999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于擬蒙特卡洛的半不變量法概率潮流計算

2017-11-27 07:08:02栗然范航張凡靳保源
電力建設 2017年11期

栗然,范航,張凡,靳保源

(新能源電力系統國家重點實驗室(華北電力大學),河北省保定市 071003)

基于擬蒙特卡洛的半不變量法概率潮流計算

栗然,范航,張凡,靳保源

(新能源電力系統國家重點實驗室(華北電力大學),河北省保定市 071003)

隨著風電并網容量的增加,概率潮流計算方法在計及風電出力不確定性的同時,還需考慮鄰近風電場由于風速相關性導致的風電出力相關性問題。針對風電出力波動范圍較大且存在相關性的特點,提出一種可考慮輸入變量相關性的基于擬蒙特卡洛的半不變量法概率潮流計算方法。該方法利用基于Nataf變換的擬蒙特卡洛法產生具有相關性的風電出力樣本,在各樣本點處進行半不變量法概率潮流計算,基于各風電出力樣本下的狀態變量正態分布特性,依全概率公式整合所得正態分布得到最終的概率潮流結果。基于IEEE 30節點系統的算例分析表明,所提方法在較小采樣規模下具有很高的計算精度,能夠較精確地得到系統狀態變量的概率分布。

概率潮流; 半不變量法; 擬蒙特卡洛; 風電并網

0 引 言

電力系統實際運行時存在大量不確定因素,如負荷的波動、發電機的停運、線路等元件的隨機故障。此外,風力發電、光伏發電作為清潔型發電形式在我國得到大力發展,這種間歇性能源的大規模并網將增強電力系統的不確定性。確定性潮流計算只能得到系統確定工況下的潮流分布,不能全面反映系統運行狀態。而概率潮流[1]作為可評估不確定因素對系統影響的有效工具,已得到廣泛的研究。

目前,概率潮流計算主要分為3類[2]:模擬法[3]、近似法[4]和解析法[5]。模擬法基于蒙特卡洛抽樣,計算過程直觀,當樣本容量足夠大時,計算結果精度很高。但在提高精度的同時,蒙特卡洛模擬法計算規模往往很大,因此成為評估其他方法準確性的基準。近似法又分為點估計法、一次二階距法和狀態變換法。近似法在計算輸出隨機變量的期望和方差時較為有效,但很難得到準確的整體概率分布[2]。解析法以半不變量法為代表,半不變量法利用累計量進行卷積運算,再通過級數展開或最大熵原理得到輸出隨機變量的概率分布,計算效率很高,因此在對計算速度要求較高并且需要掌握輸出隨機變量準確概率分布時,半不變量法更為實用。

半不變量法通常采用線性化交流模型,負荷的波動以及風電出力的隨機性會使節點注入功率遠離基準值,使得線性化處理引起較大誤差[6]。風電出力波動范圍較大,大規模風電并網可能導致輸出隨機變量的三階或四階距也較大,使得采用A型Gram-Charlier級數或Edgeworth級數擬合的概率密度函數出現負值,導致方法失效[7]。針對線性化模型引起較大誤差以及概率密度出現負值的問題,文獻[7]提出采用分段線性化手段減小潮流方程線性化誤差,并引入C型Gram-Charlier級數避免了所擬合的概率密度函數出現負值的情況。為了解決級數法得到負值概率密度以及存在截斷誤差的問題,文獻[8]基于累積量框架采用最大熵模型求解概率潮流。文獻[9]將風電出力離散化并對多個風電場出力進行組合,得到多個出力組合狀態及相應的概率,基于全概率公式整合每個出力組合狀態下的概率潮流結果得到最終的概率潮流。該方法不采用級數方法或最大熵模型擬合分布函數,而通過整合多個Gauss函數擬合分布,相當于在多個運行點線性化潮流方程,因此具有很高的精度,并且計算過程簡單直觀。

上述概率潮流計算方法最初都是假定輸入隨機變量之間是相互獨立的[10],而實際上同一地區的負荷可能同時增大或減少,鄰近的多個風電場風速具有較強相關性[11],因此有必要在原始方法的基礎上加入能處理相關性的技術手段。概率潮流中常用處理隨機變量相關性的方法有Cholesky分解[12]、Rosenblatt變換[13]、Nataf變換[14]和多項式正態變換[15],但半不變量法一般只采用Choleky分解處理隨機變量的相關性,主要由于其他方法屬于非線性變換,在半不變量法中不適用。為處理非正態分布隨機變量的相關性和提高計算速度,文獻[16]提出采用Rackwitz-Fiessler變換將Nataf變換線性化,將改進的Nataf變換法應用于半不變量法,取得了較好的效果,但線性化過程較復雜且存在線性化誤差。

為有效處理風電出力波動范圍較大導致傳統半不變量法失效的問題,本文借鑒文獻[9]將風電出力不確定性與負荷不確定性分開進行處理的思想,針對其沒有考慮輸入變量相關性的不足,提出一種可考慮輸入變量相關性的基于擬蒙特卡洛的半不變量法(cumulant method based on quasi Monte Carlo,CM-QMC)計算概率潮流。該方法采用基于Nataf變換的擬蒙特卡洛法(Nataf transformation based quasi Monte Carlo,NQMC)產生具有相關性的風電出力樣本,采用基于Cholesky分解的半不變量法來計算各風電出力樣本下的概率潮流,通過整合各樣本下的概率分布得到最終的電力系統概率潮流結果。在含多個風電場的IEEE 30節點系統上進行仿真,結果表明對于僅考慮風電和負荷不確定的概率潮流,所提出的方法具有很高的精度,并且計算效率遠高于蒙特卡洛模擬法。

1 風電出力樣本生成

1.1 風電場概率模型

采用應用較廣的雙參數Weibull分布作為風電場風速概率模型,其概率密度函數為

(1)

式中:v為風速;k、c分別為Weibull分布的形狀參數和尺度參數。

風電機組輸出功率用下式近似描述:

(2)

式中:vin、vr和vout分別為風機的切入風速、額定風速及切出風速;Pr為風機額定輸出功率;Pw為風機實際輸出功率。

為簡化計算,本文假設風電場裝設的風電機組型號相同,風電場以恒定功率因數控制方式并網運行。

1.2 基于Nataf變換的擬蒙特卡洛法

文獻[17]通過仿真實驗指出,在相同采樣規模下,擬蒙特卡洛法計算效率高于基于拉丁超立方抽樣的蒙特卡洛法。因此,為提高采樣效率,本文采用NQMC方法生成具有相關性的風電出力樣本。

1.2.1Nataf變換

設X=[x1,x2,…,xm]是m維服從任意分布的隨機向量,隨機變量xi的累計分布函數為Fi(xi)。標準正態隨機向量Y=[y1,y2,…,ym]可由下式得到:

yi=Φ-1[Fi(xi)]

(3)

式中Φ-1[·]為標準正態分布的逆累計分布函數。

設ρX=(ρXij)m×m、ρY=(ρYij)m×m分別為隨機向量X和Y的線性相關系數矩陣,矩陣中各元素的關系滿足下式:

(4)

式中:μi、σi、μj和σj分別為隨機變量xi與xj的期望和標準差;φ2(yi,yj,ρYij)為yi和yj的聯合概率密度函數。文獻[18]提供了計算ρYij的半經驗公式,本文采用這一方法。上述步驟完成了服從任意分布的隨機向量到相關的標準正態隨機向量的變換,若能夠得到隨機向量Y的樣本,則通過變換X=F-1[Φ(Y)]可得到隨機向量X的樣本。下面介紹如何得到相關系數矩陣為ρY的標準正態分布樣本。

設Z=[z1,z2,…,zm]為m維相互獨立的標準正態分布隨機向量。對ρY進行Cholesky分解得到下三角矩陣L,則有Y=LZ。可以看出,若要得到相關系數矩陣為ρY的標準正態分布樣本,則需先得到相互獨立的標準正態分布樣本。首先對標準正態分布進行采樣得到樣本矩陣,再通過排序方法可得到相關系數矩陣趨于單位矩陣的標準正態分布樣本矩陣。排序方法有多種,本文采用Cholesky分解法[19]進行排序。

1.2.2擬蒙特卡洛法

擬蒙特卡洛法利用低偏差序列進行采樣,使得采樣得到的樣本能均勻地填充采樣空間。常用的低偏差序列有Halton序列、Faure序列以及Sobol序列,本文采用Sobol序列,其生成的步驟簡述如下。

(1)選取本原多項式pi(x)如下:

pi(x)=xsj+a1,jxsj-1+…+asj-1,jx+1,j=1,2,…,m

(5)

式中:m為Sobol序列的維數;a1,j,…asj-1, j∈{0,1}為第j維本原多項式的系數;sj為第j維本原多項式的冪。

(2)選取正整數序列初始值m1,j,m2,j,…,msj,j,需保證mk,j(1≤k≤sj)為奇數且小于2k。對于kgt;sj,有遞歸公式:

mk,j=2a1,jmk-1,j⊕22a2,jmk-2,j⊕…⊕

2sjmk-sj,j⊕mk-sj,j

(6)

式中⊕為按位異或算子。

(3)計算方向數vk,j:

vk,j=mk,j/2k

(7)

Sobol序列的第j維第i個采樣值由下式計算:

xi,j=b1v1,j⊕b2v2,j⊕…⊕bkvk,j⊕…

(8)

式中bk是第i個采樣值的二進制(…b2b1)2的右數第k位。

由上述步驟可看出,當本原多項式及正整數序列初始值確定,Sobol序列可根據式(6)至式(8)計算得到。文獻[20]已給出多達1 111維的本原多項式及正整數序列初始值,本文加以利用得到Sobol序列。

1.2.3基于Nataf變換的擬蒙特卡洛法

1.2.1節提供了從相互獨立的標準正態分布樣本到服從任意分布的隨機向量樣本的變換方法,而1.2.2節提供了擬蒙特卡洛采樣方法。文獻[21]提出了能夠處理相關性的拉丁超立方采樣方法,以此為基礎,本文提出計及相關性的擬蒙特卡洛方法,其流程如下:

(1)對m個標準正態分布進行n次擬蒙特卡洛采樣,得到樣本矩陣Wm×n,對Wm×n進行基于Cholesky分解法的排序,得到相關系數矩陣趨于單位矩陣的標準正態分布樣本矩陣Zm×n。

(2)由隨機向量X的分布和相關系數矩陣ρX得到隨機向量Y的相關系數矩陣ρY,對其進行Cholesky分解得到下三角矩陣L。由Y=LZ得到相關系數矩陣為ρY的標準正態分布樣本矩陣Ym×n,由Ym×n得到其順序矩陣Ls。

(3)對隨機向量X進行擬蒙特卡洛采樣,按順序矩陣排序得到最終的樣本矩陣Sm×n。

2 半不變量法計算概率潮流

2.1 潮流方程線性化模型

將極坐標形式的交流潮流方程在基準運行點處進行泰勒展開,忽略2次及以上的高次項,可得到:

(9)

2.2 輸入隨機變量相關性處理

先假設節點注入功率變量相互獨立,利用半不變量法的齊次和可加性可得:

(10)

當計及節點注入功率變量的相關性時,處理方法是將相關隨機變量表示為不相關隨機變量的線性組合。通常認為發電機注入功率變量之間相互獨立,負荷注入功率變量具有相關性。設負荷注入功率向量協方差矩陣為Cw,可由相關系數矩陣及向量標準差計算得到。對Cw進行Cholesky分解得到下三角矩陣G,則有:

(11)

對式(10)進行修正可得:

(12)

求得ΔX、ΔZ的各階半不變量,可通過級數展開或最大熵原理得到擾動部分的概率分布,將其右移X0、Z0,便得到節點狀態向量及支路潮流向量的概率分布。

3 負荷正態分布時的概率潮流

3.1 正態分布特性

本文僅考慮風電及負荷的不確定性,且設負荷注入功率向量服從多維正態分布,當采用風電出力樣本描述風電隨機性時,系統不確定量僅為服從多維正態分布的負荷注入功率向量WL。當采用2.1節線性化模型后,根據正態變量線性變換不變性定理可知,各風電出力樣本下的狀態變量服從正態分布,因此僅需計算其期望和方差。

3.2 狀態變量的概率分布計算

各風電出力樣本下,負荷注入功率取期望值,則進行確定性潮流計算得到X0、Z0,其為節點狀態向量X及支路潮流向量Z期望值的近似值[22],且近似值的誤差與方差有關。本文將X0、Z0作為各樣本下X、Z的期望值,忽略了較小的誤差。

以節點狀態向量X為例,說明前2階原點距和半不變量的關系。

(13)

由上述方法可計算得到各風電出力樣本下狀態變量的期望與方差,根據其正態分布特性便可得到該狀態變量的概率分布,其累計分布函數如式(14)。根據全概率公式,對各樣本下狀態變量的概率分布進行加權,由式(15)計算得到狀態變量最終的累計分布函數和概率密度函數。

(14)

(15)

3.3 計算流程

本文所提方法流程如圖1所示,主要由3部分組成:風電出力樣本的產生、計及相關性的半不變量法概率潮流以及狀態變量的概率分布計算。

圖1 CM-QMC算法流程Fig.1 Flow chart of CM-QMC method

4 算例分析

4.1 算例說明

本文采用IEEE 30節點系統驗證所提方法。將2個風電場接入節點10,每個風電場各包含20臺1.5 MW風電機組,其切入風速、額定風速、切出風速分別為3.5、13、25 m/s。風電場風速Weibull分布的形狀參數k=2.11,尺度參數c=9,兩風電場風速之間的相關系數為0.9。風電場以恒定功率因數控制方式并網運行,且功率因數為0.98,從電網吸收部分無功功率。

各節點負荷期望值為測試系統負荷確定值,標準差為期望值的10%,負荷有功與無功功率不相關。將系統分為2個區域,節點1—15為區域1,節點16—30為區域2,區域內負荷的相關系數為0.9,區域間負荷的相關系數為0.5。

將本文方法與基于Nataf變換的簡單隨機采樣(Nataf transformation based simple random sampling,NSRS)蒙特卡洛法、NQMC進行比較,以50 000次NSRS方法得到的概率潮流結果作為準確值。為了全面驗證本文所提方法的有效性,引入相對誤差、方差和的根均值[23](average root mean square,ARMS)2項指標。

(16)

(17)

4.2 性能評估

圖2 電壓幅值相位誤差曲線Fig.2 Error curves of bus voltage magnitude and phase

圖3 支路潮流誤差曲線Fig.3 Error curves of branch power flow

選取節點10(風電場接入節點)電壓幅值為考察對象,100次采樣的3種方法和50 000次采樣的NSRS方法得到的概率密度函數如圖5所示。從圖中可知,采樣規模為100次的CM-QMC得到的概率分布擬合精度高于其他2種方法,主要由于CM-QMC采用多個正態分布進行擬合,而NSRS和NQMC采用核密度估計等方法進行擬合。當采樣規模小時,核密度估計等方法的誤差較大。

圖4 輸出變量ARMS均值Fig.4 Average ARMS of output variables

圖5 節點10電壓幅值概率密度函數Fig.5 Probability density function of bus10 voltage magnitude

在CPU為Intel Core i5-6500 3.2G Hz、內存為 4 GB的計算機上,采用Matlab R2017a軟件編程進行仿真計算。定義計算時間為隨機變量樣本的產生、確定性潮流計算(半不變量法概率潮流計算),不進行計算結果的統計分析。不同采樣規模下3種方法計算時間如表1所示。從表中可以看出,在相同采樣規模下NSRS和NQMC計算時間相近,說明通過擬蒙特卡洛法產生樣本消耗很少的時間。CM-QMC需要計算輸出隨機變量的2階半不變量,因此消耗的時間高于另2種算法,但CM-QMC的優勢在于算法收斂速度快、擬合曲線精度高,在達到相同的計算精度時,所需采樣數較少,計算時間會更短。

表13種方法計算時間比較
Table1Computationaltimecomparisonofthreemethods

5 結 論

針對概率潮流算法中模擬法耗時過長、半不變量法線性化模型引起誤差較大以及概率密度出現負值等不足,本文將擬蒙特卡洛法與半不變量法相結合,提出一種考慮輸入變量相關性的CM-QMC算法。

與傳統半不變量法相比,本文方法雖然需要進行多次半不變量計算,但只需計算2階半不變量,通過整合多個正態分布得到狀態變量的概率分布,避免了概率密度出現負值的情況。并且采用擬蒙特卡洛法產生風電出力樣本,相當于在各樣本點處線性化潮流方程,減小了線性化模型引起的誤差。算例結果表明,本文方法在較小采樣規模下即可得到狀態變量精確的數字特征和概率分布,因此與模擬法通常需要較大采樣規模相比,本文方法具有更高的計算效率。

[1] BORKOWSKA B.Probabilistic load flow [J].IEEE Transactions on Power Apparatus and System,1974,93(3):752-759.

[2] 劉宇,高山,楊勝春,等.電力系統概率潮流算法綜述[J].電力系統自動化,2014,(38)23:127-135.

LIU Yu,GAO Shan,YANG Shengchun,et al.Review on algorithms for probabilistic load flow in power system[J].Automation of Electric Power Systems,2014,38(23):127-135.

[3] 丁明,王京景,李生虎.基于擴展拉丁超立方采樣的電力系統概率潮流計算[J].中國電機工程學報,2013,33(4):163-170.

DING Ming,WANG Jingjing,LI Shenghu.Probabilistic load flow evaluation with extended Latin hypercube sampling [J].Proceedings of the CSEE,2013, 33(4):163-170.

[4] 張立波,程浩忠,曾平良,等.基于Nataf逆變換的概率潮流三點估計法[J].電工技術學報,2016,31(6):187-194.

ZHANG Libo,CHENG Haohong,ZENG Pingliang,et al.A three-point estimate method for solving probabilistic load flow based on inverse Nataf transformation[J].Transactions of China Electrotechnical Society,31(6):187-194.

[5] 黃煜,徐青山,卞海紅,等.基于拉丁超立方采樣技術的半不變量法隨機潮流計算[J].電力自動化設備,2016,36(11):112-119.

HUANG Yu,XU Qingshan,BIAN Haihong,et al.Cumulant method based on Latin hypercube sampling for calculating probabilistic load flow[J].Electric Power Automation Equipment,2016,36(11):112-119.

[6] 郭效軍,蔡德福.不同級數展開的半不變量法概率潮流計算比較分析[J].電力自動化設備,2013,33(12):85-90.

GUO Xiaojun,CAI Defu.Comparison of probabilistic load flow calculation based on cumulant method among different series expansions[J].Electric Power Automation Equipment,2013,33(12):85-90.

[7] 朱星陽,劉文霞,張建華.考慮大規模風電并網的電力系統隨機潮流[J].中國電機工程學報,2013,33(7):77-85.

ZHU Xinyang,LIU Wenxia,ZHANG Jianhua.Probabilistic load flow method considering large-scale wind power integration[J].Proceedings of the CSEE,2013,33(7):77-85.

[8] 隋冰彥,侯愷,賈宏杰,等.基于最大熵原理的含風電和電動汽車電力系統概率潮流[J].電網技術,2016,40(12):3696-3705.

SUI Bingyan,HOU Kai,JIA Hongjie,et al.Maximum entropy based probability load flow for power system with wind power and electric vehicles[J].Power System Technology,2016,40(12):3696-3705.

[9] 高元海,王淳.基于全概率公式的含風電配電系統概率潮流計算[J].中國電機工程學報,2015,35(2):327-334.

GAO Yuanhai,WANG Chun.Probabilistic load flow calculation of distribution system including wind farms based on total probability formula[J].Proceedings of the CSEE,2015,35(2):327-334.

[10] 楊歡,鄒斌.含相關性隨機變量的概率潮流三點估計法[J].電力系統自動化,2012,36(15):51-56.

YANG Huan,ZHOU Bin.A three-point estimate method for solving probabilistic power flow problems with correlated random variables[J].Automation of Electric Power Systems,2012,36(15):51-56.

[11] 石東源,蔡德福,陳金富,等.計及輸入變量相關性的半不變量法概率潮流計算[J].中國電機工程學報,2012,32(28):104-113.

SHI Dongyuan,CAI Defu,CHEN Jinfu,et al.Probabilistic load flow calculation based on cumulant method considering correlation between input variables[J].Proceedings of the CSEE,2012,32(28):104-113.

[12] MORALES J M,BARINGO L,CONEJO A J,et al.Probabilistic power flow with correlated wind sources[J].IET Generation,Transmission and Distribution,2010,4(5):641-651.

[13] MOHAMMADI M,SHAYEGANI A,ADAMINEJAD H.A new approach of point estimate method for probabilistic load flow[J].International Journal of Electrical Power amp; Energy Systems,2013,51(10):54-60.

[14] 韓海騰,高山,吳晨,等.基于Nataf變換的電網不確定性多點估計法[J].電力系統自動化,2015,39(7):28-34.

HAN Haiteng,GAO Shan,WU Chen,et al.Uncertain power flow solved by multi-point estimate method based on Nataf transformation[J].Automation of Electric Power Systems,2015,39(7):28-34.

[15] 蔡德福,石東源,陳金富.基于多項式正態變換和拉丁超立方采樣的概率潮流計算方法[J].中國電機工程學報,2013,33(13):92-100.

CAI Defu,SHI Dongyuan,CHEN Jinfu.Probabilistic load flow calculation method based on polynomial normal transformation and Latin hypercube sampling[J].Proceedings of the CSEE,2013,33(13):92-100.

[16] 趙來鑫,趙書強,胡永強.考慮光伏發電相關性的概率潮流計算[J].華北電力大學學報,2017,44(2):68-74.

ZHAO Laixin,ZHAO Shuqiang,HU Yongqiang.Probabilistic load flow calculation considering correlativity of photovoltaic generation[J].Journal of North China Electric Power University,2017,44(2):68-74.

[17] 方斯頓,程浩忠,徐國棟,等.基于Nataf變換含相關性的擴展準蒙特卡洛隨機潮流方法[J].電工技術學報,2017,32(2):255-263.

FANG Sidun,CHENG Haozhong,XU Guodong,et al.A Nataf transformation based on extended quasi Monte Carlo simulation method for solving probabilistic load flow problems with correlated random variables [J].Transactions of China Electrotechnical Society,2017,32(2):255-263 .

[18] LIU P L,DER K A.Multivariate distribution models with prescribed marginals and covariances[J].Probabilistic Engineering Mechanics,1986,1(2):105-112.

[19] YU H,CHUNG C Y,WONG K P,et al.Probabilistic load flow evaluation with hybrid Latin hypercube sampling and cholesky decomposition[J].IEEE Transactions on Power Systems,2009,24(2):661-667.

[20] JOE S,KUO F Y.Remark on algorithm 659:Implementing Sobol’s quasi random sequence generator[J].ACM Transaction on Mathematical Software,2003,29(1):49-57.

[21] 陳雁,文勁宇,程時杰.考慮輸入變量相關性的概率潮流計算方法[J].中國電機工程學報,2011,31(22):80-87.

CHEN Yan,WEN Jinyu,CHENG Shijie.Probabilistic load flow analysis considering dependencies among input random variables[J].Proceedings of the CSEE,2011,31(22):80-87.

[22] 劉艷麗.隨機潮流中正態變量線性變換不變性定理應用的研究[D].天津:天津大學,2009.

LIU Yanli.Study on the application of the linear transformation invariance of normal variables in probabilistic load flow[D].Tianjin:Tianjin University,2009.

[23] ZHANG P,LEE S T.Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion [J].IEEE Transactions on Power Systems,2004,19(1):676-682.

2017-06-22

栗然(1965),女,博士,教授,主要研究方向為新能源與并網技術;

范航(1993),男,碩士研究生,通訊作者,主要研究方向為電力系統分析、運行與控制;

張凡(1993),男,碩士研究生,主要研究方向為電力系統分析、運行與控制;

靳保源(1992),男,碩士研究生,主要研究方向為電力系統分析、運行與控制。

(編輯 張小飛)

QuasiMonteCarloBasedCumulantMethodforProbabilisticLoadFlowCalculation

LI Ran, FAN Hang, ZHANG Fan, JIN Baoyuan

(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, Hebei Province, China)

With the increasing penetration of wind sources, not only the uncertainty of wind power output, but also the correlation of wind power output due to wind speed correlations among adjacent wind farms should be considered in probabilistic load flow (PLF) methods. In allusion to the correlation and large fluctuation range of wind power output, this paper proposes a quasi Monte Carlo (QMC) based cumulant method of PLF considering the correlation between input variables. QMC based on Nataf transformation is used to generate wind power output samples with correlation, and the cumulant method is used to calculate PLF at each sample point. With the state variables satisfying the normal distribution at each sample point, the final probability distributions are obtained by integrating all normal distributions according to the total probability formula. The comparative tests in the IEEE 30-bus system demonstrate that the proposed method has high computational precision under the small sampling size, and can obtain the probability distribution of the system state variables accurately.

probabilistic load flow; cumulant method; quasi Monte Carlo; wind power integration

TM74

A

1000-7229(2017)11-0144-07

10.3969/j.issn.1000-7229.2017.11.019

主站蜘蛛池模板: 亚洲欧美日韩中文字幕一区二区三区| 亚洲三级色| 国产精品va免费视频| 性视频久久| 激情网址在线观看| 国产真实自在自线免费精品| 激情综合图区| 狠狠色噜噜狠狠狠狠色综合久| 欧美精品另类| 国产成人久久综合777777麻豆| 在线另类稀缺国产呦| 国产午夜精品一区二区三区软件| 成色7777精品在线| 新SSS无码手机在线观看| 亚洲人成网18禁| 国产黄色免费看| 91色老久久精品偷偷蜜臀| 在线欧美国产| 2021国产精品自产拍在线| 91久久精品国产| 欧美成人精品在线| 亚洲久悠悠色悠在线播放| 狠狠色婷婷丁香综合久久韩国 | 91精品国产一区自在线拍| 91年精品国产福利线观看久久| 亚洲日本中文字幕乱码中文| 中文字幕人妻无码系列第三区| 亚洲精品高清视频| 成人在线天堂| 久久 午夜福利 张柏芝| 超碰91免费人妻| 国产欧美中文字幕| 五月激情婷婷综合| 亚洲成人高清无码| 亚洲国产综合精品一区| 国产亚洲高清在线精品99| 国产香蕉一区二区在线网站| 亚洲欧美不卡视频| 中文字幕va| 四虎成人在线视频| 国产免费观看av大片的网站| 国产91丝袜在线观看| 天天视频在线91频| 欧洲高清无码在线| 高清乱码精品福利在线视频| 91精选国产大片| 国产在线日本| 一级毛片高清| 2020国产精品视频| 久一在线视频| 日本亚洲国产一区二区三区| 亚洲综合色婷婷中文字幕| 精品一区国产精品| AⅤ色综合久久天堂AV色综合 | 天天色天天综合| 亚洲高清日韩heyzo| 亚洲熟妇AV日韩熟妇在线| a级毛片在线免费| 亚洲性影院| 国产精品55夜色66夜色| 欧美亚洲激情| 色网站在线视频| 亚洲va欧美ⅴa国产va影院| 欧美影院久久| 美女扒开下面流白浆在线试听| 久久天天躁狠狠躁夜夜躁| 色婷婷国产精品视频| 中文字幕啪啪| 1024你懂的国产精品| 五月激情婷婷综合| 视频二区国产精品职场同事| 毛片视频网址| 亚洲av无码牛牛影视在线二区| 98精品全国免费观看视频| www.精品国产| 亚洲国产成人精品一二区| 精品国产中文一级毛片在线看| 日本免费福利视频| 国产精品一区二区久久精品无码| 狠狠干欧美| 国产精品综合色区在线观看| 午夜不卡福利|