999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

行為AANA陣列的若干收斂性

2017-12-28 02:24:31王寬程
純粹數學與應用數學 2017年6期

王寬程

(閩南理工學院信息管理學院,福建 泉州 362700)

行為AANA陣列的若干收斂性

王寬程

(閩南理工學院信息管理學院,福建 泉州 362700)

在較廣泛的條件下,研究了AANA陣列行和的收斂性質,利用截尾方法和矩不等式,獲得了行為AANA陣列的弱大數律、Lp收斂性和完全收斂性定理,所得結果推廣了前人的相應結果.

AANA陣列;收斂性;一致可積

1 引言

稱{Xn;n∈N}為漸近幾乎負相依(簡稱AANA)隨機變量序列,如果存在非負序列

對任意的n,k≥1都有

其中f和g是任何兩個使上述方差存在且對每個變元均為非降的連續函數.稱{q(n);n∈N}為該序列的混合系數.

AANA序列是包含NA列(令q(n)=0,n≥1)和獨立列的更廣泛的隨機變量序列.顯然,如果隨機變量序列是NA列,則一定是AANA列,反之不然[1].此外,AANA序列也不同于ANA列[2].近年來有關AANA序列的研究,已取得不少的成果,可以參考文獻[3-7].但對于AANA隨機陣列的研究比較少,本文研究AANA陣列行和的若干收斂性質.

稱隨機陣列{Xni;1≤i≤n,n∈N}是行為AANA陣列,固定n,假設每一行內的隨機變量列{Xni}是AANA的.

本文主要研究形如

的行和的最大值的弱大數率、Lp收斂性和完全收斂性.推廣和改進了NA列和獨立情形的大數定律和完全收斂性[8].

稱隨機陣列{Xni;1≤i≤n,n∈N}是p階cesaro一致可積的,若

顯然p階一致可積蘊含p階cesaro一致可積的,但反之不成立,即p階cesaro一致可積嚴格弱于p階一致可積[9].

本文一律用C表示與n無關的正常數,并且C可在不同的地方表示不同的常數.

2 主要結果與證明

引理 2.1[1]設{Xn;n∈N}為AANA序列,并且混合系數是{q(n);n∈N},若{fn;n∈N}皆是單調非降(或者單調非增)連續函數,那么{fn(xn);n∈N}仍然是AANA序列,其混合系數仍然是{q(n);n∈N}.

引理 2.2[4]設{Xn;n∈N}是均值為0的AANA序列,混合系數{q(n);n∈N},1<p≤2,那么存在僅依賴于p的正數Cp,使得

定理 2.1設{Xni;1≤i≤n,n∈N}是行為AANA陣列,其混合系數q(n),n≥1,可以滿足

且對1<p<2,有

定理 2.1的證明取xn=n1/p,當n→∞時,xn→∞,對Xni截尾,記

當1<p<2時,由引理2.1知,

仍是AANA陣列,因

要證定理2.1,只需證Jn1→0,Jn2→0,n→0.由引理2.2以及Morkov不等式可得

由 (2)式,且xn=n1/p得,

由 (2)式,?ε>0,?M,使當y>M時有

即以當xn>M時,有

由1<p<2,以及ε的任意性得,n→∞.

下證Jn2→0,n→∞,由的定義及(2),有

定理2.1證明完畢.

推論 2.1設{Xn;n≥1}是NA列,且對1<p<2,有

證明由

知,(1)式等價于(2)式,也等價于(3)式.再由定理1可得證.

特別取{Xn;n≥1}為同分布NA列,則(3)變為

這一結果推廣了文獻[10]的定理1的充分結果,因此,定理2.1把NA列的相關結果推廣到了AANA陣列.

定理 2.2設{Xni;1≤i≤n,n∈N}是行為AANA陣列,其混合系數q(n),滿足

且對1<p≤2,有(1)式成立,則

定理 2.2的證明仍用定理2.1的記號,這里取xn=n(1?p/2)/4,因1<p≤2,當n→∞時,xn→∞,由Jessen不等式,引理2得

定理2.2證明完畢.

推論 2.2設{Xn;n≥1}是NA列,且對1<p<2,有

定理 2.3設{Xni;1≤i≤n,n∈N}是行為AANA陣列,其混合系數q(n),滿足

且對1<p≤2及δ>1時,滿足

則對αp≥1有

定理 2.3的證明仍沿用定理 2.1的記號,取xn=nα(2?p)/4,?ε>0有

知,?M>0,當x>M時,有

又因為xn=nα(2?p)/4,所以?N>0,使得當n>N時,有xn>M,則

同理可得

令t=z2/p,則有

由(4)得

推論 2.3設{Xn;n≥1}是NA列,且對1<p<2有

則對αp≥1,有

[1]Chandra T K,Ghosal S.Extensions of the strong law of number of Marcinkiewicz and Zygmund for dependent variables[J].Acta Mathematical Hungarica,1996,71(4):327-336.

[2]Zhang L X,Wang X Y.Convergence rates in the strong laws of asymptotically negatively associated random fields[J].Appl.Math.J.Chinese Univ.Ser.B,1999,14(4):406-416.

[3]Ko M H,Kim T S,Lin Z.The Hajek-Renyi inequality for the AANA random variables and its applications[J].Taiwanese Journal of Mathematics,2005,9(1):111-122.

[4]Yuan D M.An J.Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications[J].Sci.China Ser.A,2009,52(9):1887-1904.

[5]Wang X J,Hu S H,Yang W Z.Convergence properties for asymptotically almost negative associated sequence[J/OL].Discrete Dynamics in Nature and Society,2010,http://dx.doi.org/10.1155/2010/218380.

[6]Wang X J,Hu S H,Li X Q,et al.Maximal inequalities and strong law of large numbers for AANA sequences[J].Communications of Korean Mathematical Society,2011,26:151-161.

[7]Wang X J,Hu S H,Yang W Z.Complete convergence for arrays of rowwise asymptotically almost negatively associated random variables[J].Discrete Dynt.Soc.,2011,2011:11.

[8]萬成高.鞅的極限理論[M].北京:科學出版社,2002.

[9]Chandra T K.Uniform integrability in the Cesaro sense and the week law of large numbers[J].the Indian Yournal of Siatistics(series A),1989,51:309-317.

[10]遲翔,蘇淳.同分布NA序列的一個弱大數律[J].應用概率統計,1997,13(2):199-203.

Some convergence properties of arrays of rowwise AANA random variables

Wang Kuancheng
(Minnan University of Science and Technology,Quanzhou 362700,China)

Under very mild conditions,the convergence properties for the sums of rowwise asymptotically almost negative associated random variables.By the truncated method and the means moment inequality,the author is able to give the week law of large numbers,Lp convergence and complete convergence of rowwise asymptotically almost negative associated random variables.The results extend the corresponding results in series of previous papers.

arrays of AANA,convergence properties,uniformly integral

2017 MSC:12M06

O211.4

A

1008-5513(2017)06-0615-08

10.3969/j.issn.1008-5513.2017.06.007

2017-10-07.

福建省中青年教師教育科研項目(JAT170739).

王寬程(1981-),碩士,講師,研究方向:概率極限理論.

主站蜘蛛池模板: 精品国产成人av免费| 色老二精品视频在线观看| 广东一级毛片| 亚洲天堂免费| 波多野结衣在线一区二区| 免费又爽又刺激高潮网址 | 中日韩一区二区三区中文免费视频| 亚洲天堂啪啪| 中国国产高清免费AV片| 综合久久五月天| 国产欧美另类| 国产福利一区二区在线观看| 国产精品九九视频| 干中文字幕| 97色伦色在线综合视频| 成人午夜精品一级毛片| 亚洲综合在线最大成人| 在线观看欧美精品二区| 中文字幕色站| 四虎成人精品在永久免费| 国产精品视频系列专区| 日本一区高清| 3p叠罗汉国产精品久久| 国产一区免费在线观看| 亚洲Aⅴ无码专区在线观看q| 成人国产精品网站在线看| www.av男人.com| 欧美日韩中文字幕二区三区| 国产三级精品三级在线观看| 精品无码一区二区三区在线视频| 欧美日韩另类国产| 手机在线国产精品| 国产xx在线观看| 国产成人综合亚洲欧洲色就色| 免费毛片全部不收费的| 日韩无码黄色| 国产福利影院在线观看| 国产精品第一区| 毛片一区二区在线看| 91美女视频在线| 精品色综合| 亚洲91精品视频| 热热久久狠狠偷偷色男同 | 色综合色国产热无码一| 欧美成人一级| 亚洲视频在线网| 亚洲男人天堂网址| 国产91透明丝袜美腿在线| 国产啪在线91| 国产精品女熟高潮视频| 欧美啪啪一区| 欧美成人午夜影院| 久久亚洲欧美综合| 午夜爽爽视频| 日韩欧美在线观看| 成人夜夜嗨| 91啦中文字幕| 亚洲人成网站18禁动漫无码| 亚洲精选高清无码| 国产精品免费露脸视频| 国产91在线|日本| 91免费观看视频| 71pao成人国产永久免费视频| 久久久受www免费人成| 一区二区欧美日韩高清免费 | 国产另类乱子伦精品免费女| 国产区免费| 亚洲中文精品人人永久免费| 亚洲无限乱码一二三四区| 色天堂无毒不卡| 亚洲第一福利视频导航| 国产乱人激情H在线观看| 亚洲人成色在线观看| 99久久精品国产自免费| 亚洲精品大秀视频| 精品自拍视频在线观看| 国产一级一级毛片永久| 高清欧美性猛交XXXX黑人猛交| 午夜限制老子影院888| 青青草原国产av福利网站| 国产男人天堂| 亚洲国产欧美目韩成人综合|