溫雪瑋,陳泱泱,武斌,胡東維,梁五生
以防治油菜菌核病為目標的核盤菌乙酰乳酸合酶抑制劑的篩選
溫雪瑋,陳泱泱,武斌,胡東維,梁五生*1
(浙江大學農業與生物技術學院生物技術研究所/農業部作物病蟲分子生物學重點實驗室,杭州310058)
為開發新的油菜菌核病防治藥劑,選取7種乙酰乳酸合酶(acetolactate synthase,ALS)潛在抑制劑(氯嘧磺隆、芐嘧磺隆、氯磺隆、甲嘧磺隆、咪唑乙煙酸、滅草喹和磺胺噻唑)作為3類ALS酶抑制劑(磺酰脲類、咪唑啉酮類、磺胺噻唑類)的代表,對其防治油菜菌核病的性能進行測試。結果顯示,1.0 mg/L滅草喹、磺胺噻唑、氯嘧磺隆、芐嘧磺隆和氯磺隆對核盤菌ALS酶活性有較強的抑制作用,而相同劑量的甲嘧磺隆的抑制作用微弱,咪唑乙煙酸無抑制作用。相應地,半最大效應濃度(half-maximal effective concentration,EC50)值顯示,核盤菌的菌絲生長對滅草喹、磺胺噻唑、氯嘧磺隆、芐嘧磺隆和氯磺隆的抑制作用較敏感,而對甲嘧磺隆和咪唑乙煙酸的敏感性較弱。氯嘧磺隆、芐嘧磺隆、氯磺隆、滅草喹和甲嘧磺隆對油菜葉片ALS酶活性有強烈的抑制作用,咪唑乙煙酸和磺胺噻唑的抑制作用明顯比上述5種抑制劑弱。氯嘧磺隆、芐嘧磺隆、氯磺隆、滅草喹、甲嘧磺隆和咪唑乙煙酸處理對油菜幼苗生長發育有明顯的負面影響,主要表現為生長速率下降,植株明顯比對照矮小,葉片變小,葉色變黃。磺胺噻唑處理對油菜幼苗生長發育的負面影響明顯比上述6種抑制劑弱。選擇對核盤菌ALS酶活性和菌落生長的抑制作用都較強、而對油菜ALS酶活性的抑制作用和對油菜幼苗生長的負面影響最弱的磺胺噻唑進行抗核盤菌侵染試驗。結果顯示,磺胺噻唑處理顯著地降低了核盤菌對油菜葉片的侵染程度,對油菜菌核病產生了較明顯的防治效果。上述研究結果表明,磺胺噻唑可作為分子結構基礎來進一步開發以核盤菌ALS酶為作用靶標的油菜菌核病防治劑。
乙酰乳酸合酶;菌核病;核盤菌;油菜;磺胺噻唑
核盤菌(Sclerotinia sclerotiorum)是一種可對農業產生嚴重負面影響的植物病原真菌。該真菌可侵染超過400種植物,其中包括不少重要的農作物和蔬菜[1-4]。油菜是我國主要的油料作物,也是世界范圍內重要的油料作物。核盤菌是油菜的主要病害之一,可導致油菜菌核病(rapeseed Sclerotinia disease)。該病在我國一般年份的發病率為10%~30%,導致5%~30%的產量損失;流行年份在一些嚴重田塊的發病率可超過80%[5-6]。
由于目前尚無核盤菌高抗油菜品種,油菜種植者仍主要依賴殺菌劑來防治該病害。多年來我國一直使用以多菌靈和甲基托布津為主的苯并咪唑類殺菌劑來防治油菜菌核病[7]。由于長期、反復地使用多菌靈,目前已在許多地區監測到抗多菌靈的核盤菌菌株[7-9]。因此,有必要指導油菜種植者更加科學地使用已有殺菌劑,另外還需要不斷開發新的油菜菌核病防治藥劑。
乙酰乳酸合酶(acetolactate synthase,ALS),又稱乙酰羥基酸合酶(acetohydroxyacid synthase),是植物和微生物細胞中催化支鏈氨基酸生物合成過程中第一步反應的酶[10-12]。通過抑制植物細胞中的ALS酶活性可以破壞支鏈氨基酸生物合成,阻斷蛋白質合成,干擾細胞分裂,結果影響植物生長,甚至可能導致植物死亡[12-13]。由于動物細胞內不含ALS酶,在田間施用ALS酶抑制劑作為除草劑對人、畜等動物安全,故此酶是除草劑研發中的一種重要靶標[14-15]。近年來,以人體病原細菌和真菌的ALS酶作為靶標開發新的人用抗生素和殺菌劑的研究報道逐漸增多[16-21],但嘗試利用ALS酶抑制劑來防治植物真菌病害的研究目前只見到1篇文獻報道[22]。
我們從NCBI數據庫中搜取核盤菌ALS酶的氨基酸序列(XP_001592310.1)和油菜ALS酶的氨基酸序列(CAA77613.1),通過序列比對后發現兩者的同源性只有36.48%(圖1)。如此低的同源性暗示理論上有可能篩選到對核盤菌ALS酶作用較強、但對油菜ALS酶作用較弱的抑制劑,用于防治油菜菌核病。本文報道了我們對這一可能性進行探索的試驗結果。

圖1 核盤菌和油菜的ALS酶氨基酸序列比較Fig.1 Comparison of the amino acid sequences of acetolactate synthases of Sclerotinia sclerotiorum and rapeseed
1.1 試驗材料
核盤菌分離物(7-3)分離自油菜種植地,之前已用于進行其他一些研究[23-25]。油菜品種為浩油11。
核盤菌的培養按照之前報道的方法進行[23-25]。在用固體平板培養時,將馬鈴薯葡萄糖瓊脂(potato dextrose agar,PDA)培養基倒至直徑為9 cm的培養皿中制成PDA平板,將核盤菌菌核接種于PDA平板表面中心位置,然后置于暗處22℃下培養。繼代培養時用滅過菌的5 mm內徑打孔器從PDA平板上培養的核盤菌菌落外緣打取菌碟接種于新的PDA平板上,使菌絲面與培養基接觸,置于暗處22℃下培養。在用液體培養基培養時,如上用打孔器從PDA平板上培養的核盤菌菌落外緣打取菌碟接種到用三角瓶盛裝的馬鈴薯葡萄糖(potato dextrose,PD)培養基中,然后置于暗處22℃下振蕩培養。
油菜苗的培養按照常規方法進行。將油菜種子用水沖洗干凈后在蒸餾水中浸泡1 d,然后置于濕潤的濾紙上,放入人工氣候箱中光照萌發(22℃,光/暗=16 h/8 h)。用塑料杯(開口直徑為6.8 cm)分裝適量的營養土,將種子萌發后獲得的油菜幼苗植于營養土中,每杯土栽1株苗,將幼苗放入人工氣候箱中光照培養(22 ℃,光/暗=16 h/8 h)。
1.2 核盤菌菌絲ALS酶的提取
用PD培養基培養核盤菌6 d,取菌絲用2層紗布過濾并盡量擠去培養基,稱取適量菌絲,置于用液氮預冷過的研缽中,依次加入適量石英砂和液氮,將菌絲研磨成粉末,然后按菌絲鮮質量∶緩沖液體積=1∶2的比例加入ALS酶提取緩沖液[0.1 mol/L磷酸鉀緩沖液(pH 7.5),1.0 mmol/L焦磷酸氯化硫胺素,0.1 mmol/L FAD,3.0 mmol/L MgCl2],充分混勻,冰浴20 min后用2層紗布過濾,將濾液在4℃、1.2萬r/min條件下離心20 min,收集上清液,即核盤菌菌絲ALS粗酶液。按參考文獻[26]的方法測定提取的粗酶液中蛋白質濃度。
1.3 油菜葉片ALS酶的提取
從油菜幼苗上剪取適量葉片,用水沖洗干凈后吸去表面水分,稱鮮質量,置于用液氮預冷過的研缽中,加入適量石英砂,再加液氮研磨為粉末,按葉片鮮質量∶緩沖液體積=1∶5的比例加入ALS酶提取緩沖液(組成同核盤菌菌絲ALS酶的提取),充分混勻,冰浴20 min后用2層紗布過濾,將濾液在4℃、1.2萬r/min條件下離心20 min,收集上清液,即油菜葉片ALS粗酶液。按參考文獻[26]的方法測定提取的粗酶液中蛋白質濃度。
1.4 ALS酶潛在抑制劑對核盤菌和油菜ALS酶的抑制效力測定
研究表明,不同物種的ALS酶之間可能有差異,抑制劑的抑制效果有物種特異性[27-32]。在試驗前因不明確本文測試的ALS酶抑制劑對核盤菌ALS酶及后續油菜ALS酶的抑制效力,所以將它們稱為“核盤菌和油菜ALS酶的潛在抑制劑”。經過調研文獻,選取以下7種ALS酶潛在抑制劑進行試驗:氯嘧磺隆、芐嘧磺隆、氯磺隆、甲嘧磺隆、咪唑乙煙酸、滅草喹和磺胺噻唑。其中:氯嘧磺隆、芐嘧磺隆、氯磺隆和甲嘧磺隆作為磺酰脲類ALS酶抑制劑的代表,咪唑乙煙酸和滅草喹作為咪唑啉酮類ALS酶抑制劑的代表,磺胺噻唑作為磺胺噻唑類ALS酶抑制劑的代表。以上7種ALS酶潛在抑制劑均購自上海阿拉丁生化科技股份有限公司。
[33]報道的方法測定ALS酶的活性并略作改進,即用乙酰乳酸脫羧酶取代硫酸進行脫羧反應。反應分3類:1)對照反應管。取試管,加入1 mL前面提取的粗酶液和50 μL 30%硫酸,搖勻,再加入1 mL反應緩沖液[50 mmol/L磷酸鉀緩沖液(pH 7.0),200 mmol/L丙酮酸鈉,0.5 mmol/L焦磷酸氯化硫胺素,0.03 mmol/L FAD,2.0 mmol/L MgCl2],以及10 μL稀釋100倍的乙酰乳酸脫羧酶溶液,搖勻,37℃水浴反應1 h。2)正常反應管。取試管,加入1 mL粗酶液,1 mL反應緩沖液,10 μL稀釋100倍的乙酰乳酸脫羧酶溶液和50 μL蒸餾水,搖勻,37℃水浴反應1 h。3)加抑制劑反應管。取試管,加入1 mL粗酶液,適量ALS酶潛在抑制劑溶液,1 mL反應緩沖液,10 μL稀釋100倍的乙酰乳酸脫羧酶溶液,加適量蒸餾水使反應液體積一致,并使抑制劑終質量濃度為1 mg/L,搖勻,37℃水浴反應1 h。上述3類反應管水浴反應后每管都依次加入0.5%肌酸500 μL、9% α-萘酚溶液500 μL(用4 mol/L NaOH配制),60℃水浴加熱15 min,室溫下放置15 min,5 000 r/min離心5 min,收取上清液。將從對照反應管得到的上清液用來調零,測定從正常反應管和加抑制劑反應管得到的上清液在530 nm處的吸光度值D(530 nm)。通過D(530 nm)、反應液中的蛋白質量和反應時間計算酶活性及抑制劑對ALS酶活性的抑制率。以U表示酶活性單位,1 U指每毫克蛋白質每小時使反應液在530 nm處吸光度的變化值為1.0。抑制劑對ALS酶活性的抑制率=(正常反應管的酶活性-加抑制劑反應管的酶活性)/正常反應管的酶活性×100%。測定試驗重復3次,每次試驗中每類反應管都至少平行測定3份。
1.5 核盤菌對ALS酶潛在抑制劑的敏感性測定
將抑制劑分別溶解后取適量加入PDA培養基中,倒至9 cm直徑培養皿中,每種ALS酶潛在抑制劑都制成含不同濃度抑制劑的敏感性測定PDA平板,用滅過菌的5 mm內徑打孔器從繼代培養PDA平板上培養2 d的核盤菌菌落外緣打取菌碟,接種于敏感性測定PDA平板中心,然后置于暗處22℃下培養,觀察菌絲生長情況。每種濃度至少重復3份。當無ALS酶潛在抑制劑PDA平板(對照平板)上的菌落快長滿平板時,從2個互相垂直的方向測量所有PDA平板上的菌落直徑,所得數據用于計算EC50值(抑制50%菌絲生長的有效濃度)。EC50值的計算按參考文獻[22-23]的方法進行。
1.6 ALS酶潛在抑制劑對油菜幼苗生長發育的影響試驗
培養油菜幼苗至適當大小(約3~5葉期),用鑷子夾取脫脂棉吸取ALS酶潛在抑制劑溶液(1.0 mg/L),輕柔涂抹油菜幼苗第1片真葉的上表面,將幼苗置于人工氣候箱中,22℃下光照培養。每天觀察記錄幼苗的生長發育情況。試驗重復3次,在每次試驗中每種處理至少重復5株。
1.7 ALS酶潛在抑制劑對核盤菌侵染油菜的防治效果測定
按參考文獻[1]的方法進行核盤菌侵染油菜離體葉片試驗。取油菜葉片,先后用自來水和蒸餾水沖洗干凈。取直徑11 cm的玻璃培養皿,鋪上2層粗濾紙,加入適量無菌水使濾紙充分潤濕。然后將葉片鋪于濕潤的濾紙上,用醫用無菌脫脂棉吸取無菌水包裹葉柄保濕,在非葉脈位置用針尖刺一小孔,用滅過菌的5 mm內徑打孔器從繼代培養PDA平板上培養2 d的核盤菌菌落外緣打取菌碟,接種于油菜離體葉片的小孔上,使菌絲面與葉片接觸。將接種了菌碟的葉片分成2組:一組用1.0 mg/L ALS酶潛在抑制劑溶液進行葉面噴霧處理,使葉面均勻分布細小液滴;另一組用無菌蒸餾水對葉面進行類似的噴霧處理,作為有接菌但無抑制劑處理的對照。另外取一組葉片作為空白(無菌)接種對照,即用滅菌的5 mm內徑打孔器從PDA無菌平板上打取無菌瓊脂圓塊,接種于油菜離體葉片的小孔上。將上述放有試驗葉片的培養皿蓋上玻璃蓋后置于人工氣候箱中,22℃下光照培養,1 d后拍照,并測量最寬處和最窄處的長度來計算病斑幅度[病斑幅度=(最寬處長度+最窄處長度)/2]。試驗重復3次,在每次試驗中每組處理或對照至少接種10片油菜葉。
2.1 ALS酶潛在抑制劑對核盤菌ALS酶活性的抑制作用
檢測結果(圖2)表明:當抑制劑質量濃度為1.0 mg/L時,氯嘧磺隆、芐嘧磺隆、氯磺隆、甲嘧磺隆、滅草喹和磺胺噻唑這6種抑制劑均對核盤菌ALS酶活性有一定的抑制作用,且以滅草喹的抑制作用最強,甲嘧磺隆的抑制作用最弱,僅有微弱的抑制作用;而1.0 mg/L咪唑乙煙酸對核盤菌ALS酶活性無抑制作用。

圖2 7種ALS酶潛在抑制劑對核盤菌和油菜ALS酶活性的抑制作用Fig.2 Inhibitory effects of seven potential acetolactate synthase(ALS)inhibitors on the activity of ALS from Sclerotinia sclerotiorum and rapeseed
2.2 ALS酶潛在抑制劑對核盤菌菌落生長的抑制作用
為了探明本試驗7種ALS酶潛在抑制劑對核盤菌菌絲生長的影響,利用PDA平板測試了這些抑制劑在不同質量濃度條件下對核盤菌菌落生長的影響。結果表明,滅草喹和磺胺噻唑在0.1 mg/L時即有明顯的抑制作用,氯嘧磺隆、芐嘧磺隆和氯磺隆自1.0 mg/L起有明顯的抑制作用,而甲嘧磺隆和咪唑乙煙酸在50 mg/L時的抑制作用仍很弱(圖3)。此外,對7種ALS酶潛在抑制劑對核盤菌的EC50值測算結果表明:滅草喹、磺胺噻唑、氯嘧磺隆、芐嘧磺隆、氯磺隆對核盤菌的EC50值小于10 mg/L,表明核盤菌對這5種抑制劑相對較敏感;而甲嘧磺隆和咪唑乙煙酸對核盤菌的EC50值都大于50 mg/L,表明核盤菌對這2種抑制劑相對不太敏感(表1)。這與它們對核盤菌ALS酶活性抑制作用強弱的變化趨勢一致。說明核盤菌對這些抑制劑的敏感性強弱與它們抑制核盤菌ALS酶活性的作用強弱相關。

圖3 7種ALS酶潛在抑制劑對PDA平板上核盤菌菌落生長的影響Fig.3 Effects of seven potential acetolactate synthase inhibitors on the growth of Sclerotinia sclerotiorum colony on potato dextrose agar plates
2.3 ALS酶潛在抑制劑對油菜ALS酶活性的抑制作用
檢測結果表明,7種ALS酶潛在抑制劑對油菜葉片ALS酶活性均有一定的抑制作用,其中氯嘧磺隆、芐嘧磺隆、氯磺隆、滅草喹和甲嘧磺隆這5種抑制劑的抑制作用較強,而咪唑乙煙酸和磺胺噻唑的抑制作用較弱,尤其是磺胺噻唑的抑制作用最弱(圖2)。比較它們對油菜和核盤菌ALS酶的抑制作用可見,除磺胺噻唑外,其余6種ALS酶潛在抑制劑對油菜ALS酶的抑制作用都明顯強于對核盤菌ALS酶的抑制作用。

表1 7種ALS酶潛在抑制劑對核盤菌的EC50值Table 1 EC50values of seven potential acetolactate synthase inhibitors to Sclerotinia sclerotiorum
2.4 ALS酶潛在抑制劑對油菜幼苗生長發育的影響
試驗結果(圖4)表明:氯嘧磺隆、芐嘧磺隆、氯磺隆、滅草喹、甲嘧磺隆和咪唑乙煙酸這6種ALS酶潛在抑制劑在1.0 mg/L時即對油菜幼苗的生長發育有明顯的負面影響,主要表現為生長速率下降,植株明顯比對照矮小,葉片變小,葉色變黃;而磺胺噻唑對油菜幼苗的生長發育雖然也有一定程度的負面影響,但其影響程度明顯比上述6種抑制劑弱。比較各抑制劑對油菜ALS酶活性的抑制作用強弱和對油菜幼苗生長發育的影響程度可以看出,各抑制劑對油菜幼苗生長發育的影響程度與抑制油菜ALS酶活性的作用強弱基本相關。

圖4 7種ALS酶潛在抑制劑對油菜幼苗生長發育的影響Fig.4 Effects of seven potential acetolactate synthase inhibitors on the growth and development of rapeseed seedlings
2.5 ALS酶潛在抑制劑對核盤菌侵染油菜葉片的影響

圖5 磺胺噻唑處理對核盤菌侵染油菜葉片的影響Fig.5 Effect of sulfathiazole treatment on the infection of Sclerotinia sclerotiorum to rapeseed leaves
油菜菌核病防治劑需要對核盤菌有較好的滅殺或抑制作用,但不能影響油菜的生長發育。上述結果顯示,在7種ALS酶潛在抑制劑中,核盤菌對滅草喹、磺胺噻唑、氯嘧磺隆、芐嘧磺隆和氯磺隆敏感,其中磺胺噻唑對油菜ALS酶活性的抑制作用和對油菜幼苗生長發育的負面影響最弱,因此,磺胺噻唑用于防治油菜菌核病的潛力最大。為此,我們測試了磺胺噻唑處理對核盤菌侵染油菜葉片的影響。結果(圖5)顯示:核盤菌菌絲侵染油菜葉片的能力非常強,1 d內即可誘發明顯的病斑;而在油菜葉片接種核盤菌后噴施磺胺噻唑(1 mg/L),可顯著降低核盤菌侵染油菜葉片所誘發的病斑幅度。這表明磺胺噻唑處理對核盤菌侵染油菜的進程有明顯的抑制作用。因此,磺胺噻唑處理可對油菜菌核病產生較明顯的防治效果。
動物細胞內不含ALS酶。迄今關于ALS酶的研究絕大多數是以植物或細菌為研究對象,另外有極少量以真菌為材料。研究植物ALS酶主要是為了研發以ALS酶為靶標的除草劑[15]。細菌ALS酶研究主要以大腸桿菌為材料,研究ALS酶的活性調控機制[29]。近年來以人體病原細菌ALS酶為靶標開發人用抗生素逐漸引起關注。例如結核分枝桿菌(Mycobacterium tuberculosis)是一種可引發人體結核病(如肺結核)的病原細菌。JUNG等[21]最近從6 800種化合物中篩選到15種對結核分枝桿菌ALS酶具有較強抑制作用的化合物,它們在20 μmol/L時對結核分枝桿菌ALS酶活性的抑制率即大于80%,其中5種三唑并嘧啶類化合物的抑制效果尤其突出,其半最大抑制效應濃度(half-maximal inhibitory concentration,IC50)值為 0.4~1.24 μmol/L,更重要的是它們對一些從臨床病樣中分離得到的具有廣譜耐藥性的結核分枝桿菌株系也有顯著的抑制作用,其MIC50值(50%minimal inhibitory concentration,50%最低抑菌質量濃度)只有0.2~0.8 mg/L。這一質量濃度水平與常用的抗結核病藥物異煙肼和利福平的MIC50值濃度水平相當,因此上述篩選得到的ALS酶抑制劑有望用于開發以ALS酶為作用靶標的抗結核病藥物。迄今為止,對真菌ALS酶的研究報道仍非常少,但與細菌ALS酶研究發展趨勢類似,以人體病原真菌ALS酶為靶標開發人用殺菌劑近年來逐漸引起關注。比如白色念珠菌(Candida albicans)是一種人體病原真菌,可侵犯人體的皮膚、黏膜而引發炎癥,甚至可導致內臟或全身感染。LEE等[16]研究證實了幾種磺酰脲類化合物對白色念珠菌的ALS酶和菌落生長有抑制作用,其中乙基-2-{[(4-碘-6-甲氧基嘧啶-2-基)氨甲酰]氨磺酰}苯甲酸酯的抑制作用最強,其MIC90值(90%minimal inhibitory concentration,90%最低抑菌質量濃度)為0.7 mg/L。
涉及植物病原真菌ALS酶的研究目前只見到2篇文獻報道[22,34]。DU等[34]報道了稻瘟病菌(Magnaporthe oryzae)的ALS酶為稻瘟病菌實現其致病性所必需。葉朝燕等[22]測試了14種嘧啶氧芐胺類化合物對鐮刀菌(Fusarium graminearum)ALS酶活性及菌落生長的抑制效果,這也是涉及利用ALS酶抑制劑來防治植物真菌病害的唯一研究報道。這一報道以及上文所述以ALS酶為靶標的人用抗生素和殺菌劑的研究進展啟示我們利用ALS酶抑制劑來防治油菜菌核病可能具有較大潛力。由于植物細胞內含有ALS酶,因此研發以ALS酶為靶標的植物真菌病害防治劑需要確保不影響植物的ALS酶。目前研究已證實,ALS酶與其抑制劑之間存在緊密的結構對應關系[27-32],ALS酶一個氨基酸的變化即可能改變其對某種抑制劑的敏感性。比如LEE等[28]報道,誘導大麥(Hordeum vulgare L.)ALS酶編碼基因的一個堿基發生替換,導致ALS酶的653位絲氨酸突變成天門冬酰胺,結果大麥從對咪唑啉酮類除草劑甲氧咪草煙敏感變為不敏感;BROSNAN等[31]報道早熟禾(Poa annua L.)ALS酶編碼基因的2個堿基發生替換,導致ALS酶的205位丙氨酸突變成苯丙氨酸,結果早熟禾產生對多類除草劑(咪唑啉酮類、磺酰脲類、三唑并嘧啶類、磺酰基氨基-碳酰-三唑啉酮類、嘧啶硫苯甲酸類)的抗性;HUANG等[32]報道反枝莧(Amaranthus retroflexus L.)ALS酶的376位天冬氨酸突變成谷氨酸,反枝莧對除草劑咪唑乙煙酸從敏感變為不敏感。比對核盤菌ALS酶和油菜ALS酶的氨基酸序列后發現,兩者的同源性只有36.48%。因此,從理論上有可能篩選到對油菜ALS酶作用較弱、但對核盤菌ALS酶作用較強的抑制劑,用于防治油菜菌核病。本研究對7種ALS酶潛在抑制劑(氯嘧磺隆、芐嘧磺隆、氯磺隆、甲嘧磺隆、咪唑乙煙酸、滅草喹和磺胺噻唑)防治油菜菌核病的可能性進行了試驗。結果發現,滅草喹、磺胺噻唑、氯嘧磺隆、芐嘧磺隆和氯磺隆對核盤菌ALS酶活性和核盤菌菌落生長都具有較好的抑制作用,而這5種抑制劑中磺胺噻唑對油菜ALS酶活性的抑制作用和對油菜幼苗生長發育的影響都最弱。抗核盤菌侵染試驗的結果顯示,噴施磺胺噻唑顯著地降低了核盤菌對油菜葉片的侵染程度。這些結果表明,磺胺噻唑用于防治油菜菌核病具有較大的潛力。由于磺胺噻唑目前已被作為醫用抗菌藥物,用于防治肺炎球菌、腦膜炎雙球菌、淋球菌和溶血性鏈球菌等人體病原菌的感染。基于農用和醫用抗菌素分開的原則,磺胺噻唑本身不宜作為油菜菌核病的防治劑使用,但本試驗結果表明,磺胺噻唑可作為分子結構基礎來進一步開發以核盤菌ALS酶為作用靶標的油菜菌核病防治劑。
在對核盤菌ALS酶或油菜ALS酶的抑制效力方面,本試驗結果顯示,2種咪唑啉酮類ALS酶潛在抑制劑(咪唑乙煙酸和滅草喹)的抑制效力差異顯著,4種磺酰脲類ALS酶潛在抑制劑(氯嘧磺隆、芐嘧磺隆、氯磺隆和甲嘧磺隆)的抑制效力也具有一定差異。這說明ALS酶抑制劑的側鏈基團對其抑制效力具有重要影響,也再次證明ALS酶與其抑制劑之間存在緊密的結構對應關系。目前對這一結構對應關系已有一些研究[25-30],但仍了解不夠,因此,對其繼續進行系統深入的研究將有助于研發更多更佳的以ALS酶為靶標的油菜菌核病防治藥劑,以及其他植物真菌病害的防治藥劑。
參考文獻(References):
[1] WANG C G,YAO J,DU X Z,et al.The Arabidopsis mediator complex subunit16 is a key component of basal resistance against the necrotrophic fungal pathogen Sclerotinia sclerotiorum.Plant Physiology,2015,169(1):856-872.
[2] BOLAND G J,HALL R.Index of plant hosts of Sclerotinia sclerotiorum.Canadian Journal of Plant Pathology,1994,16(2):93-108.
[3] BARDIN S D,HUANG H C.Research on biology and control of Sclerotinia diseases in Canada.Canadian Journal of Plant Pathology,2001,23(1):88-98.
[4] YOUNG C S,CLARKSON J P,SMITH J A,et al.Environmental conditions influencing Sclerotinia sclerotiorum infection and disease development in lettuce.Plant Pathology,2004,53(4):387-397.
[5] 汪雷,劉瑤,丁一娟,等.油菜菌核病研究進展.西北農林科技大學學報(自然科學版),2015,43(10):85-93.WANG L,LIU Y,DING Y J,et al.Advance in Sclerotinia stem rot of rapeseed.Journal of Northwest A&F University(Natural Science Edition),2015,43(10):85-93.(in Chinese with English abstract)
[6] LI G Q,HUANG H C,MIAO H J,et al.Biological control of sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans.European Journal of Plant Pathology,2006,114(4):345-355.
[7] 周鋒,王彥芬,張小磊,等.油菜菌核病病原菌對多菌靈抗藥性的研究進展.湖南農業科學,2012(17):82-84.ZHOU F,WANG Y F,ZHANG X L,et al.Advances in resistance of Sclerotinia sclertiorum to carbendazim.Hunan Agricultural Sciences,2012(17):82-84.(in Chinese with English abstract)
[8] 楊敬輝,潘以樓,朱桂梅,等.油菜菌核病菌對多菌靈和乙霉威的抗藥性機理.植物保護學報,2004,31(1):74-78.YANG J H,PAN Y L,ZHU G M,et al.Mechanism of resistance of Sclerotinia sclertiorum to carbendazim and diethofencarb.Acta Phytophylacica Sinica,2004,31(1):74-78.(in Chinese with English abstract)
[9] 李偉,李偉,周益軍,等.江蘇省油菜菌核病菌對多菌靈的敏感性.中國油料作物學報,2007,29(1):63-68.LI W,LI W,ZHOU Y J,et al.Sensitivity of Sclerotinia sclerotiorum isolates to carbendazim in Jiangsu Province.Chinese Journal of Oil Crop Sciences,2007,29(1):63-68.(in Chinese with English abstract)
[10]MCCOURT J A,DUGGLEBY R G.Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids.Amino Acids,2006,31(2):173-210.
[11]LIU Y D,LI Y Y,WANG X Y.Acetohydroxyacid synthases:Evolution,structure,and function.Applied Microbiology and Biotechnology,2016,100(20):8633-8649.
[12]GALILI G,AMIR R,FERNIE A R.The regulation of essential amino acid synthesis and accumulation in plants.Annual Review of Plant Biology,2016,67:153-178.
[13]RAY T B.Site of action of chlorsulfuron:Inhibition of valine and isoleucine biosynthesis in plants.Plant Physiology,1984,75(3):827-831.
[14]MCCOURT J A,PANG S S,KING-SCOTT J,et al.Herbicidebinding sites revealed in the structure of plant acetohydroxyacid synthase.Proceedings of the National Academy of Sciences of the USA,2006,103(3):569-573.
[15]POWLES S B,YU Q.Evolution in action:Plants resistant to herbicides.Annual Review of Plant Biology,2010,61:317-347.
[16]LEE Y T,CUI C J,CHOW E W L,et al.Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase.Journal of Medicinal Chemistry,2013,56(1):210-219.
[17]KREISBERG J F,ONG N T,KRISHNA A,et al.Growth inhibition of pathogenic bacteria by sulfonylurea herbicides.Antimicrobial Agents and Chemotherapy,2013,57(3):1513-1517.
[18]RICHIE D L,THOMPSON K V,STUDER C,et al.Identification and evaluation of novel acetolactate synthase inhibitors as antifungal agents.Antimicrobial Agents and Chemotherapy,2013,57(5):2272-2280.
[19]PUE N,GUDDAT L W.Acetohydroxyacid synthase:A target for antimicrobial drug discovery.Current Pharmaceutical Design,2014,20(5):740-753.
[20]GOKHALE K, TILAK B. Mechanisms of bacterial acetohydroxyacid synthase(AHAS)and specific inhibitors of Mycobacterium tuberculosis AHAS as potential drug candidates against tuberculosis.Current Drug Targets,2015,16(7):689-699.
[21]JUNG I P,HA N R,LEE S C,et al.Development of potent chemical antituberculosis agents targeting Mycobacterium tuberculosis acetohydroxyacid synthase.International Journal of Antimicrobial Agents,2016,48(3):247-258.
[22]葉朝燕,張陽,汪冒君,等.鐮刀菌乙酰乳酸合成酶抑制劑的篩選及抗菌性分析.浙江大學學報(理學版),2015,42(2):166-171,220.YE C Y,ZHANG Y,WANG M J,et al.Screening and fungistatic activity ofacetolactate synthase inhibitors for Fusarium graminearum.Journal of Zhejiang University(Science Edition),2015,42(2):166-171,220.(in Chinese with English abstract)
[23]XU T,YAO F,LIANG W S,et al.Involvement of alternative oxidase in the regulation of growth,development,and resistance to oxidative stress ofSclerotinia sclerotiorum.Journalof Microbiology,2012,50(4):594-602.
[24]XU T,WANG Y T,LIANG W S,et al.Involvement of alternative oxidase in the regulation of Sclerotinia sclerotiorum sensitivity to fungicides of azoxystrobin and procymidone.Journalof Microbiology,2013,51(3):352-358.
[25]梁五生,徐婷,姚飛,等.交替氧化酶可增強核盤菌對多菌靈的敏感性.中國農學通報,2016,32(6):193-197.LIANG W S,XU T,YAO F,et al.Enhancing effect of alternative oxidase on sensitivity of Sclerotinia sclerotiorum to carbendazim.Chinese Agricultural Science Bulletin,2016,32(6):193-197.(in Chinese with English abstract)
[26]BRADFORD M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Analytical Biochemistry,1976,72(1/2):248-254.
[27]KALME S,PHAM C N,GEDI V,et al.Inhibitors of Bacillus anthracis acetohydroxyacid synthase.Enzyme and Microbial Technology,2008,43(3):270-275.
[28]LEE H,RUSTGI S,KUMAR N,et al.Single nucleotide mutation in the barley acetohydroxy acid synthase(AHAS)gene confers resistance to imidazolinone herbicides.Proceedings of the National Academy of Sciences of the USA,2011,108(21):8909-8913.
[29]GEDI V,YOON M Y.Bacterial acetohydroxyacid synthase and its inhibitors:A summary of their structure,biological activity and current status.The FEBS Journal,2012,279(6):946-963.
[30]EVANS D L,JOSHI S V.Elucidating modes of activation and herbicideresistancebysequenceassemblyand molecular modelling of the acetolactate synthase complex in sugarcane.Journal of Theoretical Biology,2016,407:184-197.
[31]BROSNAN J T,VARGAS J J,BREEDEN G K,et al.A new amino acid substitution(Ala-205-Phe)in acetolactate synthase(ALS)confers broad spectrum resistance to ALS-inhibiting herbicides.Planta,2016,243(1):149-159.
[32]HUANG Z F,CHEN J Y,ZHANG C X,et al.Target-site basis for resistance to imazethapyr in redroot amaranth(Amaranthus retroflexus L.).Pesticide Biochemistry and Physiology,2016,128:10-15.
[33]SINGH B K,STIDHAM M A,SHANER D L.Assay of acetohydroxyacid synthase.Analytical Biochemistry,1988,171(1):173-179.
[34]DU Y,ZHANG H F,HONG L,et al.Acetolactate synthases MoIlv2 and MoIlv6 are required for infection-related morphogenesis in Magnaporthe oryzae.Molecular Plant Pathology,2013,14(9):870-884.
Screening of acetolactate synthase inhibitors against Sclerotinia sclerotiorum for the purpose of controlling rapeseed Sclerotinia disease.Journal of Zhejiang University(Agric.&Life Sci.),2017,43(5):589-598
WEN Xuewei,CHEN Yangyang,WU Bin,HU Dongwei,LIANG Wusheng*
(Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects/Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,Hangzhou 310058,China)
acetolactate synthase;Sclerotinia disease;Sclerotinia sclerotiorum;rapeseed;sulfathiazole
S 432.44
A
10.3785/j.issn.1008-9209.2017.02.201
Summary Rapeseed is an oil crop with quite large growing areas in China,and also one of the main oil crops in the world.As one of the most serious diseases in rapeseed,Sclerotinia disease,caused by the fungal pathogen Sclerotinia sclerotiorum,can result in significant yield loss.At present,no rape cultivars are available that are resistant to S.sclerotiorum.Using fungicides is the main measure to control rapeseed Sclerotinia disease in China.Carbendazim,as a common fungicide,has been frequently applied to control rapeseed Sclerotinia disease for long.Increasing evidence of fungicide resistance in populations of S.sclerotiorum has been found.Therefore,new fungicides are constantly being requested to control rapeseed Sclerotinia disease.Acetolactate synthase(ALS)is the enzyme that catalyzes the first step in the branched-chain aminoacid biosynthesis pathway in plants and microbes,and is the target of some herbicides.Recently,some studies have reported the development of new antibiotics to control bacterial pathogens or new fungicides to control fungal pathogens of human beings with ALS as the action target.However,there are few studies on developing new fungicides to control fungal pathogens of plants with ALS as the action target.
國家自然科學基金(31370279);浙江省自然科學基金(LY13C140001);浙江省教育廳科研計劃項目(Y201327327)。
梁五生(http://orcid.org/0000-0001-9360-1187),Tel:+86-571-86433024,E-mail:liangws@zju.edu.cn
(First author):溫雪瑋(http://orcid.org/0000-0002-0886-3930),E-mail:1018559277@qq.com
2017-02-20;接受日期(Accepted):2017-04-28
In the present study,seven potential ALS inhibitors(chlorimuron-ethyl,bensulfuron-methyl,chlorsulfuron,sulfometuronmethyl,imazethapyr,imazaquin and sulfathiazole)were used to determine the effectiveness of controlling rapeseed Sclerotinia disease.Chlorimuron-ethyl,bensulfuron-methyl,chlorsulfuron and sulfometuron-methyl were chosen as the representatives of sulfonylurea-type ALS inhibitors.Imazethapyr and imazaquin were the representatives of imidazolinone-type ALS inhibitors,and sulfathiazole was the representative of sulfathiazole-type ALS inhibitors.
The results indicated that the activity of ALS in S.sclerotiorum could not been inhibited by 1.0 mg/L imazethapyr.In contrast,the treatment with 1.0 mg/L chlorimuron-ethyl,bensulfuron-methyl,chlorsulfuron,sulfometuron-methyl,imazaquin and sulfathiazole showed more or less inhibitory effects on the ALS activity of S.sclerotiorum.Among them,imazaquin had the strongest inhibitory effect on ALS,but sulfometuron-methyl showed the weakest inhibitory effect.Imazaquin and sulfathiazole could effectively suppress the growth of S.sclerotiorum colony on potato dextrose agar plates at the concentration of 0.1 mg/L.Chlorimuron-ethyl,bensulfuron-methyl and chlorsulfuron had inhibitory effect at the concentration of 1.0 mg/L.However,sulfometuron-methyl and imazethapyr showed weak inhibitory effect on the growth of S.sclerotiorum colony even at the concentration of 50 mg/L.The half-maximal effective concentrations(EC50)of imazaquin,sulfathiazole,chlorimuron-ethyl,bensulfuron-methyl and chlorsulfuron were determined to be less than 10 mg/L,but EC50values of sulfometuron-methyl and imazethapyr were determined to be more than 50 mg/L.All the seven potential ALS inhibitors showed inhibitory effects on the activity of ALS in rapeseed leaves at the concentration of 1.0 mg/L.The inhibitory effects of chlorimuron-ethyl,bensulfuronmethyl,chlorsulfuron,imazaquin and sulfometuron-methyl were much stronger than those of imazethapyr and sulfathiazole.The inhibitory effect of sulfathiazole was the weakest among the seven inhibitors.Significant damaging influences were observed on rapeseed seedlings by using chlorimuron-ethyl,bensulfuron-methyl,chlorsulfuron,imazaquin,sulfometuron-methyl and imazethapyr at the concentration of 1.0 mg/L,such as decreasing growth rate,dwarfing,reducing leaf size and leaf yellowing,but no significant influences were observed by treating rapeseed seedlings with sulfathiazole.The use of sulfathiazole could exert remarkable inhibitory effects against ALS activity and colony growth of S.sclerotiorum without giving rise to harmful influence on rapeseed seedlings.Thus,the effect of sulfathiazole on S.sclerotiorum infection to rapeseed was tested.The result indicated that the treatment with sulfathiazole significantly reduced the infection scale of S.sclerotiorum in rapeseed leaves.
In conclusion,the present research indicated that S.sclerotiorum was sensitive to imazaquin,sulfathiazole,chlorimuron-ethyl,bensulfuron-methyl and chlorsulfuron other than sulfometuron-methyl and imazethapyr.On the other hand,rapeseed was sensitive to all the seven ALS inhibitors but imazethapyr and sulfathiazole.It is suggested that sulfathiazole treatment is an effective strategy to control rapeseed Sclerotinia disease caused by S.sclerotiorum.Therefore,this study concludes that sulfathiazole is a potential molecular structure basis for controlling rapeseed Sclerotinia disease with ALS of S.sclerotiorum as an action target.