999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

行為AANA陣列的若干收斂性

2017-12-28 02:24:31王寬程
純粹數學與應用數學 2017年6期

王寬程

(閩南理工學院信息管理學院,福建 泉州 362700)

行為AANA陣列的若干收斂性

王寬程

(閩南理工學院信息管理學院,福建 泉州 362700)

在較廣泛的條件下,研究了AANA陣列行和的收斂性質,利用截尾方法和矩不等式,獲得了行為AANA陣列的弱大數律、Lp收斂性和完全收斂性定理,所得結果推廣了前人的相應結果.

AANA陣列;收斂性;一致可積

1 引言

稱{Xn;n∈N}為漸近幾乎負相依(簡稱AANA)隨機變量序列,如果存在非負序列

對任意的n,k≥1都有

其中f和g是任何兩個使上述方差存在且對每個變元均為非降的連續函數.稱{q(n);n∈N}為該序列的混合系數.

AANA序列是包含NA列(令q(n)=0,n≥1)和獨立列的更廣泛的隨機變量序列.顯然,如果隨機變量序列是NA列,則一定是AANA列,反之不然[1].此外,AANA序列也不同于ANA列[2].近年來有關AANA序列的研究,已取得不少的成果,可以參考文獻[3-7].但對于AANA隨機陣列的研究比較少,本文研究AANA陣列行和的若干收斂性質.

稱隨機陣列{Xni;1≤i≤n,n∈N}是行為AANA陣列,固定n,假設每一行內的隨機變量列{Xni}是AANA的.

本文主要研究形如

的行和的最大值的弱大數率、Lp收斂性和完全收斂性.推廣和改進了NA列和獨立情形的大數定律和完全收斂性[8].

稱隨機陣列{Xni;1≤i≤n,n∈N}是p階cesaro一致可積的,若

顯然p階一致可積蘊含p階cesaro一致可積的,但反之不成立,即p階cesaro一致可積嚴格弱于p階一致可積[9].

本文一律用C表示與n無關的正常數,并且C可在不同的地方表示不同的常數.

2 主要結果與證明

引理 2.1[1]設{Xn;n∈N}為AANA序列,并且混合系數是{q(n);n∈N},若{fn;n∈N}皆是單調非降(或者單調非增)連續函數,那么{fn(xn);n∈N}仍然是AANA序列,其混合系數仍然是{q(n);n∈N}.

引理 2.2[4]設{Xn;n∈N}是均值為0的AANA序列,混合系數{q(n);n∈N},1<p≤2,那么存在僅依賴于p的正數Cp,使得

定理 2.1設{Xni;1≤i≤n,n∈N}是行為AANA陣列,其混合系數q(n),n≥1,可以滿足

且對1<p<2,有

定理 2.1的證明取xn=n1/p,當n→∞時,xn→∞,對Xni截尾,記

當1<p<2時,由引理2.1知,

仍是AANA陣列,因

要證定理2.1,只需證Jn1→0,Jn2→0,n→0.由引理2.2以及Morkov不等式可得

由 (2)式,且xn=n1/p得,

由 (2)式,?ε>0,?M,使當y>M時有

即以當xn>M時,有

由1<p<2,以及ε的任意性得,n→∞.

下證Jn2→0,n→∞,由的定義及(2),有

定理2.1證明完畢.

推論 2.1設{Xn;n≥1}是NA列,且對1<p<2,有

證明由

知,(1)式等價于(2)式,也等價于(3)式.再由定理1可得證.

特別取{Xn;n≥1}為同分布NA列,則(3)變為

這一結果推廣了文獻[10]的定理1的充分結果,因此,定理2.1把NA列的相關結果推廣到了AANA陣列.

定理 2.2設{Xni;1≤i≤n,n∈N}是行為AANA陣列,其混合系數q(n),滿足

且對1<p≤2,有(1)式成立,則

定理 2.2的證明仍用定理2.1的記號,這里取xn=n(1?p/2)/4,因1<p≤2,當n→∞時,xn→∞,由Jessen不等式,引理2得

定理2.2證明完畢.

推論 2.2設{Xn;n≥1}是NA列,且對1<p<2,有

定理 2.3設{Xni;1≤i≤n,n∈N}是行為AANA陣列,其混合系數q(n),滿足

且對1<p≤2及δ>1時,滿足

則對αp≥1有

定理 2.3的證明仍沿用定理 2.1的記號,取xn=nα(2?p)/4,?ε>0有

知,?M>0,當x>M時,有

又因為xn=nα(2?p)/4,所以?N>0,使得當n>N時,有xn>M,則

同理可得

令t=z2/p,則有

由(4)得

推論 2.3設{Xn;n≥1}是NA列,且對1<p<2有

則對αp≥1,有

[1]Chandra T K,Ghosal S.Extensions of the strong law of number of Marcinkiewicz and Zygmund for dependent variables[J].Acta Mathematical Hungarica,1996,71(4):327-336.

[2]Zhang L X,Wang X Y.Convergence rates in the strong laws of asymptotically negatively associated random fields[J].Appl.Math.J.Chinese Univ.Ser.B,1999,14(4):406-416.

[3]Ko M H,Kim T S,Lin Z.The Hajek-Renyi inequality for the AANA random variables and its applications[J].Taiwanese Journal of Mathematics,2005,9(1):111-122.

[4]Yuan D M.An J.Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications[J].Sci.China Ser.A,2009,52(9):1887-1904.

[5]Wang X J,Hu S H,Yang W Z.Convergence properties for asymptotically almost negative associated sequence[J/OL].Discrete Dynamics in Nature and Society,2010,http://dx.doi.org/10.1155/2010/218380.

[6]Wang X J,Hu S H,Li X Q,et al.Maximal inequalities and strong law of large numbers for AANA sequences[J].Communications of Korean Mathematical Society,2011,26:151-161.

[7]Wang X J,Hu S H,Yang W Z.Complete convergence for arrays of rowwise asymptotically almost negatively associated random variables[J].Discrete Dynt.Soc.,2011,2011:11.

[8]萬成高.鞅的極限理論[M].北京:科學出版社,2002.

[9]Chandra T K.Uniform integrability in the Cesaro sense and the week law of large numbers[J].the Indian Yournal of Siatistics(series A),1989,51:309-317.

[10]遲翔,蘇淳.同分布NA序列的一個弱大數律[J].應用概率統計,1997,13(2):199-203.

Some convergence properties of arrays of rowwise AANA random variables

Wang Kuancheng
(Minnan University of Science and Technology,Quanzhou 362700,China)

Under very mild conditions,the convergence properties for the sums of rowwise asymptotically almost negative associated random variables.By the truncated method and the means moment inequality,the author is able to give the week law of large numbers,Lp convergence and complete convergence of rowwise asymptotically almost negative associated random variables.The results extend the corresponding results in series of previous papers.

arrays of AANA,convergence properties,uniformly integral

2017 MSC:12M06

O211.4

A

1008-5513(2017)06-0615-08

10.3969/j.issn.1008-5513.2017.06.007

2017-10-07.

福建省中青年教師教育科研項目(JAT170739).

王寬程(1981-),碩士,講師,研究方向:概率極限理論.

主站蜘蛛池模板: 乱人伦中文视频在线观看免费| 久久久久亚洲Av片无码观看| 日本欧美成人免费| 丰满人妻久久中文字幕| 国产喷水视频| 国产哺乳奶水91在线播放| 亚洲天堂.com| 国产特一级毛片| 亚洲最猛黑人xxxx黑人猛交| 亚洲欧美国产五月天综合| 欧美福利在线播放| 成年女人a毛片免费视频| 亚洲人在线| 国产成人高清精品免费| 粉嫩国产白浆在线观看| 国产chinese男男gay视频网| 97精品国产高清久久久久蜜芽| 成人福利在线视频| jizz在线观看| 人妻中文久热无码丝袜| 国产麻豆福利av在线播放 | 日韩精品无码免费一区二区三区| 午夜国产不卡在线观看视频| 无码啪啪精品天堂浪潮av | 亚洲动漫h| 国产丝袜一区二区三区视频免下载| 91福利国产成人精品导航| 欧美成人影院亚洲综合图| av一区二区三区高清久久| 99国产在线视频| 亚洲一区二区成人| 999国产精品| 91精选国产大片| 国产女人在线| 亚洲一区二区三区麻豆| 91色在线观看| 中日韩一区二区三区中文免费视频 | 色综合网址| 国产一区二区三区精品欧美日韩| 国产精品99久久久| 女人爽到高潮免费视频大全| 好吊色妇女免费视频免费| 国产精品成人久久| 欧美亚洲香蕉| 欧美三级视频网站| 国产第一页亚洲| 国产一国产一有一级毛片视频| 国产一区二区三区免费观看| 欧美亚洲欧美区| 色135综合网| jizz亚洲高清在线观看| 午夜福利无码一区二区| 欧美人人干| 亚洲欧美自拍中文| 久久一本精品久久久ー99| 黄色网址免费在线| 91精品啪在线观看国产| 欧美黄网在线| 日韩av在线直播| 中文字幕一区二区视频| 波多野吉衣一区二区三区av| 97国产精品视频自在拍| 老司机久久精品视频| 亚洲精品卡2卡3卡4卡5卡区| 一区二区三区国产精品视频| 国产毛片高清一级国语| 色综合天天综合中文网| 国产精品美女网站| 欧美黄色网站在线看| 激情综合网激情综合| 992Tv视频国产精品| 午夜丁香婷婷| 亚洲福利一区二区三区| 91国内外精品自在线播放| 亚洲成人黄色在线观看| 国产高清在线观看91精品| 精品亚洲麻豆1区2区3区| 国产青榴视频| 精品天海翼一区二区| 日本日韩欧美| 国产精选自拍| 午夜日b视频|