999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

植物抗灰霉病菌分子機制的研究進展

2018-03-14 02:08:12張燕夏更壽賴志兵
生物技術通報 2018年2期
關鍵詞:途徑植物信號

張燕 夏更壽 賴志兵

(1. 麗水學院生態學院,麗水 323000;2. 華中農業大學作物遺傳改良國家重點實驗室,武漢 430070)

灰霉病菌(B. cinerea)是典型的死體營養型真菌,殺死植物細胞后獲取養分,引起植物組織腐爛,又因發病植物組織表面后期形成灰色霉層,而被稱為灰霉病菌[1]。B. cinerea能在500多種植物中致病,其中作物超過200種,包括番茄、草莓、葡萄等眾多重要經濟作物[2]。該菌喜溫濕,不僅危害植株上的莖、葉和果實,同樣危害采后貯藏的果實,嚴重影響產量和品質,全球每年因灰霉病造成的經濟損失達100-1 000億美元,被列為十大植物真菌病害之一[3]。灰霉病的有效防治主要依賴于化學藥劑,但存在農藥毒性、殘留、環境污染等問題。此外,化學藥劑的長期使用,導致田間抗藥性灰霉病菌的出現[4],而且,德國田間鑒定到一種新的引起草莓灰霉病的種——B. fragariae,對殺菌劑也表現出高頻抗藥性[5]。因此,一直以來,關于植物自身對灰霉抗病性的研究相當重視,以期找到替代化學藥劑的其它物質,或者利用植物自身基因提高對灰霉病的抗性。隨著研究的深入,對灰霉病菌隱秘不易察覺的毒性策略和植物復雜的細胞及分子抗病反應機制都有一定程度的認識。

植物對抗B. cinerea等寄主范圍廣的死體營養型 真 菌(Broad host-range necrotrophs,BHNs), 通常采用多層面的抗病反應,應對病原菌紛繁復雜的毒性策略,且在遺傳學組成上呈現出多基因控制的數量性狀的特征。迄今為止的研究表明P/DAMP(Pathogen/damage-associated molecular patterns,P/DAMP)激發的免疫反應PTI(P/DAMP triggered immunity,PTI)是植物抗灰霉病菌機制的主要組成部分[6-7]。近幾年,在植物對B. cinerea的抗性反應的研究不僅加深對PTI的認識,還找到一系列可供開發利用的防治灰霉病菌的因素和方法,包括植物生長環境條件、微生物自身或來自微生物的分子、頗有時代烙印的代謝物如青蒿素及白藜蘆醇、寄主誘導的基因沉默防治方法等。本文從識別PTI信號、信號傳導、轉錄相關因子和表觀遺傳事件、抗灰霉細胞學事件及次生代謝產物等方面的研究進展作一綜述,特別指出可在防治實踐中利用的潛在因素和方法,以期解決單一使用化學農藥導致的抗藥性、環境污染等問題。

1 PAMP/DAMP信號及識別

1.1 激發PTI的信號分子

PTI是植物抗灰霉的主要機制,在識別信號分子PAMP/DAMP后激發的數量抗性反應,是包括 激 活 MAPKs(Mitogen-activated protein kinases,MAPKs)途徑、camalexin的合成及乙烯信號途徑等系列反應的疊加。信號分子PAMP指的是來自病原微生物且進化緩慢的特征性模式分子,而DAMP則是指由病原微生物降解寄主細胞成分的產物。真菌和植物細胞壁的降解產物,分別成為能激發PTI的PAMP和DAMP分子。

1.1.1 真菌細胞壁成分幾丁質 幾丁質是灰霉病菌等真菌細胞壁的成分,由多個N-乙酰-D-葡萄糖胺組成。植物幾丁質酶作用于真菌細胞壁,生成不同長度的幾丁質分子,6個及以上的N-乙酰-D-葡萄糖胺組成的幾丁質分子都能激發有效的PTI[8]。近期的研究發現,過表達水稻幾丁質酶基因RCH10能提高百合對灰霉的抗性,而不影響百合植株的開花和發育[9]。芥菜幾丁質酶BjCHI1也能提高植物抗灰霉的能力,BjCHI1基因的表達受轉錄因子BjMYB1的調控,且找到芥菜的類受體激酶的部分編碼序列,含LysM基序,意味著芥菜中很可能存在幾丁質受體蛋白[10-11]。此外,表達桑葚的幾丁質結合蛋白MLX56的擬南芥顯示出更高的灰霉抗性[12]。灰霉病菌在入侵植物細胞時,被植物幾丁質酶降解自身細胞壁,同時也分泌CWDEs(Cell walldegrading enzymes,CWDEs),降解植物細胞壁,生成DAMPs。

1.1.2 植物細胞壁、表皮組分降解產物 果膠酶(Pectinase)是主要的CWDEs,B. cinerea基因組有一個內源多聚半乳糖醛酸酶(PG)的基因家族,該家族的6個成員基因編碼基礎的或酸性的PG異構酶[13],作用于植物細胞壁的果膠,生成DAMP分子寡聚半乳糖醛酸(OGs),誘導擬南芥的免疫反應,提高對灰霉病菌的抗性,OGs激發產生瞬時和長期的一氧化氮(NO),NO調節OGs激發的活性氧的爆發和防衛基因的表達,并且參與對灰霉的基本防衛反應[14-15]。細胞壁成分的修飾則降低果膠甲基酯化和阿魏酸化,果膠甲基化通過影響多聚半乳糖醛酸的水解及水解后OGs的長度,提高擬南芥對灰霉的敏感性[16-17]。

除了細胞壁,植物表皮也是DAMP的來源。灰霉病菌泌出角質酶,作用于植物表皮,生成另一種DAMP分子表皮素單體,誘導典型的PTI反應,包括堿性化、合成乙烯、ROS爆發和防衛基因的上調表達[13,18-19]。與灰霉病菌角質酶活性產物相類似,植物表皮發育、脂質的組成及表皮素多聚體等發生異常狀況,會被植物自身更快識別,而且防衛信號更易擴散或活性氧更快爆發而提高對灰霉病菌的抗性[20-22]。編碼 AP2/ERF 轉錄因子的 DEWAX(Decrease Wax Biosynthesis)基因,偏好在植物表皮表達且受黑暗誘導,負向調控表皮蠟質的合成;DEWAX基因過表達提高擬南芥表皮透性和ROS積累,且與PDF1.2基因的啟動子區直接結合而促進其表達,增強擬南芥和亞麻對灰霉病菌的抗性[23-24]。

1.1.3 植物細胞內蛋白類DAMPs 植物受灰霉病菌侵染后,植物體內一些蛋白前體經過剪切產生能激活抗病反應的小肽,這些小肽被稱之為蛋白類DAMPs,如番茄產生的系統素(Systemin)和擬南芥產生的 PEPs(Peptides)。

系統素僅存在于茄科植物中,其前體蛋白prosystemin(PS)含有200個氨基酸,當有病原菌入侵或者外界環境刺激條件下,PS蛋白被蛋白酶剪切形成18個氨基酸的系統素被分泌到細胞外,植物細胞受體蛋白識別PS蛋白并激活茉莉酸(JA)響應基因和其他抗病基因的表達,增強植物對灰霉病菌的抗病性[25]。雖然PS蛋白不能被系統運輸,但該蛋白的mRNA是一個可移動的信號分子,能在植物體內長距離運輸,因此,遠離入侵點的葉片對灰霉病菌的抗病性也增強[25]。至于PS蛋白剪切形成系統素、系統素被分泌到胞外及系統素的受體蛋白均有待于進一步分析鑒定。

PEP1蛋白的前體ProPEP1含有92個氨基酸,受病原菌、MeJA和損傷等的誘導后表達。ProPEP1被剪切而形成23個氨基酸的PEP1蛋白,細胞膜上的受體蛋白激酶PEPR1和PEPR2識別泌出胞外的PEP1并被激活而磷酸化BIK1,從而激活下游乙烯(ET)信號途徑,增強植物對灰霉病菌和其他病菌的抗病性[26]。擬南芥中存在5個PEP1的同源蛋白PEP2-PEP6,PEP2被PEPR1和 PEPR2識別,PEP3-6被PEPR1識別,提高植物的灰霉抗性[27-29]。

1.2 PTI信號的識別

不論是PAMP還是DAMP分子,都是特征性的模式分子(Pattern),長期進化過程中,植物擁有了一系列的模式識別受體(Pattern recognition receptors,PRRs),特異性地識別模式分子,拉響危險警報,導致免疫反應的發生。灰霉病菌侵染過程中形成的PAMP/DAMP分子幾丁質、OGs、表皮單體及PEP1,分別被CERK1(Chitin elicitor receptor kinase 1,CERK1)、WAK1(Wall- associated kinase 1,WAK1)、EIX1(ET-inducing xylanase 1,EIX1)和 PEPR1/PEPR2(PEP1 receptor 1/2,PEPR1/2)識別[6,30],這些PRRs都是定位在細胞膜的類受體激酶RLKs(Receptor-like kinases)。值得一提的是,BAK1(Brassinosteroid insensitive 1-associated kinase 1,BAK1)也是一種RLK,在不同的PRR特異性識別相應的Pattern過程中,起共同受體的作用,缺失BAK1導致對灰霉病菌的敏感性增強[31-32]。擬南芥PEP1和PEP2被PEPR1識別過程中,PEP1和PEP2誘導BAK1磷酸化,而PEPR1磷酸化激酶BIK1(Botrytis induced kinase 1,BIK1), 由 此 傳 導 PTI信號[26,33]。

2 灰霉病菌信號識別后的傳導

2.1 BIK1在PTI信號傳導中的作用

擬南芥接種灰霉病菌早期BIK1被誘導,編碼一個類受體胞內激酶(Receptor-like cytoplasmic kinase,RLCK),在抗灰霉病菌反應中是必需的[34]。BIK1的磷酸化受到來自病原菌的乙烯分子的調控,且乙烯信號途徑重要的調節因子EIN3也直接調控BIK1,而BIK1是表達乙烯反應基因所必需的[34-35]。此外,BIK1壓制水楊酸(SA)和油菜素內酯(BR)信號途徑,但是BIK1如何調控SA信號途徑以及如何在ET信號途徑中起作用仍不清楚。BIK1和BAK1一樣,與多個PRRs互作,調節植物對灰霉病菌的抗性,因此,BIK1獨立于MAPKs途徑,把多個PRRs和下游的免疫反應聯系起來[26,36-37]。

2.2 MAPKs傳遞PTI及其它灰霉病菌的信號至轉錄因子

MAPKs途徑通過MPKKK-MPKK-MPK鏈式反應放大植物接收到的PTI及其它灰霉病菌的識別信號,并將信號傳遞給轉錄因子,誘導抗病相關基因表達[38]。其中,MPK3和MPK6是MAPKs途徑中調控擬南芥對灰霉病菌抗性的主要成分,MPK3或MPK6基因突變顯著抑制OGs誘導的抗病性,但突變體mpk3抗灰霉能力減弱,而mpk6接種灰霉后表型與野生型相差不大,故對灰霉菌的基礎抗性主要由MPK3介導,而對DAMPs誘導產生的PTI途徑則需要MPK3和MPK6共同參與[38-39]。編碼核孔復合體的Nup88/MOS7基因突變減少MPK3在核內的積累,顯著降低植物對灰霉病菌的抗病性[39]。ERF6和WRKY33是抗灰霉病菌PTI反應的重要轉錄因子,MPK3/MPK6直接磷酸化ERF6和WRKY33,增強兩個轉錄因子的穩定性,傳遞PTI信號的同時,使得下游抗病基因表達更持久[40]。

3 抗灰霉病菌轉錄再編程

不同PAMP/DAMP信號及其它灰霉病菌的識別信號,傳遞給轉錄因子后,植物通過轉錄再編程調控抗病相關基因表達,發生下游的免疫反應。轉錄再編程主要通過轉錄因子、轉錄媒介體和表觀修飾3個方面進行調控。

3.1 抗灰霉病菌的轉錄因子

在植物抗灰霉病菌的過程中WRKY類轉錄因子發揮重要的調控作用。WRKY57直接靶向JAZ1和JAZ5的啟動子促進轉錄,WRKY70和WRKY54負向調控細胞壁相關的防衛反應,從而抑制JA信號途徑,增強擬南芥對灰霉的感病性[41]。與上述3個WRKY因子的作用相反,擬南芥的WRKY3、WRKY4和WRKY33正向調控灰霉抗性[42-43]。

WRKY33在植物抗灰霉病PTI反應中起關鍵作用,擬南芥wrky33突變體對灰霉病菌表現極感表型,過量表達WRKY33明顯提高植物的抗病性;WRKY33的在PTI反應中的作用主要是促進ET合成(靶標基因ACS2和ACS6)和調控ET信號途徑(起作用的蛋白GDSL lipase1,GLIP1)、調控JA信號途徑(靶標基因ORA59、JAZ1、JAZ5)、以及抑制SA、脫落酸(ABA)的合成和SA信號途徑;接種灰霉病菌后,WRKY33結合到NCED3和NCED5基因(ABA合成的關鍵基因)的啟動子區域抑制它們的轉錄,wrky33突變體中SA合成酶基因ICS1表達量和SA水平顯著高于野生型植株,SA信號途徑的相關基因NPR1、EDS1、PAD4、PR1和PR2的表達量也明顯高于野生型植株[42,44-45]。此外,WRKY33促進植保素camalexin的合成,camalexin合成關鍵因子PAD3是WRKY33的直接靶基因,受WRKY33蛋白正向調控[42]。擬南芥HOOKLESS(組蛋白乙酰化酶,HLS1)乙酰化WRKY33組蛋白H3,并且招募MED18,加強WRKY33的表達,提高灰霉抗性[46]。不僅僅擬南芥的WRKY33,番茄和煙草中的WRKY33同樣在抗灰霉病菌PTI中起關鍵性的作用。番 茄 中 的 SlDRW1(Solanum lycopersicum defenserelated WRKY1,SlDRW1) 與 擬 南 芥 WRKY33序列同源性達到50.5%,VIGS沉默SlDRW1基因明顯減弱植物對灰霉的抗性[47]。此外,煙草的MAPKWRKY途徑也增強對灰霉病菌的抗性[48]。植物抗灰霉病菌PTI反應是MAPKs途徑激活、camalexin的合成和乙烯的交疊,AP2/ERF類和MYB轉錄因子也是與乙烯或camalexin合成等密切相關的抗灰霉PTI重要的轉錄因子。

AP2/ERF類轉錄因子受乙烯調控,含有57-66個氨基酸組成的DNA結合域,結合啟動子的順式作用元件GCC-box(AGCCGCC),調控基因表達。擬南芥5個ERF基因 ERF1、RAP1.2、ORA59、ERF5和ERF6都受灰霉菌的誘導表達,同時也受ET和JA誘導表達,通過ET/JA信號途徑增強植物對灰霉的抗性[40,49-50]。擬南芥 AtERF014負向調節灰霉抗性[51];番茄的 SlERF.A1、SlERF.B4、SlERF.C3和SlERF.A3、青蒿的AaERF1和AaORA均正向調控植物對灰霉病菌的抗性[52-53]。

MYB類轉錄因子也通過調節DAMP信號或乙烯相關轉錄因子等途徑參與調控植物對灰霉病菌的PTI免疫反應。Atmyb46突變體植株導致植物次生細胞壁缺陷,芥菜轉錄因子BjMYB1激活幾丁質酶BjCHI1的表達,無疑MYB轉錄因子AtMYB46和BjMYB1都參與調控DAMP-PTI;而MTF1(又名:MYBC)突變,則乙烯調控的轉錄因子基因ORA59表達量顯著高于野生型,且突變植株高抗灰霉病菌[54-55]。MYB51則通過轉錄激活吲哚葡糖異硫氰酸鹽的合成而影響抗灰霉病菌PTI組成camalexin的合成[56]。

除WRKY、ERF和MYB三大類重要的轉錄因子外,還有其他轉錄因子在植物與灰霉互作中起作用。如擬南芥的GBF1(G-BOX BINDING FACTOR1)負向調節病原菌誘導的CATALASE 2(CAT2)基因表達,正向調控PHYTOALEXIN DEFICIENT 4(PAD4)的表達,從而增加擬南芥對灰霉的感病性[57]。

3.2 轉錄媒介體和轉錄延伸復合物

媒介體是真核生物進化上保守的多個蛋白亞基組成的復合體,也是基因轉錄調控復合體的重要組成部分[58]。媒介體亞基通過與轉錄因子互作、改變RNA聚合酶II與DNA的結合能力或調節表觀修飾而調控抗灰霉病菌的免疫反應。受MED25調控的轉錄因子包括ABI5、ERF1、ERF15、RAP2.2、ERF98、ORA59、EIN3/EIL1和 MYC2,因此,MED25作為抗灰霉病菌相關的ET和JA信號平衡點起作用[59-63]。不同于 MED25,MED18除了激活抗病基因PTR3的表達外,還與抗病轉錄因子YY1互作直接抑制感病基因TRX-h5、GRXS13和GRX480的轉錄從而增強植物抗病性;另一方面,MED18增強RNA聚合酶II與靶基因的啟動子、編碼區和終止子區的結合,介導組蛋白H3K36me3修飾水平,達到增強抗病基因表達的目的[64]。CDK8是媒介體磷酸激酶區的蛋白亞基,與MED25互作正向調控依賴于ERF1的ET信號途徑或者依賴于ORA59的JA信號途徑,CDK8增強AACT(Agmatine coumaroyltransferase,AACT)基因的表達,促進抗性次生代謝產物HCAA(Hydroxycinnamic acid amides,HCAA)合成積累,在擬南芥抗灰霉病菌過程中起作用[65]。此外,MED33也正向調控擬南芥對灰霉病菌的抗性[66]。

轉錄過程中的延伸復合體(Elongator)是與RNA聚合酶II互作的復合物,也參與擬南芥抗灰霉病菌的過程。延伸復合物亞基 2(Elongator Protein 2,ELP2)是誘導表達WRKY33、ORA59及PDF1.2所必需的,正向調控擬南芥對灰霉的抗性;DRL1(Deformed root and leaves 1,DRL1)與延伸復合物互作,同樣是誘導表達ORA59和PDF1.2基因所必需的,增強擬南芥對灰霉病菌的抗性[67-68]。

3.3 表觀修飾調控植物灰霉抗性

表觀修飾包括DNA甲基化、組蛋白乙酰化、組蛋白賴氨酸甲基化和組蛋白泛素化等。甲基轉移酶SDG(SET domain group,SDG)甲基化組蛋白H3K4和H3K36,已經闡明SDG8提高MKK5的組蛋白H3K36me3修飾水平,促進JA信號途徑,且SDG8和SDG25共同調控抗病基因CER2(ECERIFERUM 2)和CER3(ECERIFERUM 3)的組蛋白H3K4和H3K36的甲基化水平,從而增強植物對灰霉病菌的抗性[69-70]。甲基化修飾調節植物對灰霉病菌抗性的另一個途徑是,RNA介導的DNA甲基化途徑(RNA-dependent DNA methylation,RdDM),該途徑由小的干擾RNA(small interfering RNAs,siRNAs)驅動,直接介導DNA甲基化修飾,同時影響目標區段的組蛋白修飾水平,正向調控植物對灰霉病菌的抗性。RdDM途徑中關鍵基因的突變體nrpd1、nrpd2、nrpe1、ago4、drd1和rdr2均感灰霉,且nrpd2突變體中受灰霉病菌誘導的PDF1.2基因表達水平受抑制,而PR1基因表達提高,由此推測,RdDM途徑可能正向調控JA途徑或負向調控SA途徑,增強植物對灰霉病菌的抗性[71]。盡管RdDM途徑對組蛋白的修飾機制影響植物對灰霉病菌抗性尚不明確,已有研究證實了組蛋白的乙酰化和泛素化對植物灰霉抗病性的影響。

HLS1(Hookless1,HLS1)直接介導擬南芥基因組組蛋白乙酰化水平,HLS1直接靶向抗病基因WRKY33的轉錄起始和編碼區,增強組蛋白H3乙酰化水平;同時HLS1招募MED18亞基,共同促進WRKY33基因轉錄;hls1突變體受灰霉病菌誘導后,PDF1.2基因轉錄水平遠遠高于野生型植株,但hls1突變體高感灰霉病菌[46]。與HLS1類似,轉錄延伸復合體也能介導抗病基因WRKY33、ORA59和PDF1.2基因的組蛋白H3K9乙酰化水平促進基因表達,提高植物灰霉抗性[67]。組蛋白的泛素化與甲基化和乙酰化效果類似,同樣影響植物對灰霉病菌的抗性。介導組蛋白H2B單泛素化酶基因HUB1(Histone monoubiquitination1,HUB1)或HUB2突變,顯著降低擬南芥對灰霉病菌的抗性[72]。同樣,番茄的組蛋白單泛素化酶SLHUB1和SLHUB2通過調節SA和JA/ET信號通路的平衡增強番茄對灰霉病菌的抗性[73]。

4 植物激素的調控

植物激素是完整的植物免疫不可或缺的成分,灰霉病菌的侵染提高了植物體內SA、ABA、ET、JA的水平,激素的內在平衡和信號途徑的反應是正常的植物免疫的關鍵。SA對植物灰霉抗性的影響和植物品種有關,SA信號途徑中的成分PR1在抗灰霉病菌的系統獲得抗性(SAR)和誘導系統抗性(ISR)中起重要作用,是SAR的分子標記,SAR對擬南芥抗灰霉沒有作用,但能提高番茄和煙草對灰霉病菌的抗性。SA途徑被灰霉利用而增強致病性,如灰霉泌出胞外的多糖(EP)激活SA途徑,與JA信號途徑對抗,增強感病性[74]。ABA對植物抗灰霉病菌的影響和灰霉病菌侵染的階段、受侵染的組織有關,缺少ABA的sitinen番茄突變體和ABA響應因子ABI5的突變體植株均高抗灰霉病菌[75];而番茄ABA誘導的轉錄因子AIM1控制對灰霉病菌的基本防衛,正向調節早期對灰霉的防衛反應[76]。由此可見,SA和ABA在植物對灰霉病菌的抗性中作用復雜。

與SA和ABA不一致,JA和ET則能提高植物抗灰霉能力。ET通過調控PAMP受體復合物成分、不同的轉錄因子、防衛基因的表達、MAPKs和BIK1調節灰霉病生長和病癥。最近的研究結果表明,VIGS沉默番茄乙烯響應因子B3亞組成員基因SlERF.A1、SlERF.A3、SlERF.B4和SlERF.C3均顯著降低植物對灰霉病菌的抗性[77]。JA調控下游抗病基因表達的分子機理也取得最新的進展,灰霉病菌入侵誘導植物體內JA的大量積累,光敏色素phyB也通過激活JA途徑增強對灰霉病菌的抗性。活性態的JA-Ile與受體蛋白COI1結合,促進JA信號抑制子JAZ(Jasmonate ZIM-domain)的降解而激活轉錄因子基因ORA59、MYC2等的表達[78]。過量表達茉莉酸誘導的氧化酶基因JOXs(Jasmonate-induced oxygenases,JOXs)或者茉莉酸氧化酶基因JAO2(Jasmonic acid oxidase 2,JAO2),導致植物體內活性態的JA-Ile轉化為非活性態的12OH-JA,顯著抑制植物對灰霉病菌的抗性[79-80]。擬南芥JA信號途徑中的轉錄因子ORA59調控抗病相關基因,而MYC2則調控損傷響應基因,損傷響應基因通常促進植物對灰霉病的感病性,因此,擬南芥中JA與ET信號途徑互作,抑制MYC2促進ORA59基因表達,從而增強抗灰霉病基因表達;番茄中MYC2與JA2-like(MYC2-targeted TFs,MTFs)組成轉錄復合體調控損傷響應基因的表達,與MTF ERF.C3(ethylene response factor.C3,ERF.C3)互作調控抗灰霉病相關基因的表達[81]。

5 抗灰霉相關細胞學事件及次生代謝產物

5.1 細胞死亡、自噬和活性氧爆發

植物抗病過程中最具代表性的細胞死亡是過敏性反應(HR),目的在于限制病原菌的生長,但恰恰有利于死體營養型真菌灰霉的侵染。細胞自噬是降解和再循環胞質內成分的細胞過程,也是植物抗灰霉病菌必不可少的一個環節,自噬途徑將失去功能的蛋白消解,維持植物正常的生理生化過程,增強植物對灰霉病菌的抗性,自噬途徑的關鍵基因ATG5、ATG7、ATG18a等突變都導致植物高感灰霉病菌,WRKY33 與 ATG18a互作,增強灰霉抗病性[82]。過量表達BAG6(Bcl-2 associated athanogene6,BAG6)基因激活自噬體的形成,能有效增強植物對灰霉病菌的抗性[83-84]。

ROS在植物免疫中作為信號分子誘導抗性、加速細胞死亡或者直接抗菌。抗或感灰霉植株接種后均大量積累ROS,因此,ROS在抗灰霉病過程中作用復雜。ROS發生的時間不同、積累的水平高低都影響著植物對灰霉的敏感性和灰霉入侵信號的感知等方面[7]。近期的研究發現,不同細胞器產生的ROS對抵抗灰霉病菌的入侵作用差異很大,NADPH氧化酶Rbohs是植物中產生ROS的關鍵酶,位于番茄細胞膜上的SlRbohB正向調控植物對灰霉病菌的抗性;煙草中過量表達SlRbohB基因顯著增強灰霉抗性[85]。擬南芥過氧化物酶產生的非原生質體ROS損害了表皮完整性,導致DAMP激發的防衛反應[86]。而在線粒體和葉綠體產生的ROS能促進灰霉病斑拓展和植物感病性,突變編碼神經酰胺激酶的ACD5(ACCELLARATED CELL DEATH 5)基因導致線粒體產生大量的ROS,并增強植物對灰霉的感病性[87];煙草葉綠體中定點表達藍細菌黃素氧化還原蛋白(cyanobacterial flavodoxin)抑制葉綠體產生的ROS,能顯著限制灰霉病病斑的拓展和病菌生物量的累積[88]。

5.2 抗灰霉的次生代謝產物

植物與灰霉病菌互作進化過程中,為對抗灰霉

病菌名目繁多的侵入方式,除了上述多種防衛反應之外,還會泌出毒性次生代謝產物抑制灰霉病菌的生長,另一些細胞內的次生代謝產物則參與不同的抗病途徑,增強或減弱植物對灰霉的抗性。

5.2.1 抑制灰霉生長的次生代謝產物 眾所周知,camalexin(3-thiazol-2-yl-indole)在植物抗灰霉病菌中發揮非常重要的作用,camalexin合成途徑中關鍵 酶CYP79B2、CYP79B3、CYP71A13、CYP71B15基因突變都顯著減弱植物對灰霉病菌的抗性。Camalexin合成受灰霉病菌誘導激活,合成途徑中多個關鍵酶的基因轉錄水平受WRKY33、MPK3和MPK6的調控[89]。合成產生的camalexin由位于植物表皮細胞膜上的轉運蛋白AtABCG34運到胞外抑制灰霉病菌的生長[90]。

葡糖異硫氰酸鹽(Glucosinolates,GSs)是植物體內重要的次生代謝產物,包括吲哚葡糖異硫氰酸鹽(Indole glucosinolates,IGSs)和脂肪酸葡糖異硫氰 酸 鹽(Aliphatic glucosinolates,AGSs)[91]。IGSs合成關鍵酶包括CYP79B2、CYP79B3、CYP83B1、SUR2、UGT74B1、ST5a、CYP81F2、CYP81F3、IGMT1、TGMT2,芥子苷酶水解GSs生成異硫氰酸鹽等生物活性物質,對微生物、線蟲和昆蟲有毒性[92]。近期的研究發現IGSs類化合物能有效拮抗灰霉病菌,油菜中過量表達IGSs合成途徑基因BnUGT74B1,有效提高葉片中IGSs含量,增強對灰霉的抗性[93]。整個IGS生物合成途徑都受MPK3、MPK6和ERF6的調控,CYP81F2、IGMT1和IGMT2基因受MPK3/MPK6磷酸化激活的ERF6正向調控;另一方面,ERF6通過其他未知轉錄因子間接調控MYB51和MYB122基因表達,而轉錄因子MYB51和MYB122再調節CYP83B1、CYP79B2和CYP79B3基因的表達;產生的IGSs被PEN2(Penetration2)等芥子苷酶(myrosinases)水解釋放出活性態的不穩定化合物,由轉運蛋白PEN3(Penetration3)分泌到胞外抑制灰霉病菌的生長[94]。

5.2.2 其它參與灰霉抗病反應的次生代謝產物 與上述直接抑菌的次生代謝產物不同,近期的研究揭示一些次生代謝產物通過參與不同的抗病反應途徑而影響植物抗灰霉。擬南芥脯氨酸脫氫酶ProDH1和ProDH2受SA或JA的正向調控,提高植物對灰霉的抗性,維生素B6和蔗糖運輸蛋白(STP13)有助于對灰霉和其它菌的抗性[95-97];擬南芥的基質金屬蛋白酶At2-MMP參與PAMP激發的免疫提高灰霉抗性,相應地,番茄的基質金屬蛋白酶Sl3-MMP提高ROS水平和防衛基因的表達,增強對灰霉抗性[98-99];番茄全代謝組分析鑒定到1-甲基色氨酸涉及植物對灰霉抗病性,海藻糖-6-磷酸合成酶在對灰霉抗性中起重要作用[100-101];煙草葉片表達甜菜紅堿顯著提高對灰霉的抗性[102];葡萄的奇異果甜蛋白TLP29可能涉及SA或JA/ET途徑負向調控擬南芥對灰霉抗性[103];此外,擬南芥中表達葡萄白藜蘆醇關鍵合成酶VaSTS19提高對灰霉抗性,但表達VaSTS21提高擬南芥對灰霉感病性[104-105]。由此可見,植物在感受到灰霉病菌侵染時,會通過代謝過程協調生長與抗病免疫之間的關系,并且多種次生代謝產物參與抗灰霉病菌的過程。

6 可供開發利用的抗灰霉病菌信號因子

鑒于目前對灰霉病的防治仍主要依賴于化學藥劑的使用,又因環境、抗藥性等問題,促使人們尋找更多的提高植物抗灰霉病反應的因素,除上述PAMP/DAMP信號外,外界生長條件、其它微生物及其產物、外界物理刺激、大分子化合物等,誘導系統抗性(ISR)、系統獲得抗性(SAR)等不同的抗灰霉病菌的反應,可以為開發生物農藥或其它防治方法奠定理論基礎。

6.1 激發抗灰霉病反應的生長條件

光是植物免疫重要的調節因子,當細胞色素B(phyB)因紅光/遠紅光(R∶FR)的比值低而失活時,擬南芥對灰霉病菌的抗性下降,這是由于phyB失活,植株對JA敏感性降低,從而抑制了對灰霉病菌的抗性,且該抑制作用是與SA無關,依賴于Coronatine Insensitive1(COI1)和JAZ10(壓制JA信號的家族);R∶FR低比值減少了擬南芥吲哚芥子油苷和植保素camalexin的合成[106-107]。而mono-heme細胞色素b,位于擬南芥細胞質膜上,敲除該蛋白的基因AIR12,提高對灰霉的抗性[108]。有趣的是,天竺葵Geranium robertianum比G. pyrenaicum更感灰霉,R∶FR低比值抑制G. pyrenaicum對灰霉的抗性,相反,增強G. robertianum對灰霉抗性[109]。由此可見,光(R∶FR低比值)對植物抗灰霉病菌的影響與植物自身的遺傳背景密切相關,很可能在協調植物生長與植物抗病二者之間的關系中起作用。

工業發展造成對流層CO2濃度的提高,生長在高CO2濃度環境中的擬南芥則更抗灰霉,與擬南芥體內抗灰霉相關基因PAD3轉錄水平的提高有關;JA的合成和JA信號通路中的LOX3、OPR3、JAZ10、PDF1.2轉錄水平都明顯高于非高CO2環境中的擬南芥植株;此外,高CO2激活SA途徑,體內SA水平及PR1、PR2、PR5、ICS1轉錄水平均高于非高二氧化碳環境中的植株,因此,高CO2不僅提高擬南芥抗灰霉,也提高對細菌的抗病性[110]。

除了光和二氧化碳兩種因素以外,輕柔的觸碰誘導ROS的發生、胼胝質的沉積、觸碰誘導基因(TCH)的表達和防衛相關基因FaPR1、FaCHI2-2、FaCAT、FaACS1和FaOGBG-5的表達,提高草莓對灰霉的抗性[111]。辣椒上的傷口誘導局部灰霉抗性,但卻誘導系統感病性[112]。傷口激發ATP的釋放,胞外ATP施用能誘導JA表達和乙烯的生物合成,并且誘導JA信號通路中防衛基因的表達,提高擬南芥對灰霉的抗性[113]。此外,曾有混合肥料提高擬南芥抗灰霉的研究,結果表明橄欖渣和橄欖樹葉的堆肥與珍珠巖不同,能誘導擬南芥對灰霉抗病性。GO分析顯示,生長在堆肥中的擬南芥相對于生長在珍珠巖的植株,接種灰霉后,在生物脅迫、SA和ABA刺激、氧化脅迫、細菌、真菌等刺激相關反應基因顯著富集;而且,堆肥和接種灰霉病菌均能誘導PR1的轉錄,生長在堆肥中的擬南芥接種后更促進PR1的表達[114]。可見,堆肥的確能提高擬南芥對灰霉的抗病能力。

6.2 影響灰霉抗性的微生物及其代謝產物

微生物或來自微生物的代謝產物能通過激發誘導系統抗性(ISR)、系統獲得抗性(SAR)等抗病反應提高植物對灰霉病菌的抗病性。

6.2.1 激發ISR等抗病反應的微生物 植物誘導系統抗性ISR指的是植物在恰當的刺激下而具備的防衛能力增強的狀態,對真菌、細菌、病毒及昆蟲的植物抗性都有效。ISR需要JA和乙烯(ET)信號途徑并且和編碼植物防衛素基因PDF1.2的表達相關,也有研究發現ISR依賴SA、JA/ET途徑及NPR1[115]。一些根圍微生物能誘導ISR,豆科根瘤中分離的革蘭氏陽性細菌Micromonospora菌株能誘導不同番茄栽培品種的持久的灰霉抗性,通過誘導JA調控的防衛作用,包括防衛基因LOXA、PinII的誘導表達而抗灰霉病菌[116]。Micromonospora菌株不僅讓番茄具備增強防衛能力的狀態,而且具有直接抗真菌能力,因此,是生物防治最值得考慮的微生物材料。另一根圍細菌Bacillus cereus AR156通過及時增強PR1蛋白的表達、過氧化氫積累和胼胝質的沉積,快速激活MAPKs信號和FRK1/WRKY53基因表達,達到提高擬南芥抗灰霉的目的;這些反應依賴于JA/ET途徑和NPR1,而與SA自身水平高低無關[115]。

灌木根圍真菌Rhizophagus irregularis定殖在番茄根部,大量的代謝發生改變,番茄內聚集更高水平的維生素葉酸、核黃素、吲哚衍生物和酚類化合物;當B. cinerea侵染R. irregularis定殖后的番茄時,LOX途徑起到關鍵抗病作用[117]。Burkholderia phytofirmansPsJN是高效誘導抗病性的植物內生細菌,PsJN能移動到葡萄的葉片,在B. cinerea周圍形成生物膜,限制灰霉生長。除了直接的抗灰霉菌的作用外,PsJN能誘導胼胝質沉積、過氧化氫的產生,且當灰霉侵染有PsJN存在的葡萄部位時,啟動表達 PR1、PR2、PR5和 JAZ蛋白[118]。Bacillus subtilisGB03的揮發性化合物VOCs激發擬南芥的PR1和PDF1.2的表達,提高灰霉抗性[119]。由上可見,有益的根圍細菌和真菌或植物內生細菌,誘導ISR、激發植物自身與JA、ET或SA有關的抗病反應,部分有益微生物還具有直接抗灰霉的作用。

6.2.2 激發SAR的灰霉病菌(糖)蛋白等物質 灰霉病菌泌出的一些代謝產物和蛋白能產生過敏性反應癥狀,如草酸、葡雙醛霉素、類壞死和乙烯誘導的肽蛋白(NLPs)和木聚糖酶 Xyn11A[7,120]。擬南芥接種灰霉病菌不能誘導SAR,而近期研究表明灰霉病菌B. cinerea的另一些(糖)蛋白分子能激發植物的SAR或其它抗性反應,提高番茄或煙草對灰霉病菌的抗性。B. cinerea的BcSpl1基因編碼的cerato-platanin家族的泌出蛋白,處理煙草后,能激發兩個受NPR1(SAR主要的調控子)控制的基因PR1-a和PR-5的表達[121]。B. cinerea的另一個泌出蛋白BclEB1,同樣能夠激發被處理的煙草中的PR1-a和PR-5的表達[121]。BcGs1,B. cinerea的泌出糖蛋白,誘導眾所周知的SAR標記基因PR1-a的表達,也誘導乙烯介導且不依賴于JA的死體營養型真菌抗性信號途徑中TPK1b的表達,此外,還誘導JA信號途徑的激發子系統素原(系統素的前體)的表達,說明BcGs1同時誘導植物的SAR、ET介導的抗灰霉信號通路成分以及JA信號通路成分的表達[93]。B. cinerea泌出的木糖葡聚酶激發大豆的防衛基因Pvd1、PvPR1和PvPR2的表達,激發PTI和SAR[122]。

除了上述灰霉病菌B. cinerea的泌出蛋白及其它代謝物以外,疫霉菌Pythium oligandrum的類似elicitin的蛋白Oli-D1和Oli-D2激發煙草的HR,誘導番茄JA/ET介導的信號途徑中SlLapA1、SlPin2、SlLOX-E和SlERF2基因的表達而抗灰霉[123]。

7 總結與展望

寄主范圍極其廣泛的死體營養型灰霉病菌,采用多種策略侵染寄主植物,形成對作物營養體和果實破壞性很強的灰霉病。生產實踐中對灰霉病的防控仍以使用化學藥劑為主要防治方式,一方面造成環境污染和食用隱患;另一方面,田間B. cinerea抗藥性菌株不斷出現,導致化學防治效果差。因此,全面深入理解植物抗灰霉的分子機制,掌握抗灰霉遺傳組分,開發利用植物自身基因進行種質抗病遺傳改良是有利于保持綠色生態環境的有效措施,但這個過程需要很長時間。而近幾年的研究找到具有實踐應用潛力的灰霉抗性因素和成分(圖1-A和B),可作為開發替代化學藥劑的不錯選擇。此外,隨著分子生物學手段的拓展和提高,也找到可以應用來防治灰霉的新的方法。

圖1 植物細胞外激發抗B. cinerea反應的信號

寄主誘導的基因沉默技術HIGS(Host-induced gene silencing,HIGS)已經被開發和利用來保護作物免受真菌的侵染。灰霉病菌與植物互作過程中,輸出sRNA到寄主植物破壞免疫反應[124],而擬南芥表達雙鏈RNA(dsRNA),互補真菌DCL(Dicer-like,DCL)家族基因,顯著提高對灰霉病菌的抗性[125]。因此,HIGs可用來培育抗灰霉病菌的作物品種的有效方法之一。可見,隨著植物抗灰霉病分子機制研究的不斷深入,更多的有效基因能用于抗灰霉病菌種質遺傳改良,結合上述提高植物抗灰霉病菌的因素和方法,逐步取代單一的化學防治方法,解決化學農藥抗性、環境污染、安全綠色食品等問題。

[1] Williamson B, Tudzynski B, Tudzynski P, et al. Botrytis cinerea:the cause of grey mould disease[J]. Molecular Plant Pathology, 2007,8:561-580.

[2] Elad Y, Pertot I, Cotes Prado AM, Stewart A. Plant hosts of Botrytis spp[M]//Fillinger S, Elad Y, eds. Botrytis-the fungus, the pathogen and its management in agricultural systems. Heidelberg.Germany:Springer, 2016:413-486.

[3] Dean R, Van Kan JA, Pretorius ZA, et al. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13:414-430.

[4] Veloukas T, Kalogeropoulou P, Markoglou AN, et al. Fitness and competitive ability of Botrytis cinerea field isolates with dual resistance to SDHI and QoI fungicides, associated with several sdhB and the cytb G143A mutations[J]. Phytopathology, 2014, 104 :347-356.

[5] Rupp S, Plesken C, Rumsey S, et al. Botrytis fragariae, a new species causing gray mold on strawberries, shows high frequencies of specific and efflux-based fungicide resistance[J]. Applied and Environmental Microbiology, 2017, 83(9). pii:e00269-17.

[6] Lai Z, Mengiste T. Genetic and cellular mechanisms regulating plant responses to necrotrophic pathogens[J]. Current Opinion in Plant Biology, 2013, 16:505-512.

[7] Mengiste T. Plant immunity to necrotrophs[J]. Annual Review of Phytopathology, 2012, 50:267-294.

[8] Liu T, Liu Z, Song C, et al. Chitin-induced dimerization activates a plant immune receptor[J]. Science, 2012, 336 :1160-1164.

[9] Nú?ez de Cáceres González FF, Davey MR, Cancho Sanchez E, et al.Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene[J]. Plant Cell Reports, 2015, 34 :1201-1209.

[10] Gao Y, Jia S, Wang C, et al. BjMYB1, a transcription factor implicated in plant defence through activating BjCHI1 chitinase expression by binding to a W-box-like element[J]. Journal of Experimental Botany, 2016, 67:4647-4658.

[11] Gao Y, Zhao K. Molecular mechanism of BjCHI1-mediated plant defense against Botrytis cinerea infection[J]. Plant Signaling &Behavior, 2017, 12:e1271859.

[12] Gai YP, Zhao YN, Zhao HN, et al. The latex protein MLX56 from mulberry(Morus multicaulis)protects plants against insect pests and pathogens[J]. Frontiers in Plant Science, 2017, 8 :1475.

[13] Prins T, Tudzynski P, Tiedemann A, et al. Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In Fungal Pathology[M]// JW Kronstad Dordrecht. The Netherlands:Kluwer, 2000:33-64.

[14] Rasul S, Dubreuil-Maurizi C, Lamotte O, et al. Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana[J]. Plant,Cell & Environment, 2012, 35:1483-1499.

[15] Davidsson P, Broberg M, Kariola T, et al. Short oligogalacturonides induce pathogen resistance-associated gene expression in Arabidopsis thaliana[J]. BMC Plant Biology, 2017, 17:19.

[16] Lionetti V, Raiola A, Camardella L, et al. Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea[J]. Plant Physiology, 2007, 143:1871-1880.

[17] Reem NT, Pogorelko G, Lionetti V, et al. Decreased polysaccharide feruloylation compromises plant cell wall integrity and increases susceptibility to necrotrophic fungal pathogens[J]. Frontiers in Plant Science, 2016, 7:630.

[18] Fauth M, Schweizer P, Buchala A, et al. Cutin monomers and surface wax constituents elicit H2O2in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2elicitors[J]. Plant Physiology, 1998, 117:1373-1380.

[19] Schweizer P, Felix G, Buchala A, et al. Perception of free cutin monomers by plant cells[J]. The Plant Journal, 1996, 10 :331-341.

[20] Voisin D, Nawrath C, Kurdyukov S, et al. Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator[J]. PLoS Genetics, 2015, 5(10):e1000703.

[21] L’Haridon F, Besson-Bard A, Binda M, et al. A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity[J]. PLoS Pathogens, 2011, 7(7):e1002148.

[22] Bessire M, Chassot C, Jacquat AC, et al. A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea[J].The EMBO Journal, 2007, 26:2158-2168.

[23] Ju S, Go YS, Choi HJ, et al. DEWAX transcription factor is involved in resistance to Botrytis cinerea in Arabidopsis thaliana and Camelina sativa[J]. Frontiers in Plant Science, 2017, 8 :1210.

[24] Go YS, Kim H, Kim HJ, et al. Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-Type transcription factor[J]. The Plant Cell, 2014,26:1666-1680.

[25] Zhang H, Yu P, Zhao J, et al. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance[J]. The New Phytologist,2017, 217:799-812.

[26] Liu Z, Wu Y, Yang F, et al. BIK1 interacts with PEPRs to mediate ethylene-induced immunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110:6205-6210.

[27] Ross A, Yamada K, Hiruma K, et al. The Arabidopsis PEPR pathway couples local and systemic plant immunity[J]. The EMBO Journal, 2014, 33:62-75.

[28] Tang D, Zhou JM. PEPRs spice up plant immunity[J]. The EMBO Journal, 2016, 35:4-5.

[29] Yamada K, Yamashita-Yamada M, Hirase T, et al. Danger peptide receptor signaling in plants ensures basal immunity upon pathogeninduced depletion of BAK1[J]. The EMBO Journal, 2016, 35:46-61.

[30] Miya A, Albert P, Shinya T, et al. CERK1, a LysM receptor kinase,is essential for chitin elicitor signaling in Arabidopsis[J].Proceedings of the National Academy of Sciences of the United States of America, 2007, 104:19613-19618.

[31] Chinchilla D, Zipfel C, Robatzek S, et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence[J]. Nature, 2007, 448:497-500.

[32] Kemmerling B, Schwedt A, Rodriguez P, et al. The BRI1-associated kinase 1, BAK1, has a brassinolide-Independent role in plant celldeath control[J]. Current Biology, 2007, 17 :1116-1122.

[33] Schulze B, Mentzel T, Jehle AK, et al. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1[J]. The Journal of Biological Chemistry, 2010, 285:9444-9451.

[34] Veronese P, Nakagami H, Bluhm B, et al. The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens[J]. The Plant Cell, 2006, 18:257-273.

[35] Laluk K, Luo H, Chai M, et al. Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis[J]. The Plant Cell, 2011, 23:2831-2849.

[36] Zhang J, Li W, Xiang T, et al. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector[J]. Cell Host &Microbe, 2010, 7:290-301.

[37] Feng F, Yang F, Rong W, et al. A Xanthomonas uridine 5’-monophosphate transferase inhibits plant immune kinases[J]. Nature,2012, 485:114-118.

[38] Galletti R, Ferrari S, De Lorenzo G. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellininduced resistance against Botrytis cinerea[J]. Plant Physiology,2011, 157:804-814.

[39] Genenncher B, Wirthmueller L, Roth C, et al. Nucleoporinregulated MAP kinase signaling in immunity to a necrotrophic fungal pathogen[J]. Plant Physiology, 2016, 172:1293-1305.

[40] Meng X, Xu J, He Y, et al. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance[J]. The Plant Cell, 2013, 25 :1126-1142.

[41] Jiang Y, Yu D. The WRKY57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromise Botrytis cinerea resistance[J]. Plant Physiology,2016, 171:2771-2782.

[42] Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection[J]. Plant Physiology, 2012,159:266-285.

[43] Lai Z, Vinod K, Zheng Z, et al. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens[J].BMC Plant Biology, 2008, 8:68.

[44] Liu S, Kracher B, Ziegler J, et al. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100[J]. ELife, 2015, 4:e07295.

[45] Li GJ, Meng XZ, Wang RG, et al. Dual-Level Regulation of ACC Synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis[J]. PLoS Genetics, 2012, 8(6):e1002767.

[46] Liao CJ, Lai ZB, Lee S, et al. Arabidopsis HOOKLESS1 regulates responses to pathogens and abscisic acid through interaction with MED18 and acetylation of WRKY33 and ABI5 chromatin[J].The Plant Cell, 2016, 28:1662-1681.

[47] Liu B, Hong YB, Zhang YF, et al. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress[J]. Plant Science:an International Journal of Experimental Plant Biology, 2014, 227:145-156.

[48] Adachi H, Ishihama N, Nakano T, et al. Nicotiana benthamiana MAPK-WRKY pathway confers resistance to a necrotrophic pathogen Botrytis cinerea[J]. Plant Signaling & Behavior, 2016,11:e1183085.

[49] Zhao Y, Wei T, Yin KQ, et al. Arabidopsis RAP2. 2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses[J]. The New Phytologist, 2012, 195 :450-460.

[50] Moffat CS, Ingle RA, Wathugala DL, et al. ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis[J]. PLoS One, 2012, 7(4):e3599.

[51] Zhang H, Hong Y, Huang L, et al. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea[J].Scientific Reports, 2016, 6:30251.

[52] Lu X, Jiang W, Zhang L, et al. AaERF1 positively regulates the resistance to Botrytis cinerea in Artemisia annua[J]. PLoS One,2013, 8:e57657.

[53] Lu X, Zhang L, Zhang F, et al. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea[J]. The New Phytologist, 2013, 198:1191-1202.

[54] Ramirez V, Agorio A, Coego A, et al. MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis[J]. Plant Physiology, 2011, 155:1920-1935.

[55] Sardesai N, Laluk K, Mengiste T, et al. The Arabidopsis Myb transcription factor MTF1 is a unidirectional regulator of susceptibility to Agrobacterium[J]. Plant Signaling & Behavior,2014, 9. pii:e28983.

[56] Krol E, Mentzel T, Chinchilla D, et al. Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2[J]. The Journal of Biological Chemistry, 2010, 285:13471-13479.

[57] Giri MK, Singh N, Banday ZZ, et al. GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana[J]. The Plant Journal:for Cell and Molecular Biology, 2017, 91:802-815.

[58] Yang Y, Li L, Qu LJ. Plant Mediator complex and its critical functions in transcription regulation[J]. Journal of Integrative Plant Biology, 2016, 58:106-118.

[59] Kidd BN, Edgar CI, Kumar KK, et al. The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis[J]. The Plant Cell, 2009, 21 :2237-2252.

[60] Cevik V, Kidd BN, Zhang P, et al. MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis[J]. Plant Physiology, 2012, 160 :541-555.

[61] Ou B, Yin KQ, Liu SN, et al. A high-throughput screening system for Arabidopsis transcription factors and its application to Med25-dependent transcriptional regulation[J]. Molecular Plant, 2011, 4:546-555.

[62] Yang Y, Ou B, Zhang J, et al. The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25[J]. The Plant Journal:for Cell and Molecular Biology, 2014, 77:838-851.

[63] Chen R, Jiang H, Li L, et al. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors[J]. The Plant Cell, 2012, 24 :2898-2916.

[64] Lai Z, Schluttenhofer CM, Bhide K, et al. MED18 interaction with distinct transcription factors regulates multiple plant functions[J]. Nature Communications, 2014, 5 :3064.

[65] Zhu Y, Schluttenhoffer CM, Wang P, et al. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis[J]. The Plant Cell, 2014, 26 :4149-4170.

[66] Wang C, Du X, Mou Z. The mediator complex subunits MED14,MED15, and MED16 are involved in defense signaling crosstalk in Arabidopsis[J]. Frontiers in Plant Science, 2016, 7 :1947.

[67] Wang C, Ding Y, Yao J, Zhang Y, et al. Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola[J].The Plant Journal, 2015, 83:1019-1033.

[68] Wang C, Zhang X, Li JL, Zhang Y, et al. The Elongator complexassociated protein DRL1 plays a positive role in immune responses against necrotrophic fungal pathogens in Arabidopsis[J].Molecular Plant Pathology, 2016, 19:286-299.

[69] Berr A, McCallum EJ, Alioua A, et al. Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi[J]. Plant Physiology, 2010, 154 :1403-1414.

[70] Lee S, Fu F, Xu S, et al. Global regulation of plant immunity by histone lysine methyl transferases[J]. The Plant Cell, 2016, 28 :1640-1661.

[71] Lopez A, Ramirez V, Garcia-Andrade J, et al. The RNA silencing enzyme RNA polymerase v is required for plant immunity[J].PLoS Genetics, 2011, 7:e1002434.

[72] Dhawan R, Luo H, Foerster AM, et al. HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis[J]. The Plant Cell, 2009, 21 :1000-1019.

[73] Zhang Y, Li D, Zhang H, et al. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways[J]. BMC Plant Biology, 2015, 15:252.

[74] El Oirdi M, El Rahman TA, Rigano L, et al. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato[J]. The Plant Cell,2011, 23:2405-2421.

[75] Asselbergh B, Curvers K, Franca SC, et al. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis[J]. Plant Physiology, 2007, 144 :1863-1877.

[76]Abuqamar S, Luo H, Laluk K, et al. Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor[J]. The Plant Journal:for Cell and Molecular Biology, 2009, 58:347-360.

[77] Ouyang Z, Liu S, Huang L, et al. Tomato SlERF. A1, SlERF. B4,SlERF. C3 and SlERF. A3, members of B3 group of ERF Family,are required for resistance to Botrytis cinerea[J]. Frontiers in Plant Science, 2016, 7:1964.

[78] Van der Does D, Leon-Reyes A, Koornneef A, et al. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59[J]. The Plant Cell, 2013, 25:744-761.

[79] Caarls L, Elberse J, Awwanah M, et al. Arabidopsis JASMONATEINDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid[J].Proceedings of the National Academy of Sciences of the United States of America, 2017, 114:6388-6393.

[80] Smirnova E, Marquis V, Poirier L, et al. Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea Infection[J].Molecular Plant, 2017, 10:1159-1173.

[81] Du M, Zhao J, Tzeng DTW, et al. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato[J]. The Plant Cell, 2017, 29:1883-1906.

[82] Lai Z, Wang F, Zheng Z, et al. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens[J]. The Plant Journal, 2011, 66:953-968.

[83] Kabbage M, Kessens R, Dickman MB. A plant Bcl-2-associated athanogene is proteolytically activated to confer fungal resistance[J]. Microb Cell, 2016, 3 :224-226.

[84] Li Y, Kabbage M, Liu W, et al. Aspartyl protease-mediated cleavage of BAG6 is necessary for autophagy and fungal resistance in plants[J]. The Plant Cell, 2016, 28 :233-247.

[85] Li X, Zhang H, Tian L, et al. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress[J]. Frontiers in Plant Science, 2015, 6:463.

[86] Survila M, Davidsson PR, Pennanen V, et al. Peroxidase-generated apoplastic ROS impair cuticle integrity and contribute to DAMP-elicited defenses[J]. Frontiers in Plant Science, 2016, 7 :1945.

[87] Bi FC, Liu Z, Wu JX, et al. Loss of ceramide kinase in Arabidopsis impairs defenses and promotes ceramide accumulation and mitochondrial H2O2bursts[J]. The Plant Cell, 2014, 26 :3449-3467.

[88] Rossi FR, Krapp AR, Bisaro F, et al. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea[J]. The Plant Journal:for Cell and Molecular Biology, 2017, 92:761-773.

[89] Mao G, Meng X, Liu Y, et al. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis[J]. The Plant Cell, 2011,23:1639-1653.

[90] Khare D, Choi H, Huh SU, et al. Arabidopsis ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114:E5712-E5720.

[91] Burow M, Halkier BA, Kliebenstein DJ. Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness[J]. Current Opinion in Plant Biology, 2010, 13:348-353.

[92] Fan J, Doerner P. Genetic and molecular basis of nonhost disease resistance:complex, yes;silver bullet, no[J]. Current Opinion in Plant Biology, 2012, 15:400-406.

[93] Zhang Y, Zhang Y, Qiu D, et al. BcGs1, a glycoprotein from Botrytis cinerea, elicits defence response and improves disease resistance in host plants[J]. Biochemical and Biophysical Research Communications, 2015, 457:627-634.

[94] Xu J, Meng J, Meng X, et al. Pathogen-Responsive MPK3 and MPK6 reprogram the biosynthesis of indole glucosinolates and their derivatives in Arabidopsis immunity[J]. The Plant Cell, 2016,28:1144-1162.

[95] Zhang Y, Jin X, Ouyang Z, et al. Vitamin B6 contributes to disease resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2015, 175:21-25.

[96] Lemonnier P, Gaillard C, Veillet F, et al. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea[J].Plant Molecular Biology, 2014, 85:473-484.

[97] Rizzi YS, Cecchini NM, Fabro G, et al. Differential control and function of Arabidopsis ProDH1 and ProDH2 genes on infection with biotrophic and necrotrophic pathogens[J]. Molecular Plant Pathology, 2017, 18:1164-1174.

[98] Zhao P, Zhang F, Liu D, et al. Matrix metalloproteinases operate redundantly in Arabidopsis immunity against necrotrophic and biotrophic fungal pathogens[J]. PLoS One, 2017, 12 :e0183577.

[99] Li D, Zhang H, Song Q, et al. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000[J]. BMC Plant Biology, 2015, 15:143.

[100]Camanes G, Scalschi L, Vicedo B, et al. An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae[J].The Plant Journal, 2015, 84:125-139.

[101]Zhang H, Hong Y, Huang L, et al. Virus-Induced gene silencingbased functional analyses revealed the involvement of several putative trehalose-6-phosphate synthase/phosphatase genes in disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in tomato[J]. Frontiers in Plant Science, 2016, 7:1176.

[102]Polturak G, Grossman N, Vela-Corcia D, et al. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114:9062-9067.

[103]Yan X, Qiao H, Zhang X, et al. Analysis of the grape(Vitis vinifera L.)thaumatin-like protein(TLP)gene family and demonstration that TLP29 contributes to disease resistance[J].Scientific Reports, 2017, 7:4269.

[104]Wang Y, Wang D, Wang F, et al. Expression of the grape VaSTS19 Gene in Arabidopsis improves resistance to powdery mildew and Botrytis cinerea but increases susceptibility to Pseudomonas syringe pv tomato DC3000[J]. Int J Mol Sci, 2017, 18(9).pii:E2000.

[105]Huang L, Zhang S, Singer SD, et al. Expression of the Grape VqSTS21 Gene in Arabidopsis confers resistance to osmotic stress and biotrophic pathogens but not Botrytis cinerea[J]. Frontiers in Plant Science, 2016, 7:1379.

[106]Cerrudo I, Keller MM, Cargnel MD, et al. Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acidindependent mechanism[J]. Plant Physiology, 2012, 158:2042-2052.

[107]Cargnel MD, Demkura PV, Ballare CL. Linking phytochrome to plant immunity:low red:far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin[J]. The New Phytologist,2014, 204:342-354.

[108]Costa A, Barbaro MR, Sicilia F, et al. AIR12, a b-type cytochrome of the plasma membrane of Arabidopsis thaliana is a negative regulator of resistance against Botrytis cinerea[J]. Plant Sci,2015, 233:32-43.

[109]Gommers CM, Keuskamp DH, Buti S, et al. Molecular profiles of contrasting shade response strategies in wild plants:differential control of immunity and shoot elongation[J]. The Plant Cell,2017, 29:331-344.

[110]Mhamdi A, Noctor G. High CO2primes plant biotic stress defences through redox-linked pathways[J]. Plant Physiology, 2016,172:929-942.

[111] Tomas-Grau RH, Requena-Serra FJ, Hael-Conrad V, et al.Soft mechanical stimulation induces a defense response against Botrytis cinerea in strawberry[J]. Plant Cell Reports, 2018,37:239-250.

[112]Garcia T, Gutierrez J, Veloso J, et al. Wounding induces local resistance but systemic susceptibility to Botrytis cinerea in pepper plants[J]. Journal of Plant Physiology, 2015, 176 :202-209.

[113]Tripathi D, Zhang T, Koo AJ, et al. Extracellular ATP acts on jasmonate signaling to reinforce plant defense[J]. Plant Physiology, 2017, 176:511-523.

[114]Segarra G, Santpere G, Elena G, et al. Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis[J]. PLoS One, 2013, 8 :e56075.

[115]Nie P, Li X, Wang S, et al. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET-and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis[J]. Frontiers in Plant Science, 2017, 8:238.

[116]Martinez-Hidalgo P, Garcia JM, Pozo MJ. Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules[J]. Frontiers in Microbiology, 2015,6:922.

[117] Sanchez-Bel P, Troncho P, Gamir J, et al. The nitrogen availability interferes with mycorrhiza-induced resistance against Botrytis cinerea in tomato[J]. Front Microbiol, 2016, 7:1598.

[118]Miotto-Vilanova L, Jacquard C, Courteaux B, et al. Burkholderia phytofirmans PsJN confers grapevine resistance against Botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization[J]. Front Plant Sci, 2016, 7:1236.

[119]Sharifi R, Ryu CM. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both?[J]. Frontiers in Microbiology, 2016, 7:196.

[120]Noda J, Brito N, Gonzalez C. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity[J]. BMC Plant Biol, 2010, 10:38.

[121]Frias M, Brito N, Gonzalez C. The Botrytis cinerea cerato-platanin BcSpl1 is a potent inducer of systemic acquired resistance(SAR)in tobacco and generates a wave of salicylic acid expanding from the site of application[J]. Molecular Plant Pathology, 2013,14:191-196.

[122]Zhu W, Ronen M, Gur Y, et al. BcXYG1, a Secreted Xyloglucanase from Botrytis cinerea, triggers both cell death and plant immune responses[J]. Plant Physiology, 2017, 175 :438-456.

[123]Ouyang Z, Li X, Huang L, et al. Elicitin-like proteins Oli-D1 and Oli-D2 from Pythium oligandrum trigger hypersensitive response in Nicotiana benthamiana and induce resistance against Botrytis cinerea in tomato[J]. Mol Plant Pathol, 2015, 16:238-250.

[124]Weiberg A, Wang M, Lin FM, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways[J]. Science, 2013, 342 :118-123.

[125]Wang M, Weiberg A, Lin FM, et al. Bidirectional crosskingdom RNAi and fungal uptake of external RNAs confer plant protection[J]. Nature Plants, 2016, 2:16151.

猜你喜歡
途徑植物信號
信號
鴨綠江(2021年35期)2021-04-19 12:24:18
完形填空二則
構造等腰三角形的途徑
多種途徑理解集合語言
基于FPGA的多功能信號發生器的設計
電子制作(2018年11期)2018-08-04 03:25:42
減少運算量的途徑
哦,不怕,不怕
將植物穿身上
基于LabVIEW的力加載信號采集與PID控制
植物罷工啦?
主站蜘蛛池模板: 精品国产一区二区三区在线观看| 台湾AV国片精品女同性| 国产精品香蕉在线| 91美女视频在线观看| 亚洲Av综合日韩精品久久久| 免费一级毛片完整版在线看| 动漫精品中文字幕无码| 成人在线观看不卡| 国产精品9| 欧洲欧美人成免费全部视频| 丁香婷婷在线视频| a天堂视频| 高清国产在线| 亚洲精品图区| 在线观看免费AV网| 粗大猛烈进出高潮视频无码| 久久综合AV免费观看| 亚洲精选无码久久久| 香蕉视频在线精品| 久久不卡精品| 日韩毛片免费视频| 久久精品国产电影| 亚洲人在线| 精品国产三级在线观看| 青青久久91| 国产精品亚欧美一区二区三区| 中文无码影院| 中文字幕乱妇无码AV在线| 91久久国产综合精品女同我| 草草影院国产第一页| 日本a级免费| 亚洲无码一区在线观看| 大香伊人久久| 国产精品极品美女自在线网站| 国产精品亚洲精品爽爽| 色偷偷av男人的天堂不卡| 最新亚洲人成网站在线观看| 韩日无码在线不卡| 国产黄网永久免费| 久久人搡人人玩人妻精品 | 人妻无码中文字幕第一区| 免费中文字幕一级毛片| 在线欧美国产| 中国一级毛片免费观看| 一级毛片免费观看久| 日韩 欧美 小说 综合网 另类| 99re免费视频| 国产精品手机在线观看你懂的 | 久久久噜噜噜| 国产精品香蕉| 国产免费久久精品99re不卡| 中字无码av在线电影| 国产区免费| 国产精品页| 成人午夜久久| 欧美影院久久| 亚洲无码91视频| 国产美女自慰在线观看| 色悠久久综合| 成人国产一区二区三区| 日韩一区二区三免费高清 | 国产精品无码影视久久久久久久| vvvv98国产成人综合青青| 国产精品欧美在线观看| 国产精品自拍露脸视频| 白浆视频在线观看| yjizz视频最新网站在线| 国产精品一区二区国产主播| 久久综合一个色综合网| 免费va国产在线观看| 国产办公室秘书无码精品| 日本精品视频| 亚洲欧美日韩综合二区三区| 亚洲三级影院| 夜夜拍夜夜爽| 日韩国产亚洲一区二区在线观看| 欧洲在线免费视频| 九色视频一区| 日韩精品一区二区三区免费| 制服丝袜亚洲| 亚洲欧美精品日韩欧美| 久久久久青草大香线综合精品 |