999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

GENERALIZED RADFORD BIPRODUCT HOM-HOPF ALGEBRAS AND RELATED BRAIDED TENSOR CATEGORIES

2017-11-06 09:36:38MATianshuiWANGYongzhongLIULinlin
數學雜志 2017年6期
關鍵詞:數學

MA Tian-shuiWANG Yong-zhongLIU Lin-lin

(1.Department of Mathematics,School of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

(2.Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,School of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

(3.School of Mathematics and Information Science,Xinxiang University,Xinxiang 453003,China)

GENERALIZED RADFORD BIPRODUCT HOM-HOPF ALGEBRAS AND RELATED BRAIDED TENSOR CATEGORIES

MA Tian-shui1,2,WANG Yong-zhong3,LIU Lin-lin1

(1.Department of Mathematics,School of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

(2.Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,School of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

(3.School of Mathematics and Information Science,Xinxiang University,Xinxiang 453003,China)

In this paper,the Hom-type of Radford biproduct is introduced.By combining generalized smash product Hom-algebra and generalized smash coproduct Hom-coalgebra,we derive necessary and su ff cient conditions for them to be a Hom-bialgebra,which includes the well-known Radford biproduct.

Radford biproduct;quantum Yang-Baxter equation;Yetter-Drinfeld category

In this paper,we unify the Makhlouf-Panaite’s smash product in[10]and Ma-Li-Yang’s in[6],and then extend the Radford biproduct to a more general case.We also construct a class of braided tensor categories(extending the Yetter-Drinfeld category to the Hom-case),and provide a solution to the Hom-quantum Yang-Baxter equation.

2 Preliminaries

Throughout this paper,Kwill be a field,and all vector spaces,tensor products,and homomorphisms are overK.We use Sweedler’s notation for terminologies on coalgebras.For a coalgebraC,we write comultiplication Δ(c)=c1?c2for anyc∈C.And we denoteIdMfor the identity map fromMtoM.Any unexplained de finitions and notations can be found in[4–6,14].We now recall some useful de finitions.

De finition 2.1A Hom-algebra is a quadruple(A,μ,1A,α)(abbr.(A,α)),whereAis a linear space,μ:A?A?→Ais a linear map,1A∈Aandαis an automorphism ofA,such that

are satisfied fora,a′,a′′∈A.Here we use the notationμ(a?a′)=aa′.

Let(A,α)and(B,β)be two Hom-algebras.Then(A?B,α ? β)is a Hom-algebra(called tensor product Hom-algebra)with the multiplication(a?b)(a′?b′)=aa′?bb′and unit 1A?1B.

De finition 2.2A Hom-coalgebra is a quadruple(C,Δ,εC,β)(abbr.(C,β)),whereCis a linear space,Δ:C?→C?C,εC:C?→Kare linear maps,andβis an automorphism ofC,such that

are satisfied forc∈A.Here we use the notation Δ(c)=c1?c2(summation implicitly understood).

Let(C,α)and(D,β)be two Hom-coalgebras.Then(C?D,α?β)is a Hom-coalgebra(called tensor product Hom-coalgebra)with the comultiplication Δ(c?d)=c1?d1?c2?d2and counitεC? εD.

De finition 2.3A Hom-bialgebra is a sextuple(H,μ,1H,Δ,ε,γ)(abbr.(H,γ)),where(H,μ,1H,γ)is a Hom-algebra and(H,Δ,ε,γ)is a Hom-coalgebra,such that Δ andεare morphisms of Hom-algebras,i.e.,Δ(hh′)=Δ(h)Δ(h′);Δ(1H)=1H?1H,ε(hh′)=ε(h)ε(h′);ε(1H)=1.Furthermore,if there exists a linear mapS:H?→Hsuch that

then we call(H,μ,1H,Δ,ε,γ,S)(abbr.(H,γ,S))a Hom-Hopf algebra.

Let(H,γ)and(H′,γ′)be two Hom-bialgebras.The linear mapf:H?→H′is called a Hom-bialgebra map iff?γ=γ′?fand at the same timefis a bialgebra map in the usual sense.

De finition 2.4Let(A,β)be a Hom-algebra.A left(A,β)-Hom-module is a triple(M,?,α),whereMis a linear space,?:A?M?→Mis a linear map,andαis an automorphism ofM,such that

are satisfied fora,a′∈Aandm∈M.

Let(M,?M,αM)and(N,?N,αN)be two left(A,β)-Hom-modules.Then a linear morphismf:M?→Nis called a morphism of left(A,β)-Hom-modules iff(h?Mm)=h?Nf(m)andαN?f=f?αM.

De finition 2.5Let(H,β)be a Hom-bialgebra and(A,α)a Hom-algebra.If(A,?,α)is a left(H,β)-Hom-module and for allh∈Handa,a′∈A,

then(A,?,α)is called an(H,β)-module Hom-algebra.

De finition 2.6Let(C,β)be a Hom-coalgebra.A left(C,β)-Hom-comodule is a triple(M,ρ,α),whereMis a linear space,ρ:M?→C?M(writeρ(m)=m?1?m0,?m∈M)is a linear map,andαis an automorphism ofM,such that

are satisfied for allm∈M.

Let(M,ρM,αM)and(N,ρN,αN)be two left(C,β)-Hom-comodules.Then a linear mapf:M?→Nis called a map of left(C,β)-Hom-comodules iff(m)?1?f(m)0=m?1?f(m0)andαN?f=f?αM.

De finition 2.7Let(H,β)be a Hom-bialgebra and(C,α)a Hom-coalgebra.If(C,ρ,α)is a left(H,β)-Hom-comodule and for allc∈C,

then(C,ρ,α)is called an(H,β)-comodule Hom-coalgebra.

De finition 2.8Let(H,β)be a Hom-bialgebra and(C,α)a Hom-coalgebra.If(C,?,α)is a left(H,β)-Hom-module and for allh∈Handc∈A,

then(C,?,α)is called an(H,β)-module Hom-coalgebra.

De finition 2.9Let(H,β)be a Hom-bialgebra and(A,α)a Hom-algebra.If(A,ρ,α)is a left(H,β)-Hom-comodule and for alla,a′∈A,

then(A,ρ,α)is called an(H,β)-comodule Hom-algebra.

3 Generalized Radford Biproduct Hom-Hopf Algebra

In this section,we first introduce the notions of generalized smash product Hom-algebraA#mHand generalized Hom-smash coproduct Hom-coalgebra.Then the necessary and sufficient conditions forA#mHandonA?Hto be a Hom-bialgebra structure are derived.

Proposition 3.1Let(H,β)be a Hom-bialgebra,(A,?,α)an(H,β)-module Homalgebra andm∈Z.Then(A#mH,α?β)(A#mH=A?Has a linear space)with the multiplication(a?h)(a′?h′)=a(βm(h1)?α?1(a′))?β?1(h2)h′,wherea,a′∈A,h,h′∈H,and unit 1A?1His a Hom-algebra.In this case,we call(A#mH,α?β)generalized smash product Hom-algebra.

ProofIt is straightforward by the de finition of Hom-algebra.

Remarks(1)Noting that(A#0H,α ? β)is exactly the Ma-Li-Yang’s Hom-smash product in[5,6]and(A#?2H,α ? β)is exactly the Makhlouf-Panaite’s Hom-smash product in[10].

(2)Ifα=IdAandβ=IdHin(A#mH,α ? β),then one can obtain the usual smash productA#Hin[13].

(3)Let(H,μH,ΔH)be a bialgebra and(A,α)a leftH-module algebra in the usual sense with action denoted byH?A→A,h?ah·a.Letβ:H→Hbe a bialgebra endomorphism andα:A→Aan algebra endomorphism,such thatα(h·a)=β(h)·α(a)for allh∈Handa∈A.If we consider the Hom-bialgebraHβ=(H,β ?μH,ΔH?β,β)and the Hom-associative algebraAα=(A,α?μH,α),then(Aα,α)is a left(Hβ,β)-module Hom-algebra with actionHβ?Aα→Aα,h?ah?a:=α(h·a)=β(h)·α(a).

ProofStraightforward.

Proposition 3.2Let(H,β)be a Hom-bialgebra,(C,ρ,α)an(H,β)-comodule Homcoalgebra andn∈Z.Then()(=C?Has a linear space)with the comultiplication ΔCH(c?h)=c1?βn(c2(?1))β?1(h1)?α?1(c2(0))?h2,wherec∈C,h∈H,and counitεC?εHis a Hom-coalgebra.In this case,we call()generalized smash coproduct Hom-coalgebra.

ProofStraightforward.

Remarks(1)()is exactly the Li-Ma’s Hom-smash coproduct in[5].

(2)(2H,α ? β)is exactly the dual version of the Makhlouf-Panaite’s Hom-smash product in[10].

(3)Ifα=IdAandβ=IdHin(A#mH,α ? β),then one can obtain the usual smash coproductA×Hin[13].

Theorem 3.3Let(H,β)be a Hom-bialgebra,(A,α)a left(H,β)-module Hom-algebra with module structure?:H?A?→Aand a left(H,β)-comodule Hom-coalgebra with comodule structureρ:A?→H?A.Then the following are equivalent:

(i)(A◇mnH,μA#H,1A?1H,ΔAH,εA?εH,α?β)is a Hom-bialgebra,where(A#mH,α?β)is a generalized smash product Hom-algebra and()is a generalized smash coproduct Hom-coalgebra.

(ii)The following conditions hold:

(R1)(A,ρ,α)is an(H,β)-comodule Hom-algebra;(R2)(A,?,α)is an(H,β)-module Hom-coalgebra;

(R3)εAis a Hom-algebra map and ΔA(1A)=1A?1A;

(R4)ΔA(ab)=a1(βm+n+2(a2(?1))?α?1(b1))?α?1(a2(0))b2;

(R5)βn+1((βm+1(h1)?b)?1)h2?(βm+1(h1)?b)0=h1βn+2(b(?1))? βm+2(h2)?b(0),wherea,b∈B,h∈Handm,n∈Z.In this case,we call(A◇mnH,α?β)generalized Radford biproduct Hom-bialgebra.

ProofBy a tedious computation we can prove it.

Remarks(1)Whenm=n=0 in Theorem 3.3,we can get[5,Theorem 3.3].

(2)Whenα=IdAandβ=IdHin Theorem 3.3,then one can obtain[13,Theorem 1].

Proposition 3.4Let(H,β,SH)be a Hom-Hopf algebra,and(A,α)ba a Hom-algebra and a Hom-coalgebra.Assume that(A◇mnH,α ? β)is a generalized Radford biproduct Hom-bialgebra de fined as above,andSA:A→Ais a linear map such thatSA(a1)a2=a1SA(a2)=εA(a)1Aandα?SA=SA?αhold.Then(A◇mnH,α?β,SA◇mnH)is a Hom-Hopf algebra,where

ProofFor alla∈A,h∈H,we have

and the rest is direct.

4 Generalized Hom-Yetter-Drinfeld Category

In this section,we construct a class of braided tensor category,which extends the Yetter-Drinfeld category to the Hom-case.Next we give the concept of Hom-Yetter-Drinfeld module via generalized Radford biproduct Hom-Hopf algebra de fined in Theorem 3.3.

De finition 4.1Let(H,β)be a Hom-bialgebra,(U,?U,αU)a left(H,β)-module with action?U:H?U→U,h?uh?Uuand(U,ρU,αU)a left(H,β)-comodule with coactionρU:U→H?U,uu(?1)?u(0).Then we call(U,?U,ρU,αU)a(left-left)Hom-Yetter-Drinfeld module over(H,β)if the following condition holds:

for allh∈Handu∈U.

Proposition 4.2When(H,β)is a Hom-Hopf algebra,(HY D)is equivalent to

for allh∈H,u∈U.

Proof(HY D)(HY D)′.We have

(HY D)′=?(HY D)is proved as follows:

finishing the proof.

De finition 4.3Let(H,β)be a Hom-bialgebra.We denote byHHYD the category whose objects are Hom-Yetter-Drinfeld modules(U,?U,ρU,αU)over(H,β);the morphisms in the category are morphisms of left(H,β)-modules and left(H,β)-comodules.

In the following,we give a solution to the Hom-quantum Yang-Baxter equation introduced and studied by Yau in[16].

Proposition 4.4Let(H,β)be a Hom-bialgebra and(U,?U,ρU,αU),(V,?V,ρV,αV)∈HHYD.De fine the linear map

whereu∈Uandv∈V. Then we haveτU,V?(αU? αV)=(αV? αU)? τU,V,if(W,?W,ρW,αW)∈HHYD,the mapsatisfy the Hom-Yang-Baxter equation

ProofIt is easy to prove the first equality,so we only check the second one.For allu∈U,v∈Vandw∈W,we have

The proof is completed.

Lemma 4.5Let(H,β)be a Hom-bialgebra,if(U,?U,ρU,αU),(V,?V,ρV,αV)are(leftleft)Hom-Yetter-Drinfeld modules,then(U?V,?U?V,ρU?V,αU? αV)is a Hom-Yetter-Drinfeld module with structures

and

for allh∈H,u∈U,v∈V.

ProofIt is easy to check that(U?V,?U?V,αU? αV)is an(H,β)-Hom module and(U?V,ρU?V,αU? αV)is an(H,β)-Hom comodule.Now we check the condition(HY D).For allh∈H,u∈U,v∈V,we have

finishing the proof.

Lemma 4.6Let(H,β)be a Hom-bialgebra,and

With notation as above,de fine the linear map

whereu∈U,v∈Vandw∈W.ThenaU,V,Wis an ismorphism of left(H,β)-Hom-modules and left(H,β)-Hom-comodules.

ProofSame to the proof of[9,Proposition 3.2].

Lemma 4.7Let(H,β)be a Hom-bialgebra and(U,?U,ρU,αU),(V,?V,ρV,αV)∈HHYD.De fine the linear map

whereu∈Uandv∈V.ThencU,Vis a morphism of left(H,β)-Hom-modules and left(H,β)-Hom-comodules.

ProofFor allh∈H,u∈Uandv∈V,we have

and

finishing the proof.

Theorem 4.8Let(H,β)be a Hom-bialgebra.Then the Hom-Yetter-Drinfeld categoryHHYD is a pre-braided tensor category,with tensor product,associativity constraints,and pre-braiding in Lemmas 4.5,4.6 and 4.7,respectively,and the unitI=(K,IdK).

ProofThe proof of the pentagon axiom foraU,V,Wis same to the proof of[9,Theorem 3.4].Next we prove that the hexagonal relation forcU,V.Let(U,?U,ρU,αU),(V,?V,ρV,αV),(W,?W,ρW,αW)∈HHYD.Then for allu∈U,v∈Vandw∈W,we have

and and the rest is obvious.These complete the proof.

[1]Andruskiewitsch N,Schneider H-J.On the classi fication of finite-dimensional pointed Hopf algebras[J].Ann.Math.,2010,171(1):375–417.

[2]Hartwig J T,Larsson D,Silvestrov S D.Deformations of Lie algebras usingσ-derivations[J].J.Alg.,2006,295:314–361.

[3]Hu Naihong.q-Witt algebras,q-Lie algebras,q-holomorph structure and representations[J].Alg.Colloq.,1999,6(1):51–70.

[4]Kassel C.Quantum groups[M].Graduate Texts in Mathematics 155,Berlin:Springer Verlag,1995.

[5]Li Haiying,Ma Tianshui.A construction of Hom-Yetter-Drinfeld category[J].Colloq.Math.,2014,137(1):43–65.

[6]Ma Tianshui,Li Haiying,Yang Tao.Cobraided smash product Hom-Hopf algebras[J].Colloq.Math.,2014,134(1):75–92.

[7]Ma Tianshui,Li Haiying,Zhao Wenzheng.On the braided structures of Radford’s biproduct[J].Acta Math.Sci.Ser.B Engl.Ed.,2011,31(2):701–715.

[8]Majid S.Double-bosonization of braided groups and the construction ofUq(g)[J].Math.Proc.Cambridge Philos.Soc.,1999,125(1):151–192.

[9]Makhlouf A,Panaite F.Yetter-Drinfeld modules for Hom-bialgebras[J].J.Math.Phys.,2014,55:013501.

[10]Makhlouf A,Panaite F.Twisting operators,twisted tensor products and smash products for Homassociative algebras[J].Glasg.Math.J.,arXiv:1402.1893.

[11]Makhlouf A,Silvestrov S D.Hom-algebra stuctures[J].J.Gen.Lie The.Appl.,2008,2:51–64.

[12]Makhlouf A,Silvestrov S D.Hom-algebras and hom-coalgebras[J].J.Alg.Appl.,2010,9:553–589.

[13]Radford D E.The structure of Hopf algebra with a projection[J].J.Alg.,1985,92:322–347.

[14]Radford D E.Hopf algebras[M].KE Series on Knots and Everything,Vol.49,New Jersey:World Scientic,2012.

[15]Yau D.Module Hom-algebras[J].arXiv:0812.4695v1.

[16]Yau D.Hom-quantum groups II:cobraided Hom-bialgebras and Hom-quantum geometry[J].arXiv:0907.1880.

廣義Radford雙積Hom-Hopf代數和相關辮子張量范疇

馬天水1,2,王永忠3,劉琳琳1
(1.河南師范大學數學與信息科學學院數學系,河南新鄉 453007)
(2.河南師范大學數學與信息科學學院大數據統計分析與優化控制河南省工程實驗室,河南新鄉 453007)
(3.新鄉學院數學與信息科學學院,河南新鄉 453003)

本文研究了Radford雙積的Hom-型.通過把廣義smash積Hom-代數和廣義smash余積Hom-余代數相結合,得到了他們成為Hom-雙代數的充分必要條件,這一結果推廣了著名的Radford雙積.

Radford雙積;量子Yang-Baxter方程;Yetter-Drinfeld范疇

O153.3

16T05;81R50

A

0255-7797(2017)06-1161-12

1 Introduction

LetHbe a bialgebra,A#Ha smash product algebra andA×Ha smash coproduct coalgebra.Radford(see[13])gave a bialgebra structure onA?H(named Radford biproduct by other researchers)viaA#HandA×H.Later,Majid made the following conclusion:to any Hopf algebraAin the braided category of Yetter-Drinfeld modulesHHYD,one can associate an ordinary Hopf algebraA★H,there called the bosonization ofA(i.e.,Radford biproduct)(see[8]).While Radford biproduct is one of the celebrated objects in the theory of Hopf algebras,which plays a fundamental role in the classi fication of finite-dimensional pointed Hopf algebras(see[1]).Other references related to Radford biproduct see[1,6–8,13,14].

The algebra of Hom-type can be found in[2]by Hartwig,Larsson and Silvestrov,where a notion of Hom-Lie algebra in the context ofq-deformation theory of Witt and Virasoro algebras(see[3])was introduced.There are various settings of Hom-structures such asalgebras,coalgebras,Hopf algebras,see[6,10–12]and so on.In[15],Yau introduced and characterized the concept of module Hom-algebras as a twisted version of usual module algebras.Based on Yau’s de finition of module Hom-algebras,Ma,Li and Yang[6]constructed smash product Hom-Hopf algebra()generalizing the Molnar’s smash product(see[13]),and gave the cobraided structure(in the sense of Yau’s de finition in[16])on().Makhlouf and Panaite de fined and studied a class of Yetter-Drinfeld modules over Hom-bialgebras in[9]and derived the constructions of twistors,pseudotwistors,twisted tensor product and smash product in the setting of Hom-case(see[10]).Li and Ma studied the Yetter-Drinfeld category of Hom-type via Radford biproduct(see[5]).Recently,Ma,Liu and Li extend the above results in the monoidal Hom-case.

date:2015-07-16Accepted date:2015-11-25

Supported by China Postdoctoral Science Foundation(2017M611291);Foundation for Young Key Teacher by Henan Province(2015GGJS-088);Natural Science Foundation of Henan Province(17A110007).

Biography:Ma Tianshui(1977–),male,born at Tanghe,Henan,associate professor,major in Hopf algebra and its application.


登錄APP查看全文

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 国产精品午夜福利麻豆| 欧美日韩北条麻妃一区二区| 日本91视频| 久久免费视频播放| 成人日韩欧美| 亚洲国模精品一区| 欧日韩在线不卡视频| 久久综合伊人77777| 国产亚洲第一页| 91av国产在线| 国产18页| 91香蕉国产亚洲一二三区| 色视频久久| a毛片在线播放| 亚洲h视频在线| 国产欧美日韩精品第二区| 亚洲成人免费在线| 韩国自拍偷自拍亚洲精品| 中文字幕在线视频免费| 成人福利在线看| 自拍偷拍一区| 亚洲码一区二区三区| 亚洲日本中文字幕天堂网| 亚洲成人一区二区三区| 亚洲国产精品无码AV| 国产精品区网红主播在线观看| 亚洲精品日产精品乱码不卡| 精品1区2区3区| 国产日本欧美亚洲精品视| 日韩乱码免费一区二区三区| 免费国产在线精品一区| 国产香蕉一区二区在线网站| 在线国产毛片手机小视频| av大片在线无码免费| 91精选国产大片| 国产鲁鲁视频在线观看| 热思思久久免费视频| 高清乱码精品福利在线视频| 亚洲视频免| 久久国产成人精品国产成人亚洲| 国产高清国内精品福利| 四虎永久免费网站| 国产高清国内精品福利| 亚洲国产欧美国产综合久久| 国产精品一区二区无码免费看片| 99久久精品国产精品亚洲 | 国产高清无码第一十页在线观看| 天天综合网亚洲网站| 91人人妻人人做人人爽男同| 伊人久久久久久久| 亚洲天堂视频网站| 另类重口100页在线播放| 亚欧美国产综合| 亚洲成人福利网站| 色婷婷综合在线| 国产美女一级毛片| 国产AV无码专区亚洲A∨毛片| 亚洲精品福利视频| 亚洲精品国产综合99久久夜夜嗨| 无码免费视频| a级毛片网| 亚洲国产系列| 国产自在自线午夜精品视频| 国产又粗又猛又爽| 最新午夜男女福利片视频| 青青草国产免费国产| 亚洲午夜片| a欧美在线| 成人精品免费视频| 六月婷婷激情综合| 91精品小视频| 无码专区在线观看| 国产黄色免费看| 男人天堂亚洲天堂| 国产在线视频导航| 毛片一级在线| 国内精品久久人妻无码大片高| 特级毛片8级毛片免费观看| 91精品国产无线乱码在线| 亚洲三级电影在线播放| 欧美亚洲香蕉| 无码aaa视频|