臧麗娟
摘 要 微衛星不穩定性(microsatellite instability, MSI)是指由于復制錯誤造成的微衛星重復的數目改變,其發生機制為錯配修復缺陷。結直腸癌患者中有15% ~ 20%為MSI高的患者。根據美國國家綜合癌癥網絡發布的最新相關指南,建議對所有結直腸癌患者均使用聚合酶鏈反應法或免疫組織化學法進行MSI/錯配修復檢測。錯配修復蛋白是診斷Lynch綜合征的關鍵分子標志物。MSI高的結直腸癌患者的預后相對較好,但MSI高的Ⅱ期患者無法自氟尿嘧啶輔助化療中獲益。目前已見有抗程序性死亡受體-1單克隆抗體治療MSI高的轉移性結直腸癌患者療效較好的報告,但此結論仍需得到大型臨床試驗的確認。
關鍵詞 微衛星不穩定性 錯配修復 Lynch綜合征
中圖分類號:R735.3 文獻標識碼:A 文章編號:1006-1533(2018)01-0008-06
Research progress of microsatellite instability in colorectal cancer
ZANG Lijuan*
(Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China)
ABSTRACT Microsatellite instability (MSI) is the change of the number of microsatellites, which is caused by replication error, and its mechanism is deficiency of mismatch repair (MMR). About 15% ~ 20% of patients with colorectal cancer(CRC) are MSI high (MSI-H) patients. According to the latest National Comprehensive Cancer Network guidelines, it is highly recommended that all patients with CRC should detect MSI/MMR via polymerase chain reaction or immunohistochemistry. MMR proteins are key markers for diagnosis of Lynch syndrome. Patients with MSI-H have a better prognosis, but those with stage II MSI-H tumors are not able to benefit from fluorouracil-based therapy. At present, anti-programmed cell death protein-1 monoclonal antibodies have been applied to metastatic MSI-H colorectal cancer patients, which has achieved better efficacy, but large trials are still needed to verify these effects.
KEY WORDS microsatellite instability; mismatch repair; Lynch syndrome
結直腸癌是全球第三常見的癌癥類型,造成全球每年約70萬人死亡;而在中國,每年新發的結直腸癌病例數超過25萬人,同時有約14萬人死于結直腸癌[1]。近年來,結直腸癌的發病率持續上升,但死亡率逐年下降,主要得益于早期癌癥檢測及其管理水平和人們對癌癥認識能力的持續提高等。
微衛星(microsatellite)又被稱為短串聯重復(short tandem repeat),是一種短而重復且長度<10個核苷酸的DNA序列,一般由1 ~ 6個核苷酸串聯并重復排列組成(多數為雙堿基CA/GA或單堿基A/T)。染色體等位基因通常含有不同長度的同一微衛星,這些微衛星占基因組的3%。微衛星不穩定性(microsatellite instability, MSI)是指由于復制錯誤造成的微衛星重復的數目改變,導致其發生的機制為錯配修復缺陷。錯配修復蛋白包括MLH1、PMS2、MSH2、MSH6、MLH3、MSH3和PMS1等,這些蛋白可構成識別和修復DNA損傷的異質二聚體,經與核酸外切酶、增殖細胞核抗原和DNA聚合酶的共同作用修復MSI,其中與結直腸癌相關的錯配修復蛋白異質二聚體是MLH1/PMS2和MSH2/MSH6。很多生長調控相關因子的基因中含有大量微衛星,錯配修復缺陷造成的MSI會引起DNA復制過程中發生突變,最后形成腫瘤。本文就MSI用于結直腸癌診斷、預后和治療方面的研究進展作一簡要介紹[2]。
1 MSI檢測
根據美國國家綜合癌癥網絡2017年更新的相關指南[3],建議對所有結直腸癌患者均進行MSI和錯配修復狀態的篩查。此外,美國臨床病理學學會、美國病理學家學會、美國分子病理學協會和美國臨床腫瘤學學會共同發布的結直腸癌分子標志物相關指南[4]也指出,應檢測結直腸癌患者的錯配修復狀態,以評價Lynch綜合征風險和預后分層。
1.1 DNA檢測步驟
MSI的DNA檢測基于聚合酶鏈反應(polymerase chain reaction, PCR)法,系通過在腫瘤組織樣本中擴增DNA的幾個微衛星位點,然后與對應的正常DNA進行比較。美國國家癌癥研究所推薦對5個微衛星標志物進行檢測以確定MSI狀態,其中包括兩個單核苷酸重復位點BAT-25和BAT-26以及3個多核苷酸重復位點D2S123、D5S346和D17S250[5-6]。除此之外,也有文獻推薦了其他檢測位點,比如Promega標準中包括5個單核苷酸重復位點BAT-25、BAT-26、MONO-27、NR-21和NR-24以及兩個多核苷酸重復位點PENTA-C和PENTA-D[7]。對這些標志物的檢測結果均與測序結果高度一致[6]。不同相關指南給出的DNA檢測步驟有所不同,其中英國國家健康與臨床優化研究所推薦的檢測步驟如下[8]:endprint
1)使用PCR法檢測MSI。
2)如果檢測結果為陽性(MSI高/低),繼續進行BRAF V600E突變和MLH1啟動子CpG島超甲基化檢測,以區分散發性結直腸癌和Lynch綜合征相關的結直腸癌。
3)先進行BRAF V600E突變檢測。如檢測結果為陽性,診斷為散發性結直腸癌。
4)如BRAF V600E突變檢測結果為陰性,再進行MLH1啟動子CpG島超甲基化檢測。如果檢測結果為陽性,診斷為散發性結直腸癌。
5)如MLH1啟動子CpG島超甲基化檢測結果為陰性,可再通過生殖系DNA基因檢測證實為Lynch綜合征相關的結直腸癌。
不過,中國臨床腫瘤學學會2017年發布的結直腸癌診療指南[9]推薦,在檢測出患者MSI高后應再檢測其生殖系DNA基因以判斷是否為Lynch綜合征相關的結直腸癌。
根據PCR法檢測結果,結直腸癌可分為3類:
1)如≥30%的重復位點顯示MSI,則為MSI高的結直腸癌;
2)如<30%的重復位點顯示MSI,則為MSI低的結直腸癌;
3)如沒有重復位點顯示MSI,則為微衛星穩定型(microsatellite stable, MSS)的結直腸癌。
1.2 免疫組織化學(immunohistochemistry, IHC)法檢測步驟
IHC法被廣泛用于鑒定一個或多個錯配修復蛋白(MLH1、MSH2、MSH6和PMS2)的缺失。這些錯配修復蛋白通常在正常組織中表達,并在切片上顯示核染色陽性。缺乏特異性染色說明一個或多個錯配修復蛋白基因的潛在失活。對錯配修復蛋白缺失的結直腸癌可統稱為錯配修復缺陷的結直腸癌,臨床意義上等同于MSI高的結直腸癌,而錯配修復蛋白表達完整的結直腸癌則為MSS或MSI低的結直腸癌[6,10-11]。IHC法檢測步驟如下:
1)使用IHC法檢測MLH1、MSH2、MSH6和PMS2。
2)如MSH2、MSH6或PMS2的檢測結果異常,則通過生殖系DNA基因檢測證實為Lynch綜合征相關的結直腸癌。
3)如MLH1的檢測結果異常,繼續進行BRAF V600E突變和MLH1啟動子CpG島超甲基化檢測,以區分散發性結直腸癌和Lynch綜合征相關的結直腸癌。
4)如BRAF V600E突變或MLH1啟動子CpG島超甲基化檢測結果為陽性,診斷為散發性結直腸癌。
5)如BRAF V600E突變和MLH1啟動子CpG島超甲基化檢測結果均為陰性,再通過生殖系DNA基因檢測證實為Lynch綜合征相關的結直腸癌。
最常見的IHC法檢測結果是MSH2和MSH6染色正常,而MLH1和PMS2同時缺失,表明患者可能是Lynch綜合征相關的結直腸癌或錯配修復蛋白缺失的散發性結直腸癌,需進一步檢測BRAF V600E突變和MLH1啟動子CpG島超甲基化來予以區分[6,10]。其他錯配修復蛋白缺失,如MSH2、MSH6同時缺失或MSH6、PMS2的孤立缺失,極有可能是因基因生殖系突變導致的Lynch綜合征,可對患者的血白細胞DNA或正常組織進行生殖系突變分析來予以明確。
1.3 PCR法和IHC法檢測的一致性
MSI的PCR法和IHC法檢測均具有高敏感性和特異性。PCR法檢測MLH1/MSH2的敏感性為89%,檢測MSH6的敏感性為77%。PCR法和IHC法檢測的一致性>92%[12]。IHC法檢測的敏感性為77% ~ 83%[13-14]。為提高檢出率,臨床上還常協同使用PCR法和IHC法檢測,以發現可能被單一方法檢測漏掉的錯配修復缺陷的結直腸癌[15]。IHC法檢測因具有操作簡單和成本低等優點,且其結果有助于識別特定蛋白缺失、指導對特定基因的生殖系DNA檢測,所以臨床上常用作對結直腸癌患者進行初篩的手段。
2 MSI/錯配修復狀態檢測的診斷作用
2.1 錯配修復缺陷和Lynch綜合征
Lynch綜合征是一種常染色體顯性疾病,由生殖細胞中錯配修復蛋白基因(MLH1、MSH2、MSH6和PMS2)突變引起[16-18]。MSI高或IHC法檢測發現一個或多個錯配修復蛋白缺失均提示存在錯配修復缺陷。約90%的Lynch綜合征可歸因于MLH1或MSH2突變[19-20]。MSH6突變導致Lynch綜合征的很少,而單一PMS2缺失導致Lynch綜合征的非常罕見[21]。
由Lynch綜合征引發的結直腸癌占全部結直腸癌的2% ~ 4%,診出年齡為44 ~ 61歲,早于散發性結直腸癌的69歲[22]。近70%的Lynch綜合征相關的結腸癌發生于近端結腸[16]。從組織學看,Lynch綜合征相關的結直腸癌常常是低分化的印戒細胞癌[10,17]。Lynch綜合征患者的終生結直腸癌罹患風險在30% ~ 70%間,而普通人群的此風險為5.5%[17,22]。
此外,Lynch綜合征患者罹患其他癌癥的風險也很高,包括子宮內膜癌、卵巢癌、小腸癌、胃癌、膀胱癌、腦癌、腎癌、膽道癌和膽囊癌等,其中女性70歲前子宮內膜癌的累積罹患風險為32% ~ 42%[23-25]。攜帶錯配修復缺陷基因的家庭成員罹患癌癥的風險亦提高。因此,Lynch綜合征診斷具有重要的臨床意義。
2.2 MSI和散發性結直腸癌
MSI高的結直腸癌也可由MLH1啟動子CpG島的超甲基化引起,通常與BRAF c.1799T>A(p. V600E)突變有關[26-28]。約12%的散發性結直腸癌為MSI高的結直腸癌,IHC法檢測常可發現同時存在MLH1和PMS2缺失,多由MLH1啟動子CpG島超甲基化所引起。這種體細胞突變會阻礙MLH1 mRNA的生成,導致MLH1缺失[29-30]。BRAF V600E突變僅見于MSI高的散發性結直腸癌中,在生殖系突變的腫瘤中未發現[31]。endprint
如果IHC法檢測顯示MLH1/PMS2缺失,就應繼續進行BRAF V600E突變或MLH1啟動子CpG島超甲基化檢測以排除散發性結直腸癌。如BRAF V600E突變或MLH1啟動子CpG島超甲基化檢測結果均為陰性,則應排除散發性結直腸癌可能,并繼續進行生殖系突變分析。
2.3 MSI狀態用于結直腸癌患者預后判斷
與MSS的結直腸癌相比,MSI高的結直腸癌(包括散發性和Lynch綜合征相關的結直腸癌)患者的臨床表現較差,但預后更好[32-33]。Popat等[34]進行的一項薈萃分析納入了32項研究,共計包括7 642例Ⅰ~ Ⅳ期的結直腸癌患者,其中1 277例為MSI高的患者,結果發現MSI高的結直腸癌患者的預后顯著優于MSS的結直腸癌患者:MSI高的患者的總生存風險比為0.65(95%置信區間為0.59 ~ 0.71)。另一項納入了2 940例根治性切除術后結直腸癌患者的臨床試驗也顯示,MSI高的患者的預后較好,而MSI低和MSS患者的腹外復發更趨頻繁[35]。然而,MacQuarrie等[36]指出,MSI高和MSS的Ⅲ期結直腸癌患者的所有淋巴結數和陰性淋巴結數均無差異。一項納入了1 250例結直腸癌患者的單中心研究發現,MSI高的結直腸癌患者的淋巴結和遠處轉移風險較低,Ⅰ/Ⅱ期結直腸癌患者的無病生存期較長。但MSI高的Ⅲ期結直腸癌患者的預后較差,腫瘤侵襲性更強,特別是淋巴血管和會陰的侵襲率更高[37]。
Venderbosch等[38]進行的研究揭示了MSI狀態與晚期結直腸癌患者總生存期之間的關聯。他們對一線治療轉移性結直腸癌的4項Ⅲ期臨床試驗進行合并分析,發現錯配修復缺陷患者的BRAF突變率遠高于錯配修復功能正常的患者(分別為34.6%和6.8%, P<0.001),且錯配修復缺陷患者的無進展生存期(風險比為1.33, 95%置信區間為1.12 ~ 1.57)和總生存期(風險比為1.35, 95%置信區間為1.13 ~ 1.61)均顯著降低。
上述研究結果提示,MSI高的Ⅰ/Ⅱ期結直腸癌患者的預后較好,但隨著疾病進展,這種趨勢將逐漸消失,甚至最后MSI高可能成為患者預后的負向預測因子。
2.4 MSI狀態用于結直腸癌治療效果預測
2.4.1 MSI狀態與化療
氟尿嘧啶常用于Ⅱ期結直腸癌患者的化療。Guastadisegni等[39]就MSI狀態對結直腸癌患者接受氟尿嘧啶化療的臨床意義進行了薈萃分析,共納入31項研究、合計包括12 782例患者。結果證實,無論腫瘤T分期如何,患者的MSI狀態均與其無病生存期(比值比為0.58, 95%置信區間為0.47 ~ 0.72; P<0.000 1)和總生存期(比值比為0.6, 95%置信區間為0.53 ~ 0.69; P<0.000 1)相關。氟尿嘧啶輔助化療的長期生存數據來源于其中7項研究,并對MSI高和MSS的患者進行了分層。分析結果顯示,MSS患者可自氟尿嘧啶輔助化療中獲益,而MSI高的患者的生存結局尚未顯示有統計學意義。此外,有研究發現氟尿嘧啶用于MSI高的Ⅱ期結直腸癌患者的輔助化療無益,提示可能與患者的錯配修復缺陷相關[40-41]。由于預后良好且氟尿嘧啶輔助化療療效欠佳,許多研究者認為不應再對MSI高的Ⅱ期結直腸癌患者進行輔助化療[42-44]。不過,對手術后Ⅲ期結直腸癌患者,不論他們的MSI狀態如何,接受由氟尿嘧啶、亞葉酸和奧沙利鉑組成的標準輔助化療方案治療均有益[45-46]。
Des Guetz等[47]進行的薈萃分析評估了MSI狀態對轉移性結直腸癌患者化療療效的潛在預測意義。該分析共包括6項研究的964例接受氟尿嘧啶單藥或卡培他濱聯合奧沙利鉑和/或伊立替康化療的患者,根據《實體瘤療效評價標準(1.1版)》評價患者的緩解率,結果顯示MSS和MSI高的患者的療效沒有顯著差異(風險比為0.82, 95%置信區間為0.65 ~ 1.03; P=0.09)。
2.4.2 MSI狀態與免疫治療
最近的研究表明,MSI高的轉移性結直腸癌對免疫檢查點抑制劑治療的響應良好[48-50]。MSI高的腫瘤含有的豐富的新抗原可誘發免疫反應。同時,由于MSI高的腫瘤自身的不穩定性和超突變性,檢查點蛋白常常在此類腫瘤中高表達,包括程序性死亡受體-1(programmed cell death protein-1, PD-1)和程序性死亡受體配體-1(programmed cell death-ligand 1, PD-L1),會干擾機體自身T細胞的抗腫瘤作用[51]。通過對PD-1/PD-L1的靶向抑制,檢查點抑制劑可再次活化T細胞,促使機體免疫系統攻擊和殺滅腫瘤細胞[48-49]。
Le等[48]對轉移性結直腸癌患者等進行了一項Ⅱ期臨床試驗,以評估派姆單抗(pembrolizumab)的臨床療效。結果顯示,MSI高的結直腸癌患者和其他MSI高的腫瘤(如子宮內膜癌、胃癌和小腸癌等)患者經接受派姆單抗治療,免疫相關的客觀反應率分別為40%和71%,20周無進展生存率分別為78%和67%。然而,MSS的結直腸癌患者的響應率較低,20周無進展生存率僅為11%。
最近,另一種抗PD-1單克隆抗體納武單抗(nivolumab)治療MSI高的轉移性結直腸癌患者的“Checkmate-142”試驗數據也在歐洲腫瘤內科學學會年會上予以公開。納武單抗單藥治療組共包括74例患者,客觀緩解率為31.1%,中位無進展生存期為9.6個月,12個月無進展生存率為48.4%,中位總生存期尚未達到,12個月生存率為73.8%;納武單抗聯合依匹單抗(ipilimumab)治療組的客觀緩解率為55%,疾病控制率(>12周)為79%,中位緩解持續時間尚未達到,9個月生存率為88%。免疫治療對MSI高的結直腸癌的療效和耐受性均良好。endprint
上述研究結果提示,MSI狀態對結直腸癌治療方案的選擇有重要意義。免疫檢查點抑制劑的毒性較化療藥物小,對體力狀態較差的晚期患者有顯著療效。免疫檢查點抑制劑治療理論上亦可能使早期結直腸癌患者受益,而此正是今后需予澄清的一個重要臨床問題。
3 結語
對MSI高的結直腸癌的篩查在臨床上具有重要意義,不僅可預測患者的預后,而且可指導患者的治療。最近發表的免疫治療轉移性結直腸癌的臨床試驗還表明,MSI狀態可能是選擇個體化治療方案的關鍵指標。因此,應對新診出的結直腸癌患者進行MSI狀態檢測。值得注意的是,除結直腸癌外,其他癌癥如子宮內膜癌、胃癌和小腸癌等也可能表現為MSI高的腫瘤,MSI狀態有望成為多種癌癥患者的重要預后預測標志物[52-54]。
參考文獻
[1] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012 [J]. CA Cancer J Clin, 2015, 65(2): 87-108.
[2] Chen W, Swanson BJ, Frankel WL. Molecular genetics of microsatellite-unstable colorectal cancer for pathologists [J]. Diagn Pathol, 2017, 12(1): 24.
[3] National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: colon cancer (version 2. 2017) [EB/OL]. [2017-10-13]. https://www.nccn.org/ professionals/physician_gls/pdf/colon.pdf.
[4] Sepulveda AR, Hamilton SR, Allegra CJ, et al. Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and the American Society of Clinical Oncology [J]. J Clin Oncol, 2017, 35(13): 1453-1486.
[5] Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer [J]. Cancer Res, 1998, 58(22): 5248-5257.
[6] Hegde M, Ferber M, Mao R, et al. ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (Lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis) [J]. Genet Med, 2014, 16(1): 101-116.
[7] Murphy KM, Zhang S, Geiger T, et al. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers [J]. J Mol Diagn, 2006, 8(3): 305-311.
[8] National Institute for Health and Care Excellence. Molecular testing strategies for Lynch syndrome in people with colorectal cancer [EB/OL]. [2017-10-13]. http://www.nice. org.uk/guidance/dg27/chapter/1-Recommendations.
[9] 中國臨床腫瘤學會(CSCO)結直腸癌診療指南工作組.中國臨床腫瘤學會(CSCO)結直腸癌診療指南(2017版)[EB/OL]. [2017-10-13]. https://wenku.baidu.com/view/8cd1b 606c4da50e2524de518964bcf84b9d52df1.html.
[10] Samowitz WS. Evaluation of colorectal cancers for Lynch syndrome: practical molecular diagnostics for surgical pathologists [J]. Mod Pathol, 2015, 28(Suppl 1): S109-S113.endprint
[11] Shia J, Ellis NA, Paty PB, et al. Value of histopathology in predicting microsatellite instability in hereditary nonpolyposis colorectal cancer and sporadic colorectal cancer [J]. Am J Surg Pathol, 2003, 27(11): 1407-1417.
[12] Palomaki GE, McClain MR, Melillo S, et al. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome [J]. Genet Med, 2009, 11(1): 42-65.
[13] Shia J, Ellis NA, Klimstra DS. The utility of immunohistochemical detection of DNA mismatch repair gene proteins [J]. Virchows Arch, 2004, 445(5): 431-441.
[14] Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry [J]. J Mol Diagn, 2008, 10(4): 293-300.
[15] Shia J, Stadler Z, Weiser MR, et al. Immunohistochemical staining for DNA mismatch repair proteins in intestinal tract carcinoma: how reliable are biopsy samples? [J]. Am J Surg Pathol, 2011, 35(3): 447-454.
[16] Lynch HT, de la Chapelle A. Hereditary colorectal cancer [J]. N Engl J Med, 2003, 348(10): 919-932.
[17] Lynch HT, Snyder CL, Shaw TG, et al. Milestones of Lynch syndrome: 1895-2015 [J]. Nat Rev Cancer, 2015, 15(3): 181-194.
[18] Boland CR, Goel A. Microsatellite instability in colorectal cancer [J]. Gastroenterology, 2010, 138(6): 2073-2087.e3.
[19] Casey G, Lindor NM, Papadopoulos N, et al. Conversion analysis for mutation detection in MLH1 and MSH2 in patients with colorectal cancer [J]. JAMA, 2005, 293(7): 799-809.
[20] Bonadona V, Bona?ti B, Olschwang S, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome [J]. JAMA, 2011, 305(22): 2304-2310.
[21] Gill S, Lindor NM, Burgart LJ, et al. Isolated loss of PMS2 expression in colorectal cancers: frequency, patient age, and familial aggregation [J]. Clin Cancer Res, 2005, 11(18): 6466-6471.
[22] Giardiello FM, Allen JI, Axilbund JE, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-society Task Force on colorectal cancer [J]. Am J Gastroenterol, 2014, 109(8): 1159-1179.
[23] Aarnio M, Sankila R, Pukkala E, et al. Cancer risk in mutation carriers of DNA-mismatch-repair genes [J]. Int J Cancer, 1999, 81(2): 214-218.
[24] Bansidhar BJ. Extracolonic manifestations of Lynch syndrome[J]. Clin Colon Rectal Surg, 2012, 25(2): 103-110.endprint
[25] Williams AS, Huang WY. The analysis of microsatellite instability in extracolonic gastrointestinal malignancy [J]. Pathology, 2013, 45(6): 540-552.
[26] Deng G, Bell I, Crawley S, et al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer [J]. Clin Cancer Res, 2004, 10(1 Pt 1): 191-195.
[27] Domingo E, Laiho P, Ollikainen M, et al. BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing [J]. J Med Genet, 2004, 41(9): 664-668.
[28] Fearon ER. Molecular genetics of colorectal cancer [J]. Annu Rev Pathol, 2011, 6: 479-507.
[29] Kim JH, Shin SH, Kwon HJ, et al. Prognostic implications of CpG island hypermethylator phenotype in colorectal cancers[J]. Virchows Arch, 2009, 455(6): 485-494.
[30] Thibodeau SN, French AJ, Cunningham JM, et al. Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1[J]. Cancer Res, 1998, 58(8): 1713-1718.
[31] Hall G, Clarkson A, Shi A, et al. Immunohistochemistry for PMS2 and MSH6 alone can replace a four antibody panel for mismatch repair deficiency screening in colorectal adenocarcinoma [J]. Pathology, 2010, 42(5): 409-413.
[32] Merok MA, Ahlquist T, R?yrvik EC, et al. Microsatellite instability has a positive prognostic impact on stage II colorectal cancer after complete resection: results from a large, consecutive Norwegian series [J]. Ann Oncol, 2013, 24(5): 1274-1282.
[33] Roth AD, Delorenzi M, Tejpar S, et al. Integrated analysis of molecular and clinical prognostic factors in stage II/III colon cancer [J]. J Natl Cancer Inst, 2012, 104(21): 1635-1646.
[34] Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis [J]. J Clin Oncol, 2005, 23(3): 609-618.
[35] Kim CG, Ahn JB, Jung M, et al. Effects of microsatellite instability on recurrence patterns and outcomes in colorectal cancers [J]. Br J Cancer, 2016, 115(1): 25-33.
[36] MacQuarrie E, Arnason T, Gruchy J, et al. Microsatellite instability status does not predict total lymph node or negative lymph node retrieval in stage III colon cancer [J]. Hum Pathol, 2012, 43(8): 1258-1264.
[37] Mohan HM, Ryan E, Balasubramanian I, et al. Microsatellite instability is associated with reduced disease specific survival in stage III colon cancer [J]. Eur J Surg Oncol, 2016, 42(11): 1680-1686.endprint
[38] Venderbosch S, Nagtegaal ID, Maughan TS, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies [J]. Clin Cancer Res, 2014, 20(20): 5322-5330.
[39] Guastadisegni C, Colafranceschi M, Ottini L, et al. Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data [J]. Eur J Cancer, 2010, 46(15): 2788-2798.
[40] Vilar E, Gruber SB. Microsatellite instability in colorectal cancer — the stable evidence [J]. Nat Rev Clin Oncol, 2010, 7(3): 153-162.
[41] Meyers M, Wagner MW, Hwang HS, et al. Role of the hMLH1 DNA mismatch repair protein in fluoropyrimidinemediated cell death and cell cycle responses [J]. Cancer Res, 2001, 61(13): 5193-5201.
[42] Gelsomino F, Barbolini M, Spallanzani A, et al. The evolving role of microsatellite instability in colorectal cancer: a review[J]. Cancer Treat Rev, 2016, 51: 19-26.
[43] Jover R, Zapater P, Castells A, et al. The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status [J]. Eur J Cancer, 2009, 45(3): 365-373.
[44] Strambu V, Garofil D, Pop F, et al. Microsatellite instability in the management of stage II colorectal patients [J]. Chirurgia(Bucur), 2013, 108(6): 816-821.
[45] Kim ST, Lee J, Park SH, et al. Clinical impact of microsatellite instability in colon cancer following adjuvant FOLFOX therapy [J]. Cancer Chemother Pharmacol, 2010, 66(4): 659-667.
[46] Zaanan A, Cuilliere-Dartigues P, Guilloux A, et al. Impact of p53 expression and microsatellite instability on stage III colon cancer disease-free survival in patients treated by 5-fluorouracil and leucovorin with or without oxaliplatin [J]. Ann Oncol, 2010, 21(4): 772-780.
[47] Des Guetz G, Uzzan B, Nicolas P, et al. Microsatellite instability does not predict the efficacy of chemotherapy in metastatic colorectal cancer. A systematic review and metaanalysis [J]. Anticancer Res, 2009, 29(5): 1615-1620.
[48] Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency [J]. N Engl J Med, 2015, 372(26): 2509-2520.
[49] Kim JH, Park HE, Cho NY, et al. Characterisation of PD-L1-positive subsets of microsatellite-unstable colorectal cancers[J]. Br J Cancer, 2016, 115(4): 490-496.
[50] Dudley JC, Lin MT, Le DT, et al. Microsatellite instability as a biomarker for PD-1 blockade [J]. Clin Cancer Res, 2016, 22(4): 813-820.
[51] Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints [J]. Cancer Discov, 2015, 5(1): 43-51.
[52] Cho J, Lee J, Bang H, et al. Programmed cell death-ligand 1 expression predicts survival in patients with gastric carcinoma with microsatellite instability [J]. Oncotarget, 2017, 8(8): 13320-13328.
[53] Howitt BE, Strickland KC, Sholl LM, et al. Clear cell ovarian cancers with microsatellite instability: a unique subset of ovarian cancers with increased tumor-infiltrating lymphocytes and PD-1/PD-L1 expression [J/OL]. Oncoimmunology, 2017, 6(2): e1277308 [2017-10-13]. doi: 10.1080/2162402X.2016.1277308.
[54] Naboush A, Roman CA, Shapira I. Immune checkpoint inhibitors in malignancies with mismatch repair deficiency: a review of the state of the current knowledge [J]. J Investig Med, 2017, 65(4): 754-758.endprint