999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A double inequality for the modulus of the Gr?tzsch ring in Rn

2018-01-25 03:21:40,
浙江理工大學學報(自然科學版) 2018年1期
關鍵詞:效率內容學生

,

(School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China)

0 Notation and Main Results

wheremis then-dimensional Lebesgue measure. By [1, Theorem 8.28, (8.31), (8.34) and (8.35)], the conformal capacity capRG,n(s) of the Gr?tzsch ringRG,n(s) can be expressed by

γn(s)≡capRG,n(s)≡M(Δ(Bn,[se1,∞])),

while the (conformal) modulus ofRG,n(1/r) is defined by

whereωn-1is the surface area of the unit sphereSn-1=?Bn. Clearly,μ(r)≡M2(r) is exactly the so-called Gr?tzsch ring function, which has the following expression

(1)

where

The Gr?tzsch ring constantλnis defined by

which is indispensable in the study ofMn(r) andγn(s). It is well known thatλ2=4. Unfortunately, so far we have only known some estimates forλnwhenn≥3, among which is the following double inequality

2e0.76(n-1)<λn≤2en+(1/n)-(3/2),n≥3

(2)

(see [1, Theorem 12.21(1)] and [3]).

Now we introduce the gamma and beta functions, and some constants depending only onn, which are needed in the study of the properties ofMn(r) andγn(s). As usual, for complex numbersxandywith Rex>0 and Rey>0, the gamma and beta functions are defined by

respectively. (Cf. [4] and [5].) It is well known that, forn≥3, the volume Ωnof Bnand the (n-1)-dimensional surface areaωn-1ofSn-1can be expressed by

respectively. (Cf. [1, 2.23] and [6].) Let

In particular,

Some properties of Ωn,ωn-1,Jn,cnandAnwere given in [1, pp.38-44&163] and in [6].

In the sequel, we let arth denote the inverse function of the hyperbolic tangent tanh, that is,

During the past decades, many properties have been obtained forμ(r) (cf. [1]-[2] and [7]). The known properties ofMn(r), however, are much less than those ofμ(r), because of lack of effective tools for the study ofMn(r) whenn≥3. For example, we have no explicit expression as or similar to (1) forMn(r) whenn≥3. For the known properties ofMn(r) and its related functions, the reader is referred to [1], [3] and [7-13]. Some of these known results forMn(r) are related to the constantsλn,Ωn,ωn-1,Jn,cnandAn. For example, the following inequalities hold

(3)

(4)

(5)

forr∈(0,1) andn≥3 (see [1, Theorems 11.20(1), 11.21(2)&(4), and 11.21(5) ]).

h2(r)+h2(r′)=μ(r)μ(r′)≡π2/4

by [1, (5.2)]. It is well known that for eachn≥2, allr∈(0,1) and for allK>0,

φK,n(r)2+φ1/K,n(r′)2=1?Mn(r)Mn(r′)=const,

(6)

Later, [1, 11.36(2)] says that for eachn≥2 and allr∈(0,1),

(7)

However, the proof of the second inequality in (7) given in [1, p.244] contains an error. This proof in [1, p.244] is as follows: [1, Corollary 11.23(1) and (4) ] yield

and the upper bound in (7) follows, since [1, Theorem 1.25 ] implies that the function

合作學習應該建立在學生自主學習基礎上,為進一步提升學生合作學習效率,作為中學教師要合理引導學生自主預學,使學生對本課學習內容形成初步認識。

is increasing from (0,1) onto (1,2 logλn). It is easy to see that by this “proof ”, one can only obtain the following inequality

so that the upper bound forhn(r)+hn(r′), which we can obtain by this method, is as follows

consisting with that in (6). So far, the known best upper bound forhn(r)+hn(r′) is given by (6).

In addition to indicating the error in the proof of (7) given in [1, p.244] as above-mentioned, the main purpose of this paper is to improve the upper bound given in (6) by proving the following result.

Theorem1Lethn(r)=r′2Mn(r)Mn(r′)n-1. Then for eachn≥2 and allr∈(0,1),

(8)

where

1 Proof of Theorem 1

The proof of Theorem 1 stated in Section 0 requires the following lemma.

1.1 A Technical Lemma

Lemma1a) Forr∈(0,1), letg(r)=r2/arthrandf(r)=g′(r)/r. Thenfis strictly decreasing from (0,1) onto (-∞,∞).

(9)

Proof:a) Differentiation gives

so that

(10)

Clearly,f(0+)=∞ andf(1-)=-∞. By differentiation,

(11)

b) It is easy to verify that

Then the remaining conclusions are clear.

1.2 Proof of Theorem 1

The first inequality in (8) was proved in [8, Theorem 5.1(3)].

LetH(r)=hn(r)+hn(r′), andFbe as in Lemma 1 b). By (5), we see that

(12)

On the other hand, the following inequality holds

Mn(r)

(13)

for eachn≥2 and all 0

is strictly decreasing from (0,1) onto (0,1) by [1, Theorem 11.21(4)]. It follows from (12) and (13) that

This, together with Lemma 1 b), yields

(14)

By (2), the following double inequality holds

(15)

where

This yields the second inequality in (8) as desired.

[1] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York: John Wiley and Sons,1997.

[2] Ahlfors L V. Lectures on Quasiconformal Mappings[M]. 2nd ed. American Mathematical Society,2005.

[3] Anderson G D, Frame J S. Numerical estimates for a Gr?tzsch ring constant[J]. Constr Approx,1988,4:223-242.

[4] Abramowitz M, Stegun I A(Eds.). Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables[M]. New York: Dover,1965.

[5] Qiu S L, Vuorinen M. Handbook of Complex Analysis: Special Function in Geometric Function Theory: Volume 2[M]. Elsevier B V,2005:621-659.

[6] Qiu S L, Vuorinen M. Some properties of the gamma and psi functions with applications[J]. Math Comput,2005,74(250):723-742.

[7] Qiu S L. Gr?tzsch ring and Ramanujan’s modular equations[J]. Acta Mathematica Sinica,2000,43(2):283-290.

[8] Anderson G D, Qiu S L, Vamanamurthy M K. Gr?tzsch ring and quasiconformal distortion functions[J]. Hokkaido Math J,1995,24(3):551-566.

[9] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal invariants, quasiconformal maps, and special functions[M]//Quasiconformal Space Mappings. Berlin-Heidelberg: Springer-Verlag,1992:1-19.

[10] Anderson G D, Vamanamurthy M K, Vuorinen M. Inequalities for quasiconformal mappings in space[J]. Pacific J Math,1993,160:1-18.

[11] Ikoma K. An estimate for the modulus of the Gr?tzsch ring inn-space[J]. Bull Yamagata Univ Natur Sci,1967,6:395-400.

[12] Qiu S L, Vamanamurthy M K. Elliptic integrals and the modulus of Gr?tzsch ring[J]. PanAmer Math J,1995,5(2):41-60.

[13] Vuorinen M. On the boundary behavior of locallyK-quasiconformal mappings in space[J]. Ann Acad Sci Fenn Ser A I,1980,5:79-95.


登錄APP查看全文

猜你喜歡
效率內容學生
內容回顧溫故知新
科學大眾(2022年11期)2022-06-21 09:20:52
提升朗讀教學效率的幾點思考
甘肅教育(2020年14期)2020-09-11 07:57:42
趕不走的學生
學生寫話
主要內容
臺聲(2016年2期)2016-09-16 01:06:53
學生寫的話
跟蹤導練(一)2
“錢”、“事”脫節(jié)效率低
提高講解示范效率的幾點感受
體育師友(2011年2期)2011-03-20 15:29:29
主站蜘蛛池模板: 伊人五月丁香综合AⅤ| 久久精品人人做人人| 女人18毛片水真多国产| 国产不卡国语在线| 自拍中文字幕| 国产亚洲一区二区三区在线| 男女男精品视频| 色悠久久综合| 99re视频在线| 91成人免费观看在线观看| 黄色网站在线观看无码| 亚洲国产精品无码AV| 日韩欧美中文字幕在线韩免费| 亚洲成肉网| 夜夜高潮夜夜爽国产伦精品| 国产精品无码影视久久久久久久| 伊人久综合| 91精品专区| 91福利免费视频| 国产在线拍偷自揄观看视频网站| 无码丝袜人妻| 亚洲 成人国产| 亚洲天堂视频在线播放| 特级aaaaaaaaa毛片免费视频| 一边摸一边做爽的视频17国产| 国产一区二区三区日韩精品| 天天躁夜夜躁狠狠躁躁88| 国产欧美日韩另类| 五月婷婷综合网| 久久精品亚洲热综合一区二区| 无码精油按摩潮喷在线播放| 久久情精品国产品免费| 国模在线视频一区二区三区| 妇女自拍偷自拍亚洲精品| 中文国产成人久久精品小说| 国产日本一区二区三区| 日韩美毛片| 热99精品视频| 久久香蕉国产线看精品| 91精品国产一区自在线拍| 精品99在线观看| 久久午夜夜伦鲁鲁片无码免费| 国产69精品久久久久妇女| 日本人又色又爽的视频| 成人在线天堂| 国产97视频在线| www.av男人.com| 亚洲欧美精品在线| 精品视频一区二区三区在线播| 成人中文字幕在线| 亚洲精品国产自在现线最新| 一本无码在线观看| 欧美国产日韩一区二区三区精品影视| 国产91小视频在线观看| 精品国产美女福到在线直播| 黄色国产在线| 亚洲视频无码| yy6080理论大片一级久久| 成人福利一区二区视频在线| 久久精品无码中文字幕| 国产靠逼视频| 国产麻豆永久视频| 自拍偷拍欧美日韩| 丁香六月激情婷婷| 久久精品人人做人人爽97| 不卡无码h在线观看| 国产黑丝视频在线观看| 亚洲成综合人影院在院播放| 午夜精品久久久久久久2023| 狠狠色噜噜狠狠狠狠色综合久 | av在线无码浏览| 国产日本视频91| 色哟哟国产精品| 亚洲精品日产AⅤ| 欧类av怡春院| 国产中文一区a级毛片视频| 91免费片| 亚洲无码91视频| 久热中文字幕在线观看| 久久免费观看视频| 日韩精品一区二区深田咏美| 91高清在线视频|