999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Proving the Second Mean Value Theorem for Riemann Integrals by Riemann-Stieltjes Integrals

2018-05-02 02:36:58SchoolofManagementYangtzeUniversityHubeiJingzhou434023
長江大學學報(自科版) 2018年9期

(School of Management, Yangtze University,Hubei Jingzhou 434023)

Xiang Changlin (School of Information and Mathematics, Yangtze University, Hubei Jingzhou 434023)

1 Introduction

In many textbooks such as 《Mathematical Analysis》[1]and 《Principles fo Mathematical Analysis》[2], the key ingredient in the proof of Theorem 1 is the second mean value theorem for Riemann integrals, which is stated as follows.

Theorem2Letfbe a Riemann integrable function on [a,b] andgbe a monotone function.Then, there existsξ∈[a,b] such that:

However, in standard textbooks[1], the proof of Theorem 2 is quite technical and complicated, which prevents readers from the essential of the proof.Motivated by making the proof more transparent, it is devoted in this paper to find a new and simple proof for Theorem 2.It turns out that the integrating by parts formula of Riemann-Stieltjes integrals provides a useful tool.By making use of this approach, a new proof is given for the second mean value theorem for Riemann integrals.Also, a new proof for Theorem 1 can be given by the same approach.

The integrating by parts formula for Riemann-Stieltjes integrals reads as follows.

Proposition1Letfbe a Riemann integrable function on [a,b] andgbe a monotonic function.Then:

This formula should be known to experts in this area.However, since we do not find a reference, we will give a direct proof.Further researches on the second mean value theorem for Riemann integrals can be found in [3,4] and the references therein.

In the following sections, we first give the definition of Riemann-Stieltjes integrals.Through acknowledging Proposition 1, Theorem 2 is proved.We also use this proposition to give a new proof for Theorem 1.Finally, in the last section,Proposition 1 is proved.All notations in this paper are standard.

2 Riemann-Stieltjes Integrals

In this section, the Riemann-Stieltjes integral on the bounded interval [a,b] is introduced briefly.

Letg:[a,b]→Rbe a nondecreasing function.LetT:a=x0

For any functionfon [a,b], define the Riemann-Stieltjes sums as:

for anyξi∈Δi=[xi-1,xi].If there existsJ∈Rfor anyε>0, there existsδ>0 such that:

holds wheneverξi∈Δiand ‖T‖<δ, then we say thatfis Riemann-Stieltjes integrable on [a,b] with respect tog(w.r.t.g, in short), and it’s denoted as follows:

Similar to the notations of Riemann integral, we can regard the Riemann-Stieltjes integral as:

Ifh:[a,b]→Ris nonincreasing, it’s defined as follows:

In this way, a Riemann-Stieltjes integral of a function is defined on [a,b] w.r.t.any monotone function on the same interval.

Lemma1(Properties of Riemann-Stieltjes integral) Letgbeanondecreasing function on [a,b].Then,

(iii) Iffis continuous on [a,b], thenfis Riemann-Stieltjes integrable w.r.t.g.

3 Proof of Theorem 2 and Further Applications of Proposition 1

In this section,Theorem 2 is proven by making use of Proposition 1 first, and then some further applications of Proposition 1 are given.

3.1 Proof of Theorem 2

According to the text book《Mathematical Analysis》[1], it suffices to assume thatgisanonnegative nonincreasing function and to prove that there existsξ∈[a,b] as follows:

(1)

Sincegis monotone, using Proposition 1 yields:

Applying the property (ii) of Lemma 1 and noting thatgis nonincreasing,it’s found that:

Thus, using the nonnegativity ofg,the following is derived:

≥g(b)F(b)-m(g(b)-g(a))≥mg(a)

That is:

Hence, using the first mean value theorem of Riemann integrals, pointξ∈[a,b] is obtained,such that:

This proves (1) and thus finishes the proof.

3.2 Proof of Theorem 1

As a further application of the above method, the Dirichlet theorem is proven for improper Riemann integrals without using the second mean value theorem of Riemann integrals.

LetFbe defined as in the statement of the theorem.For anyu1>u2>a, Proposition 1 gives:

SinceFis bounded andg(t)→0 ast→+∞, we have:

(2)

Also, sinceFis bounded, there existsM>0 such that |F(t)|≤M.Hence:

(3)

Combining (2) and (3) yields:

4 Proof of Proposition 1

LetT:a==x0

A rearranged argument gives:

Note that:

Hence:

(4)

It’s claimed that:

(5)

(6)

which implies (5).The claim is proved.

It’s also noted that when ‖T‖→0, we havex1→a.Hence:

(7)

(8)

Therefore, by sending ‖T‖→0 on both sides of (4) and combining (5)、(7)、(8),the following is obtained:

The proof is complete.

[1]Department of Mathematics,East China Normal University.Mathematical Analysis[M].3rd Edition.Beijing:Higher Education Press,1999.

[2] Rudin W.Principles of Mathematical Analysis[M].3rd Edition.McGraw-Hill Book Co., 1976.

[3] Zhang F P,Jin C Y.Proof of the Extended Second Mean Value Theorem[J].Journal of Henan University, 2012, 42(3): 227~229.

[4]Liu R C,Song G L.Proof the Second Mean Value Theorem by Intermediate Value Theorem[J].Journal of Daqing Petroleum Institute, 2008, 32(6): 112~114.

主站蜘蛛池模板: a色毛片免费视频| 国产亚洲精品97在线观看| 无码日韩人妻精品久久蜜桃| 午夜欧美在线| 国产精品专区第1页| 911亚洲精品| 中文字幕乱码中文乱码51精品| 欧美一级特黄aaaaaa在线看片| 国产91丝袜在线播放动漫| 国产特级毛片aaaaaaa高清| 99爱在线| 综1合AV在线播放| www中文字幕在线观看| 国产日韩精品欧美一区灰| 四虎永久免费地址在线网站| 波多野结衣无码AV在线| 四虎免费视频网站| 亚洲欧美日韩动漫| 国产女人综合久久精品视| 亚洲综合第一区| 无码综合天天久久综合网| 国产黄色免费看| 999在线免费视频| 国产一在线观看| 美女无遮挡免费视频网站| 国产精品久久久久无码网站| 欧美亚洲香蕉| 一本大道在线一本久道| 成人伊人色一区二区三区| 亚洲久悠悠色悠在线播放| 精品伊人久久大香线蕉网站| 国产精品色婷婷在线观看| 亚洲国产成人久久精品软件| 国产成人在线小视频| 在线观看无码av免费不卡网站| 香蕉eeww99国产精选播放| 99re在线免费视频| 99久久免费精品特色大片| 欧美激情视频一区| 亚洲色精品国产一区二区三区| AV不卡国产在线观看| 欧美黄色网站在线看| 日韩欧美国产另类| 五月天综合婷婷| 九九热视频在线免费观看| 国产综合无码一区二区色蜜蜜| 亚洲最猛黑人xxxx黑人猛交| 国产日韩欧美视频| 香蕉99国内自产自拍视频| 亚洲丝袜中文字幕| 国产极品粉嫩小泬免费看| 伊人色综合久久天天| 99精品在线看| 就去吻亚洲精品国产欧美| 国产亚洲精久久久久久久91| 国产精品妖精视频| 白丝美女办公室高潮喷水视频| 免费在线一区| 亚洲天堂日韩在线| 波多野结衣第一页| 亚洲无码视频图片| 国产精品思思热在线| 波多野结衣的av一区二区三区| 久久亚洲精少妇毛片午夜无码| 国产亚洲高清视频| 国产麻豆精品久久一二三| 国产色婷婷| 青青草原国产精品啪啪视频| 巨熟乳波霸若妻中文观看免费 | 中文字幕有乳无码| 欧美不卡视频一区发布| 欧美97色| 老熟妇喷水一区二区三区| 伊人蕉久影院| 国产高清又黄又嫩的免费视频网站| 99精品欧美一区| 色偷偷综合网| 第一区免费在线观看| 日本色综合网| 一级片免费网站| 拍国产真实乱人偷精品| 国产特级毛片aaaaaa|