999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A PROPER AFFINE SPHERE THEOREM RELATED TO HOMOGENEOUS FUNCTIONS

2017-11-06 09:36:38ZHAOLeina
數學雜志 2017年6期
關鍵詞:重慶數學

ZHAO Lei-na

(College of Mathematics and Statistics;College of Transportation,Chongqing Jiaotong University,Chongqing 400074,China)

A PROPER AFFINE SPHERE THEOREM RELATED TO HOMOGENEOUS FUNCTIONS

ZHAO Lei-na

(College of Mathematics and Statistics;College of Transportation,Chongqing Jiaotong University,Chongqing 400074,China)

In this paper,we focus on the affine sphere theorem related to homogeneous function.Based on Hopf maximum principle,we obtain that the affine sphere theorem does hold for given elementary symmetric curvature problems under concavity conditions.In particular,it gives a new proof of Deicke’s theorem on homogeneous functions.

affine sphere theorem;homogeneous functions

1 Main theorems

LetLbe a positive function of classC4(Rn/{0})with homogeneous of degree one.Introducing a matrixgof elements

Deicke[4]showed that the matrixgis positive and the following theorem,a short and elegant proof was presented in Brickell[1].

Theorem 1.1Let detgbe a constant on Rn/{0}.Thengis a constant matrix on Rn/{0}.

Theorem 1.1 is very important in affine geometry[10,11,13]and Finsler geometry[4].There are lots of papers introducing the history and progress of these problems,for example[7].A laplacian operator and Hopf maximum principle is the key point of Deicke[4]’s proof.However,our method depends on the concavity of the fully nonlinear operator,we give a new method to prove more generalized operator than Theorem 1.1,for considering operatorF(g),which including the operator of determinant.

Theorem 1.2LetF(g)be a constant on Rn/{0},F(g)be concave with respect to matrixg,and the matrixbe positive semi-de finite.Thengis a constant matrix on Rn/{0}.

In fact

(1)IfF(g)=logdetg,Theorem 1.2 is just Theorem 1.1.

(2)An interesting example of Theorem 1.2 is,whereSk(g)is the elementary symmetric polynomial of eigenvalues ofg.The concavity ofF(g)was from Ca ff arelli-Nirenberg-Spruck[3].A similar Liouville problem for theS2equation was obtained in[2].

It is easy to see that the method of Brickell[1]does not apply to our Theorem 1.2.

On the other hand,there are some remarkable results for homogeneous solution to partial differential equations.Han-Nadirashvili-Yuan[6]proved that any homogeneous order 1 solution to nondivergence linear elliptic equations in R3must be linear,and Nadirashvili-Yuan[8]proved that any homogeneous degree other than 2 solution to fully nonlinear elliptic equations must be“harmonic”.In fact,our methods can also be used to deal with the following hessian type equations

More recently,Nadirashvili-Vlǎdut?[9]obtained the following theorem.

Theorem 1.3Letube a homogeneous order 2 real analytic function in R4/{0}.Ifuis a solution of the uniformly elliptic equationF(D2u)=0 in R4/{0},thenuis a quadratic polynomial.

However,our theorem say that above theorem holds providedFwith some concavity/convexity property.Pingali[12]can show for 3-dimension,there is concave operatorGformFwithout some concavity/convexity property,for example

forλ1≤ λ2≤ λ3are eigenvalues of hessian matrixD2u.Then

has a uniformly positive gradient and is concave ifλ1>3.That is to say,using our methods,there is a simple proof of Theorem 1.3 if one can construct a concave operator with respect toFin Theorem 1.3.

2 Proof of Theorem 1.2

Here we firstly list the Hopf maximum principle to be used in our proof,see for example[5].

Lemma 2.1Letube aC2function which satisfies the differential inequality

in an open domain ?,where the symmetric matrixaijis locally uniformly positive de finite in ? and the coefficientsaij,biare locally bounded.Ifutakes a maximum valueMin ?thenu≡M.

Proof of Theorem 1.2Di ff erentiating this equation twice with respect tox

one has

The concavity ofF(g)with respect togsays that the matrixis positive semi-de finite.In particular,

We firstly consider(2.2)as an inequality in unit sphereSn?1,

that is to say using Hopf maximum principle of Lemma 2.1 and taking ?=Sn?1,it shows thatgkkis constant onSn?1,and it is so on Rn/{0}becausegkkis positively homogeneous of degree zero.Then,owing to the matrixFijgijklbe positive semi-de finite

Using Hopf maximum principle again andgklis positively homogeneous of degree zero,then the matrixgis constant matrix.We complete the proof of Theorem 1.2.

[1]Brickell F.A new proof of Deicke’s theorem on homogeneous functions[J].Proc.Amer.Math.Soc.,1965,16:190–191.

[2]Chang S Y A,Yuan Y.A Liouville problem for the sigma-2 equation[J].Discrete Contin.Dyn.Syst.,2010,28(2):659–664.

[3]Ca ff arelli L,Nirenberg L,Spruck J.The Dirichlet problem for nonlinear second-order elliptic equations.III.Functions of the eigenvalues of the Hessian[J].Acta Math.,1985,155(3-4):261–301.

[4]Deicke A.über die Finsler-R?ume mitAi=0[J].Arch.Math.,1953,4:45–51.

[5]Gilbarg D,Trudinger N S.Elliptic partial differential equations of second order(2nd ed.)[M].Grundlehren der Mathematischen Wissenschaften,224,Berlin:Springer,1983.

[6]Han Q,Nadirashvili N,Yuan Y.Linearity of homogeneous order-one solutions to elliptic equations in dimension three[J].Comm.Pure Appl.Math.,2003,56(4):425–432.

[7]Huang Y,Liu J,Xu L.On the uniqueness ofLp-Minkowski problems:the constant p-curvature case inR3[J].Adv.Math.,2015,281:906–927.

[8]Nadirashvili N,Yuan Y.Homogeneous solutions to fully nonlinear elliptic equations[J].Proc.Amer.Math.Soc.,2006,134(6):1647–1649.

[9]Nadirashvili N,Vlǎdut?S.Homogeneous solutions of fully nonlinear elliptic equations in four dimensions[J].Comm.Pure Appl.Math.,2013,66(10):1653–1662.

[10]Nomizu K,Sasaki T.Affine differential geometry[M].Cambridge Tracts Math.,111,Cambridge:Cambridge Univ.Press,1994.

[11]Petty C M.Affine isoperimetric problems[A].Discrete geometry and convexity[C].Ann.New York Acad.Sci.,440,New York:New York Acad.Sci.,1982,113–127.

[12]Pingali V P.On a generalised Monge-Ampere equation[J].arXiv:1205.1266,2012.

[13]Tzitzéica G.Sur une nouvelle classe de surfaces[J].Rend.Circ.Mat.Palermo,1908,25:180–187;1909,28:210–216.

[14]Zhang S.Rigidity theorem for complete hypersurfaces in unite sphere[J].J.Math.,2014,34(4):804–808.

齊次函數的一個仿射球定理

趙磊娜
(重慶交通大學數學與統計學院;交通運輸學院,重慶 400074)

本文研究了相關齊次函數的仿射球定理.利用Hopf極大值原理,對任意給定的帶凹性條件的初等對稱曲率問題,獲得了此類仿射球定理.特別地,這也給出了Deicke齊次函數定理的一個新證明.

仿射球定理;齊次函數

O175.25

35B50;35J15

A

0255-7797(2017)06-1173-04

date:2017-01-08Accepted date:2017-04-25

Supported by the Science and Technology Research program of Chongqing Municipal Education Commission(KJ1705136).

Biography:Zhao Leina(1981–),female,born at Qingdao,Shandong,lecture,major in partial differential and its applications.

猜你喜歡
重慶數學
重慶客APP
重慶人為什么愛吃花
我們愛數學
“逗樂坊”:徜徉相聲里的重慶味
重慶非遺
在這里看重慶
今日重慶(2017年5期)2017-07-05 12:52:25
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
數學也瘋狂
TWO DAYS IN CHONGQING 重慶兩日
漢語世界(2012年2期)2012-03-25 13:01:27
主站蜘蛛池模板: 亚洲天堂区| 欧美亚洲日韩不卡在线在线观看| 免费av一区二区三区在线| 特黄日韩免费一区二区三区| 亚洲精品亚洲人成在线| 国产成人资源| 天天躁狠狠躁| 欧美国产精品不卡在线观看 | 欧美无遮挡国产欧美另类| 欧美成人亚洲综合精品欧美激情| 国产熟睡乱子伦视频网站| 原味小视频在线www国产| 在线观看国产黄色| 成人毛片免费在线观看| 又猛又黄又爽无遮挡的视频网站| 四虎永久免费地址在线网站| 国产女人在线视频| 激情乱人伦| 国产91丝袜在线播放动漫 | 自拍偷拍欧美日韩| 久久综合结合久久狠狠狠97色| 婷婷成人综合| 国产办公室秘书无码精品| 伊人久久大香线蕉影院| 人人艹人人爽| 国产成人av一区二区三区| 国产精品无码在线看| 亚洲国产精品日韩av专区| 最新国产在线| 欧美精品在线免费| a毛片免费看| 91九色国产porny| 国产后式a一视频| 丁香五月激情图片| 色亚洲成人| 一级毛片免费播放视频| 高清精品美女在线播放| 久久精品视频亚洲| 国产chinese男男gay视频网| 久久久91人妻无码精品蜜桃HD| 欧美不卡在线视频| 免费高清毛片| 欧美影院久久| 亚洲黄色激情网站| 毛片视频网址| 国产精品极品美女自在线网站| 欧美午夜性视频| 日韩av无码DVD| 国产SUV精品一区二区6| 久久精品aⅴ无码中文字幕| 精品久久综合1区2区3区激情| 亚洲国产精品日韩欧美一区| 国产美女91呻吟求| 国产91成人| 国产国拍精品视频免费看| 日本精品视频| 五月婷婷精品| 国产成人AV综合久久| 国产AV无码专区亚洲精品网站| 日韩天堂在线观看| 一级毛片在线播放| 四虎国产精品永久一区| a级毛片免费网站| 国产欧美在线观看精品一区污| 国产资源站| 日本国产一区在线观看| 国产一在线观看| 国产青榴视频| 国产精品成人免费视频99| 热99re99首页精品亚洲五月天| 国产福利小视频高清在线观看| 自拍中文字幕| 538国产在线| 美女被操91视频| 日本人妻一区二区三区不卡影院 | 亚洲色图欧美在线| 精品伊人久久久大香线蕉欧美 | 91丝袜在线观看| 成年看免费观看视频拍拍| 在线欧美日韩| 亚洲综合中文字幕国产精品欧美| 欧美精品在线视频观看|