE>0 has full Hausdor ffdimension 1.Hakobyan[8]proved that middle interval Cantor sets of Hausdor ffdimension 1 are all quasisymmetrically Hausdor ff-minimal.Hu and Wen[9]obtained that some uniform Cantor sets of Hausdor ffdimension 1 are quasisymmetrically Hausdor ff-minimal.Dai,Wen,Xi and Xiong[10]found a large class of Moran sets of Hausdor ffdimension 1 which are quasisymmetrically Hausdor ff-minimal.

Compared with quasisymmetric Hausdor ff-minimality,there are few results on quasisymmetric packing-minimality.

Kovalev[5]showed that any quasisymmetrically packing-minimal set in R1with dimpE>0 has packing dimension 1.Li,Wu and Xi[11] find two classes of Moran sets of packing dimension 1 which are quasisymmetrically packing-minimal.Wang and Wen[12]obtained that the uniform Cantor sets of packing dimension 1 are quasisymmetrically packing-minimal.

In this paper,we will show that aresult of[11]is not accidents.In fact,a larger class of Moran sets on the line with packing dimension 1 is quasisymmetrically packing-minimal(Theorem 1).

This paper is organized as follows.In Section 2,we state our main results and give the introduction to the Moran sets.Some preliminaries are given in Section 3,including quasisymmetric mappings,Moran sets and certain probability measure supported on the quasisymmetric image.The key of this paper is to get the estimate in Lemma 1 for the above measure.Section 4 is the proof of Theorem 1.

2 De finition and Main Results

2.1 De finition of Moran Sets

Before the statement of theorems,we introduce the notion of Moran setsin R1.Letandbe sequences satisfyingnk≥2 andfor anyk≥1,setand ?0={?}with empty word?.Writeand(σ1···σk)? σk+1=σ1···σkσk+1.LetI?R1be a closed interval.Denote by|A|the diameter ofA?Rn.We say thatF={Iσ:σ∈?},which is a collection of closed intervals,has Moran structure(I,{nk},{ck,j}),ifI?=Iand for anyσ ∈?k?1,Iσ?1,···,Iσ?nk,whose interiors are pairwise disjoint,are subintervals ofIσsuch that

Then a Moran set determined byFis de fined by

where anyIσinFis called a basic interval of rankkifσ ∈?k.Denote byM(I,{nk},{ck,j})the class of all Moran sets associated withI,{nk}and{ck,j}.

For the classM(I,{nk},{ck,j}),we write

and

whereskis de fined by the equation

Ifσ ∈?k?1,k≥1,letbe the most left(or the most right)one ofIσ?1,···,Iσ?nk.Write

Some probability of quasisymmetric mappings and Moran sets can be seen in[13]and[14].

2.2 Main Results

The main result of paper are stated as follows.

Theorem 1SupposeE∈M(I,{nk},{ck,j}),r?>0 and supknk<∞,and there exist a costantl>1 such thatfor anyσ ∈?k?1andk≥2.If dimPE=1,then dimPf(E)=1 for any 1-dimensional quasisymmetric mappingsf.

Remark 1Without loss of generality,supposeandforσ ∈?k,k≥1,the conditions of Theorem 1 impliesck,1andck,nkis neither too“large”nor too“small”,and for 2≤i≤nk?1,ck,imay be very“small”,evenc?=0,butis not too“small”.

Remark 2Notice that the condition“and there exist a costantl>1 such thatfor anyσ ∈?k?1andk≥2”impliesnk≥3 for allk≥1.Notice that IfE∈M(I,{nk},{ck,j}),thenE∈M(I,{Nk},{Ck,q}),whereNk=n2k?1·n2k≥3 andCk,(i?1)n2k?1+j=c2k?1,i·c2k,jfor 1≤i≤n2k?1,1≤j≤n2k,so without loss of generality,we always assume thatnk≥3 for allk≥1 in this paper.

Example 1LetE∈M(I,{nk},{ck,j})withc?>0.Ifnk≥3 for allk≥1,thenr?≥c?>0,supknk< ∞andfor anyσ ∈?k?1andk≥2;if infknk=2,thenE∈M(I,{Nk},{Ck,q}),whereNkandCk,qare de fined the same as the above remark(Nk≥3),it is easy to obtain thatE∈M(I,{Nk},{Ck,q})satisfies the conditions of Theorem 1.Then by Theorem 1,if dimPE=1,we have dimPf(E)=1 for any 1-dimensional quasisymmetric mappingf.

Therefore Theorem 1 extends the results of Theorem 2 in[11].

Example 2LetEbe an uniform Cantor set(see[12])withc?>0.Ifnk≥3,thenr?=c?>0,supknk< ∞andfor anyσ ∈?k?1andk≥2;if infknk=2,thenE∈M(I,{Nk},{Ck,q}),whereNkandCk,qare de fined the same as the above remark(Nk≥3),it is easy to obtain thatE∈M(I,{Nk},{Ck,q})satisfies the conditions of Theorem 1.Then by Theorem 1,if dimPE=1,we have dimPf(E)=1 for any 1-dimensional quasisymmetric mappingf.

Therefore Theorem 1 extends the results of Theorem 1.2 in[12]whenc?>0.

3 Preliminaries

Before the proofs of the two theorems,we give some preliminaries.

The following fact on packing dimension can be found in Proposition 2.3 of[15].

Lemma 1LetE?Rnbe a Borel set,andμa probability measure supported onE.If there existsE′?Ewithμ(E′)>0 and a constantc>0 such that

then dimPE≥s.

We need some properties on quasisymmetry.For closed intervalI,setρIbe a closed interval with a length ofρ|I|and with the same center withI.

From[16],it is easy to check the following lemma.

Lemma 2Supposef:R1→R1is quasisymmetric,there exist constantsλ,Kρ>0,q≥1 andp∈(0,1]such that

and

whenever closed intervalI,I′satisfyingI?I′

The following lemma comes from[17].

Lemma 3SupposeEis a Moran set satisfying the following conditions

Then we have dimPE=s?.

It is easy to verify that if for a Moran setE∈M(I,{nk},{ck,j}),the conditions of Theorem 1 hold,thenEsatisfiesby Lemma 3,dimPE=s?.

The length ofσ ∈?kwill be denoted by|σ|(=k).

Fix a 1-dimensional quasisymmetric mappingf:R1→R1.Given a Moran setEand its basic intervalIσofEwith rankk,we also callf(Iσ)a basic interval off(E)with rankkfor convenience.LetJσ=f(Iσ).

3.1 The MeasureμdSupported on f(E)

Fixd∈(0,1).We will de fine a probability measureμdonf(E)as follows.

Without loss of generality,we setI=[0,1]the initial interval ofE.

Letμd(f([0,1]))=1,for everyk≥1,and for every basic intervalJσof rankk?1,we de fine

for 1≤j′≤nk.

3.2 Estimate ofμd(Jσ)

The next proposition can be found in[11].

Proposition 1SupposeEis the Moran set satisfyingand

for some constantα ∈(0,1).If s?=1,then there exists a subsequence{kt}tand a constantc>0 such that

for any basic intervalJσoff(E)with|σ|∈{kt}t.

By Proposition 1,we have the corollary below.

Corollary 1SupposeEis the Moran satisfies the conditions of Theorem 1.If dimPE=1,then there exists a subsequence{kt}tand a constantc>0 such that

for any basic intervalJσoff(E)with|σ|∈{kt}t.

ProofSincenk≥2,r?>0,we haveDk≤1?r?<1.Takeα=1?r?,we have notice that dimpE=s?by Lemma 3 and Proposition 1,the corollary follows.

4 Proof of Theorem 1

Let{kt}tbe the subsequence in Proposition 1.Let

Lemma 4Suppose thatnk≥3 andc?>0.Then there exists a constant∈>0 such that

for allσwith|σ|=k?1 and 1≤j1,j2≤nk.

ProofWith out loss of generality,we letJLσ=Jσ?1,JRσ=Jσ?nk,sincenk≥3.Takei0(1≤i0≤nk)as follows

Case 1Ifpicki0such thatthen 2≤i0≤nk?1,we have

Case 2Ifpicki0such thatwe have

By Lemma 2,we have

which imply

Therefore

where

Proposition 2μd(B)=0 ford∈(0,1).

ProofIt suffices to provefor anys.

Let

For anyσ,letJLσ=f(ILσ),JRσ=f(IRσ).Therefore,fort≥s,

By Lemma 4,we have

it follows from(4.1)and(4.2)that

which implies

Next we finish the proof of Theorem 1.

From the proposition above,we haveμd(f(E)B)=1>0.Fixx∈(f(E)B),then we can picktn↑∞satisfieswith some

notice thatrn→0 whenn→∞.

which impliesB(x,rn)?Jσ.

LetJσ?j1,Jσ?j2,···,Jσ?jl′(1≤l′≤nktn)be the basic intervals of rankktnmeetingB(x,rn).Then

Using the conclusion of Corollary 2,we get

Sincer? >0,for anyi,there exists a constantδ≥1,

hence|Iσ?ji|?(3δ)f?1(B(x,rn)),whereδ≥1.By Lemma 2,we have

whereK3δ >0 is a constant.This together with(4.4)gives

Letn→∞,then for anyx∈f(E)B,there exists a constantC′>0,such that

it follows fromμd(f(E)B)>0 and Lemma 1 that dimpf(E)≥d.Letd→1,we have

[1]Heinonen J.Lectures on analysis on metric spaces[M].New York:Springer-Verlag,2001.

[2]Ahlfors L V.Lectures on quasiconformal mappings(2nd ed.)[M].Unversity Lecture Series,Vol.38,Maryland:American Mathematical Society,2006.

[3]Gehring F W.TheLp-integrability of the partial derivatives of a quasiconformal mapping[J].Acta Math.,1973,130:265–277.

[4]Gehring F W,V?is?l? J.Hausdor ffdimension and quasiconformal mappings[J].J.London Math.Soc.,1973,6(2):504–512.

[5]Kovalev L V.Conformal dimension does not assume values between zero and one[J].Duke Math.J.,134(1):1–13,2006.

[6]Bishop C J.Quasiconformal mappings which increase dimension[J].Ann.Acad.Sci.Fenn.Math.,1999,24(2):397–407.

[7]Tukia P.Hausdor ffdimension and quasisymmetric mappings[J].Math.Scand.,1989,65(1):152–160.

[8]Hakobyan H.Cantor sets that are minimal for quasisymmetric mappings[J].J.Contemp.Math.Anal.,2006,41(2):13–21.

[9]Hu Meidan,Wen Shengyou.Quasisymmetrically minimal uniform Cantor sets[J].Topology.Appl.,2008,155(6):515–521.

[10]Dai Yuxia,Wen Zhixiong,Xi Lifeng,Xiong Ying.Quasisymmetrically minimal Moran sets and Hausdor ffdimension[J].Ann.Acad.Sci.Fenn.Math.,2011,36:139–151.

[11]Li Yanzhe,Wu Min,Xi Lifeng.Quasisymmetric minimality on packing dimension for Moran sets[J].J.Math.Anal.Appl.,2013,408:324–334.

[12]Wang Wen,Wen Shengyou.Quasisymmetric minimality of Cantor sets[J].Topology Appl.,2014,178:300–314.

[13]Lou Manli.Gap sequence and quasisymmetric mapping[J].J.Math.,2015,35:705–708.

[14]Liu Xiaoli,Liu Weibin.The Hausdor ffdimension of a class of Moran sets[J].J.Math.,2016,36:100–104.

[15]Falconer K.Techniques in fractal geometry[M].Chichester:John Wiley Sons Ltd,1997.

[16]Wu J M.Null sets for doubling and dyadic doubling measures[J].Ann.Acad.Sci.Fenn.Ser.A.Math.,1993,18(1):77–91.

[17]Hua Su,Rao Hui,Wen Zhiying,Wu Jun.On the structures and dimensions of Moran sets[J].Sci.China Ser.A.,2000,43(8):836–852.

擬對稱packing極小Moran集

李彥哲,何其涵
(廣西大學數學與信息科學學院,廣西南寧 530004)

本文研究了一維Moran集的擬對稱packing極小性的問題.利用質量分布原理的方法,獲得了直線上一類packing維數為1的Moran集為擬對稱packing極小集的結果,推廣了參考文獻中關于擬對稱packing極小性的已知結果.

擬對稱映射;packing維數;Moran集

O174.12

28A75;28A78;28A80

A

0255-7797(2017)06-1125-09

date:2016-08-15Accepted date:2016-11-09

Supported by NSFC(11626069);Guangxi Natural Science Foundation(2016GXNSFAA380003);Science Foundation of Guangxi University(XJZ150827).

Biography:Li Yanzhe(1986–),male,born at Guilin,Guangxi,lecturer,major in fractal geometry.

He Qihan.

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 国产精品jizz在线观看软件| 超碰色了色| 亚洲热线99精品视频| 国产资源免费观看| 亚洲国产精品日韩av专区| 亚洲床戏一区| 久久综合九九亚洲一区| 国产极品嫩模在线观看91| 国产白丝av| 国产99视频精品免费观看9e| 色综合a怡红院怡红院首页| 欧美日本激情| 乱人伦99久久| 亚洲第一成人在线| 色综合天天操| www亚洲天堂| 热re99久久精品国99热| 最新无码专区超级碰碰碰| 91青青视频| a级毛片免费播放| 夜夜高潮夜夜爽国产伦精品| 91系列在线观看| 美女毛片在线| 中文毛片无遮挡播放免费| 88av在线| 人妻无码中文字幕一区二区三区| 人妖无码第一页| 国产福利在线免费观看| 国产亚洲精| 日韩乱码免费一区二区三区| 日本五区在线不卡精品| 夜夜爽免费视频| 亚洲欧美成aⅴ人在线观看| 国产h视频在线观看视频| 久久超级碰| 国产99免费视频| 国产成本人片免费a∨短片| 国产SUV精品一区二区| 欧美日韩精品一区二区视频| 国产精品福利导航| 99人妻碰碰碰久久久久禁片| 漂亮人妻被中出中文字幕久久 | 丁香六月综合网| 国产在线欧美| 亚洲国产中文精品va在线播放 | 偷拍久久网| 婷婷激情五月网| 国产成年无码AⅤ片在线| 日韩免费毛片| 青青极品在线| 国产麻豆福利av在线播放| 欧美国产中文| 国产本道久久一区二区三区| 亚瑟天堂久久一区二区影院| 国产成人一二三| 国产一区二区三区夜色| 精久久久久无码区中文字幕| 欧美日韩资源| 成年人久久黄色网站| 亚洲成人高清在线观看| 九九热精品在线视频| 国产亚洲男人的天堂在线观看| 激情综合婷婷丁香五月尤物| 国产成人精品18| 国产久操视频| 91在线视频福利| 国产黄在线免费观看| 日韩不卡高清视频| 日本免费福利视频| 欧美成人影院亚洲综合图| 亚洲男人的天堂久久香蕉网| 国产人人干| 亚洲无码A视频在线| 91国内外精品自在线播放| 国产最新无码专区在线| 夜夜爽免费视频| 99re热精品视频中文字幕不卡| 久久夜色撩人精品国产| 免费xxxxx在线观看网站| 亚洲高清无码久久久| 99在线视频免费| 99精品欧美一区|