999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Theoretical and Experimental Studies on the Crystal Morphologyof Transition-Metal Carbohydrazide Perchlorate Complexes

2018-01-15 09:52:53YANGLiZHANGGuoYingLIUYingZHANGTongLai
物理化學學報 2017年12期
關鍵詞:實驗室科學

YANG Li ZHANG Guo-Ying LIU Ying ZHANG Tong-Lai

?

Theoretical and Experimental Studies on the Crystal Morphologyof Transition-Metal Carbohydrazide Perchlorate Complexes

YANG Li*ZHANG Guo-Ying LIU Ying ZHANG Tong-Lai

()

Crystal morphology; Prediction; Attachment energy; Growth rate

1 Introduction

The shape or morphology of a crystal is extremely important to the energetic materials. It can have enormous impact on the physical and chemical properties, such as fluidity, apparent density, electrostatic accumulation, pressure resistance, stability, and so on1,2. These properties can directly affect initiating ability, sensitivity and other explosive performance. For example, it is well known that the acicular crystal of lead azide (LA) is poorer for fluidity and stability, but higher sensitivity than the columnar crystal3. The excellent crystal morphology can improve the safety and stability of the energetic materials, which is also helpful to industrial production and safe application4–6. Therefore, the study on the crystal morphology is vital to energetic materials.

Metal carbohydrazide complexes with strong oxidizing acid radical ions, used as initiating explosives, ignition composition, gas generator and burning rate modifier to propellants, have been extensively studied experimentally and theoretically7–15. Structures of metal carbohydrazide derivatives with sulfate, perchlorate, chloride and polymeric nitrogen were successively reported16–18using infrared spectrum analysis and X-ray single crystal diffraction analysis methods. It is found that metal carbohydrazide derivatives have excellent properties, such as appropriate sensitivity, good safety performance and strong initiating ability. Zhang.19–22carried out an in-depth research on the complexes. They found that cadmium carbohydrazide perchlorate and zinc carbohydrazide perchlorate had excellent properties and they were widely used as green initiating explosives, without using toxic and hazardous raw materials and eliminating waste in the manufacture and application processes.

In this work, we predicted the crystal morphology of manganese carbohydrazide perchlorate ([Mn(CHZ)3](ClO4)2), iron carbohydrazide perchlorate ([Fe(CHZ)3](ClO4)2), cobalt carbohydrazide perchlorate ([Co(CHZ)3](ClO4)2), nickel carbohydrazide perchlorate ([Ni(CHZ)3](ClO4)2) and cadmium carbohydrazide perchlorate ([Cd(CHZ)3](ClO4)2) by Bravais- Freidel-Donnay-Harker (BFDH) and growth morphology method. The crystal-morphologies of them are studied experimentally without crystal-control reagent.

2 Experimental and computational section

2.1 Computational method

The calculation was performed using the Universal force field (UFF)23,24, which was successfully applied to model a wide range of complexes metal complexes25–27, DNA28, and other organic systems. It is set based on the element, its hybridization and connectivity29.

The initial configurations of transition-metal carbohydrazide perchlorate complexes were obtained from the experimental data by X-ray single crystal diffraction method. Then the crystal structures were optimized by the density functional theory (DFT) using the CASTEP package30. We found that the GGA (PW91) proposed by Perdew and Wang31,32was more reliable to predict the structures. Therefore GGA (PW91) was used in all calculations. For the calculation, the cutoff energy was 300.0 eV on the plane wave. The-point grid is set as 2 × 2 × 1 in the Brillouin zone by using the Monkhost-Pack scheme. The convergence of total energies is less 0.01% under the selected kinetic energy and the-point grid. During the self-consistent field (SCF) calculations, the convergence tolerance of energy was set to 2.0 × 10?6eV, the maximum of residual force was 0.005 eV?nm, the maximum of displacement of atoms was 0.02 nm and the maximum of residual bulk stress was 0.1 GPa. The optimized crystal structures were used as the starting point for the morphology calculations.

The morphology of the crystal structure of these complexes was studied using MORPHOLOGY code. BFDH and growth morphology method were used to predict the crystal growth in vacuum. BFDH method was based on the interplanar spacings of different crystal faces and took into account the crystal symmetry33. The growth morphology (AE model) was based on the intermolecular forces in crystallization by Hartman and Perdok34.

The attachment energy (att) is defined as the energy per molecule released when a new slice of depthdis attached to the crystal face35. It is the sum of the interaction energy per molecule (E()) between a slice of thicknessdand theth underlying slice.

(1)

The relationship between the lattice energy of the crystal (latt) and the energy of a growth slice of thicknessd(slice) is given by

Eatt = Elatt–Eslice(2)

The relative growth rate (R) of the crystal face is proportional of its attachment energy (att)36. The face with the lowest attachment energies are the slowest growing, and the most important to morphology.

Rij = Ri/Rj = Eatt,i/Eatt,j(3)

2.2 Experimental

[Mn(CHZ)3](ClO4)2, [Fe(CHZ)3](ClO4)2, [Co(CHZ)3](ClO4)2, [Ni(CHZ)3](ClO4)2and [Cd(CHZ)3](ClO4)2used in the experiment were synthesized, purified and dried according to the literature. The purities of products were more than 99.5%. In order to obtain the single crystal, the products of them were dissolved in deionized water (6.25 × 10?8S·cm?1), and kept the solution in the cups for 15 d. The crystal morphology of them was performed using BX51 microscope (Olympus Corp., Japan). The actual parameters of the equipment are as follow: Built-in kohler illuminator, voltage 12 V, and zoom magnification ×4 to ×100.

Fig.1 Molecular structure of transition carbohydrazide perchlorate complexes.

Fig.2 Morphology of [Mn(CHZ)3](ClO4)2 in vacuum by BFDH model (a) and AE model (b).

3 Results and discussion

3.1 Prediction of the crystal morphology

The molecular structures of [Mn(CHZ)3](ClO4)2, [Fe(CHZ)3](ClO4)2, [Co(CHZ)3](ClO4)2, [Ni(CHZ)3](ClO4)2and [Cd(CHZ)3](ClO4)2are shown in Fig.1 The crystal structures of them in the solid state are in space group21/with= 4 in the unit cell. Crystal cell dimensions and cell angles are listed in Table 1.

According to the Arrhenius and Gibbs Thomson equations (equation (4)), the crystal nucleus formation is obtained37.

(4)

,,,,: lattice parameters,: the volume of the cell.

It can be seen that the big cell volume can decrease the nucleation rate from the equation (4). That means the order of nucleation rate for the complexes is in the following sequence: [Cd(CHZ)3](ClO4)2<[Mn(CHZ)3](ClO4)2<[Co(CHZ)3](ClO4)2<[Ni(CHZ)3](ClO4)2<[Fe(CHZ)3](ClO4)2when,,, andare certain.

The morphology of transition-metal carbohydrazide perchlorate complexes predicted using the BFDH and AE models in vacuum was shown in Fig.2–Fig.6. It can be seen that the morphology of them are close to oblong block shapes. The similar shapes may be attributed to the same the ligand and the outer ion of ClO4?. While the contribution of metal cation contribute to morphology is very little. The regular crystal shapes and the smooth surfaces of them are beneficial to improve the free-running property and safety.

(5)

Fig.4 Morphology of [Co(CHZ)3](ClO4)2 in vacuum by BFDH model (a) and AE model (b).

Fig.5 Morphology of [Ni(CHZ)3](ClO4)2 in vacuum by BFDH model (a) and AE model (b).

Fig.6 Morphology of [Cd(CHZ)3](ClO4)2 in vacuum by BFDH model (a) and AE model (b).

Table 2 Predicted Morphologies of the BDFH and AE models for transition carbohydrazide perchlorate complexes.

ComplexFaceBDFH/%AE/%Total facet areaEatt/(kcal?mol?1)Rij [Ni(CHZ)3](ClO4)236.03130.3757247.670?27.8281.00 29.96019.6574690.440?33.2881.20 (011)30.71527.5706578.443?44.0851.58 0.5285.6891357.419?38.6741.39 (101)–12.0832883.167?33.2961.20 2.6354.2871022.946?48.2301.73 0.1300.11627.720?51.7361.86 (110)–0.22353.194?50.6641.82 Sum10010023860.999?327.801 [Cd(CHZ)3](ClO4)225.07033.974786.511?7.9481.00 24.05523.097534.700?10.6251.34 (011)34.22126.635616.606?13.1991.66 11.6849.879228.703?12.1241.53 4.2232.65961.565?16.0502.02 0.7463.75086.824?15.4831.95 –0.0050.116?16.6722.10 Sum1001002315.025?92.101

1 kcal?mol?1= 4.187 kJ?mol?1.

From the equation (5), the bigger crystal surface area can improve the crystal growth rate. In Table 2, the order of sum facet area is [Fe(CHZ)3](ClO4)2> [Co(CHZ)3](ClO4)2> [Ni(CHZ)3](ClO4)2> [Mn(CHZ)3](ClO4)2> [Cd(CHZ)3](ClO4)2. Therefore the order of crystal growth rate keeps the same sequence with sum facet area when,andare same.

Fig.7 Cleaved main crystal faces of [Mn(CHZ)3](ClO4)2.

Fig.8 Cleaved main crystal faces of [Fe(CHZ)3](ClO4)2.

Fig.9 Cleaved main crystal faces of [Co(CHZ)3](ClO4)2.

Fig.10 Cleaved main crystal faces of [Ni(CHZ)3](ClO4)2.

Fig.11 Cleaved main crystal faces of [Cd(CHZ)3](ClO4)2.

3.2 Experimental morphology

The crystal-morphology of [Mn(CHZ)3](ClO4)2, [Fe(CHZ)3](ClO4)2, [Co(CHZ)3](ClO4)2and [Ni(CHZ)3](ClO4)2without crystal-control reagent was synthesized and observed by BX51 microscope (Olympus Corp., Japan) in Fig.15.

It can be seen that the crystal morphology of [Mn(CHZ)3](ClO4)2, [Fe(CHZ)3](ClO4)2, [Ni(CHZ)3](ClO4)2and [Cd(CHZ)3](ClO4)2are obviously short columnar polyhedrons on the crystal morphology. In literature40, [Co(CHZ)3](ClO4)2also appear columnar polyhedrons shapes. Through the comparison of BDFH and AE model, it can be concluded that AE model are nearer to experimental morphology, and more better to predict crystal growth morphology. Therefore, we ascertain that the predicted crystal morphologies for carbohydrazide perchlorates by AE model are reliable.

Fig.12 The bonding network of the (002) face; (a) top view of the face, (b) schematic image of incorporation of growth units.

Fig.13 The bonding network of theface; (a) top view of the face, (b) schematic image of incorporation of growth units.

Fig.14 The bonding network of the (011) face; (a) top view of the face, (b) schematic image of incorporation of growth units.

Fig.15 Crystal-morphology of [Mn(CHZ)3](ClO4)2, [Fe(CHZ)3](ClO4)2, [Ni(CHZ)3](ClO4)2 and [Cd(CHZ)3](ClO4)2 without crystal-control reagent.

4 Conclusions

(1) Duan, X.; Wei,C.; Liu,Y.; Pei,C.. 2010, 174. doi: 10.1016/j.jhazmat.2009.09.03

(2) Czerski, H.; Proud, W.. 2007,, 113515. doi: 10.1063/1.2818106

(3) Taylor, G.; Thomas, A. T.1968,, 391. doi: 10.1016/0022-0248(68)90181-4

(4) Baer, M. R.2002,, 351. doi: 10.1016/S0040-6031(01)00794-8

(5) Fabbiani, F. P.; Pulham, C. R.. 2006,, 932. doi: 10.1039/B517780B

(6) Kr?ber, H.; Teipel, U.. 2008,, 33. doi: 10.1002/prep.200800205

(7) Kishore, K.; Sunitha, M. R.. 1979,, 1118. doi: 10.2514/3.61286

(8) Akiyoshi, M.; Nakamura, H.; Hara, Y.. 2000,, 41. doi: 10.1002/(SICI)1521-4087(200001)25:1<41:: AID-PREP41>3.0.CO;2-X

(9) Schoyer, H. F. R.; Welland-Veltmans, W. H. M.; Louwers, J.; Korting, P. A. O. G.; vander Heijden, A. E. D. M.; Keizers, H. L. J.; vanden Berg, R. P.2002,, 138.

(10) Dutta, R. L.; Sarkar, A. K. J.. 1981,, 2557. doi: 10.1016/0022-1902(81)80302

(11) Mansour, A. K.; Eid, M. M.; Khalil, N. S.2003,, 744. doi: 10.3390/81000744

(12) Akiyoshi, M.; Hirata, N. ;Nakamura, H.; Hara, Y..1996,, 238.

(13) Bustos, C.; Burckhardt, O.; Schrebler, R.; Carrillo, D.; Arif, A.; Cowley, A.; Nunn, C.. 1990,, 3996. doi: 0020-1669/90/1329-3996$02.50/0

(14) Bushuyev, O. S.; Arguelles, F. A.; Brown, P.; Weeks, B. L;. Hope-Weeks, L. J.. 2011, 4622. doi: 10.1002/ejic.201100465

(15) Rahn, P. C.; Siggia, S.. 1973,, 2336. doi: 10.1021/ac60336a012

(16) Akiyoshi, M.; Hirata, N.; Nakamura, H.; Hara, Y..1997,, 68.

(17) Akiyoshi, M.; Nakamura, H.; Hara, Y.. 2000,, 224. doi: 10.1002/1521-4087(200011)25:5<224: AID-PREP224>3.0.CO;2-O

(18) Talawar, M. B.; Agrawal, A. P.; Chhabra, J. S.; Asthana, S. N.. 2004,, 57. doi:10.1016/j.jhazmat.2004.07.001

(19) Qi, S. Y.; Li, Z. M.; Zhang, T. L.; Zhou, Z. N.; Yang, L.; Zhang, J. G.; Qiao, X. J. ;Yu, K. B.. 2011,, 987. doi: http://sioc-journal.cn/Jwk_hxxb/CN/Y2011/V69/I08/987

(20) Mi, Z.H.; Chen, S. T.; Jing, Z.; Yang, L.; Zhang, T. L.. 2016,, 3978. doi: 10.1002/ejic.201600479

(21) Mi, Z.H.; Zhang, T. L.; Zhang, J. G.; Zhou, Z. N.; Yang, L.. 2016,, 46828. doi: 10.1039/C6RA07277A

(22) Joas, M.; Klapotke, T. M.. 2015,, 246. doi: 10.1002/prep.201400142

(23) Casewit, C. J.; Colwell, K. S.; Rappe, A. K.. 1992,, 10035. doi: 0002-7863/92/1514-10035$03.00/0

(24) Casewit, C. J.; Colwell, K. S.; Rappe, A. K.. 1992,, 10046. doi: 0002-7863/92/1514-10046$03.0

(25) Rappe, A. K.; Colwell, K. S.; Casewit, C. J.. 1993,, 3438. doi: 0020-16691931 1332-3438%04.0

(26) Kern, A.; Nather, C.; Studt, F.; Tuczek, F.. 2004,, 5003. doi: 10.1021/ic030347d

(27) Bureekaew, S.; Amirjalayer, S.; Tafipolsky, M.; Spickermann, C.;Roy, T. K.; Schmid, R.2013,, 1128.doi: 10.1002/pssb.201248460

(28) Ogawa, T.; Kurita, N.; Sekino, H.; Kitao, O.; Tanaka, S.. 2003,, 271. doi: 10.1016/S0009-2614(03)00720-6

(29) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M.. 1992,, 10024. doi: 10.1021/ja00051a040

(30) Fischer, T. H.; Almlof, J.. 1992,, 9768. doi: 10.1021/j100203a036

(31) Perdew, J. P. Chevary, J. Vosko, S. Jackson, K. A. Pederson, M. R. Singh, D. Fiolhais, C..1992,, 6671. doi: 10.1103/PhysRevB.46.6671

(32) Perdew, J. P.; Wang, Y.1992,, 12947. doi: 10.1103/PhysRevB.46.12947.

(33) Docherty, R.; Clydesdale, G.; Roberts, K. J.; Bennema, P.. 1991,, 89. doi: 10.1088/0022-3727/24/2/001

(34) Hartman, P.; Perdok, W. G. I.. 1955,, 49. doi: 10.1107/S0365110X55000121

(35) Bennema, P.; Meekes, H. ;Boerrigter, S.; Cuppen, H.; Deij, M.; Van Eupen, J.; Verwer, P.; Vlieg, E.. 2004,, 905. doi: 10.1021/cg034182v

(36) Berkovitch-Yellin, Z.. 1985,, 8239. doi: 0002-7863/8S/l507-8239$01.50/0

(37) Kawasaki, T.; Tanaka, H. P.. 2010,, 14036. doi: 10.1073/pnas.1001040107/-/DCSupplemental

(38) Chen, J. X.; Wang, J. K.; Zhang, Y.; Wu, H.; Chen, W.; Guo, Z. C.2004,, 266. doi: 10.1016/j.jcrysgro.2004.01.055

(39) Givand, J. C.; Rousseau, R. W.; Ludovice, P. J.1998,, 228. doi: 10.1016/S0022-0248(98)00535-1

(40) Lv, C. H.; Zhang, T. L.; Ren, L. B.; Yu, K. B.; Lu, Z.; Cai, R. J.. 2000,, 31. doi: 1007-7812( 2000D 01-0031-03

高氯酸碳酰肼過渡金屬配合物晶體形態的理論和實驗研究

楊 利*張國英 劉 影 張同來

(北京理工大學,爆炸科學與技術國家重點實驗室,北京 100081)

晶體形貌;預測;附著能;生長速率

O641

10.3866/PKU.WHXB201706193

May 17, 2017;

June 13, 2017;

June 19, 2017.

Corresponding author. Email: yanglibit@bit.edu.cn; Tel: +86-10-68911682.

The project was supported bythe State Key Laboratory of Explosion Science and Technology, China (YB2016-17) and the National Natural Science Foundation of China (11672040).

爆炸科學與技術國家重點實驗室基金(YB2016-17)及國家自然科學基金(11672040)資助項目

猜你喜歡
實驗室科學
電競實驗室
電子競技(2020年4期)2020-07-13 09:18:06
電競實驗室
電子競技(2020年2期)2020-04-14 04:40:38
點擊科學
點擊科學
科學大爆炸
小小藝術家(2019年6期)2019-06-24 17:39:44
電競實驗室
電子競技(2019年22期)2019-03-07 05:17:26
電競實驗室
電子競技(2019年21期)2019-02-24 06:55:52
電競實驗室
電子競技(2019年20期)2019-02-24 06:55:35
電競實驗室
電子競技(2019年19期)2019-01-16 05:36:09
科學
主站蜘蛛池模板: 十八禁美女裸体网站| 日韩区欧美国产区在线观看| 欧美三级日韩三级| 中国成人在线视频| 乱人伦中文视频在线观看免费| 任我操在线视频| 超碰免费91| 国产精鲁鲁网在线视频| 国产第一页第二页| 成年A级毛片| 在线无码av一区二区三区| 国产91久久久久久| 久久永久视频| 亚洲热线99精品视频| 一本二本三本不卡无码| 成人免费午夜视频| 99在线观看国产| 青青青国产免费线在| 国内精品视频区在线2021| 欧美成人国产| 免费观看成人久久网免费观看| 久久久91人妻无码精品蜜桃HD| 日本www在线视频| 夜夜高潮夜夜爽国产伦精品| 天天摸夜夜操| 国产精品午夜福利麻豆| 精品少妇人妻av无码久久| 亚洲精品视频免费| 欧美日韩午夜| 免费看的一级毛片| 乱人伦中文视频在线观看免费| 国产男女XX00免费观看| 不卡午夜视频| 91精品亚洲| 久久久久无码精品| a色毛片免费视频| 亚洲精品无码久久久久苍井空| 中文字幕日韩丝袜一区| 老色鬼久久亚洲AV综合| 91国内视频在线观看| 欧美精品影院| 永久免费无码成人网站| 国产亚洲精品97在线观看| 午夜啪啪网| 99在线视频网站| 成人午夜精品一级毛片 | 成人免费黄色小视频| 亚洲一级毛片| 朝桐光一区二区| 欧美午夜理伦三级在线观看| 免费av一区二区三区在线| 26uuu国产精品视频| 人人91人人澡人人妻人人爽 | 欧美成人在线免费| 午夜一区二区三区| 国产青青操| 国产原创第一页在线观看| 国产中文一区二区苍井空| 国产亚洲精品无码专| 伊人AV天堂| 91精品国产自产91精品资源| 手机成人午夜在线视频| 中文纯内无码H| 国产福利影院在线观看| 欧美亚洲国产日韩电影在线| 亚洲人视频在线观看| 熟女视频91| 亚洲美女操| 国产精品九九视频| 2021国产v亚洲v天堂无码| 看av免费毛片手机播放| 国产资源免费观看| a亚洲视频| 久久9966精品国产免费| 欧美日韩在线第一页| 日韩黄色精品| 欧美日韩亚洲国产| 午夜一级做a爰片久久毛片| 精品小视频在线观看| 国产激情无码一区二区APP| 欧美翘臀一区二区三区| 国产成人无码AV在线播放动漫 |