王會海,孫克輝,賀少波
?
分數階混沌擴頻通信系統的設計
王會海,孫克輝,賀少波
(中南大學 物理與電子學院,湖南 長沙,410083)
為了提高擴頻通信系統的性能,設計分數階混沌擴頻通信系統。采用Adomain分解算法求解分數階簡化Lorenz系統,推導分數階系統迭代式,得到系統的數值解。對迭代值進行簡單的二值量化,生成多組互不相關的混沌偽隨機序列。將混沌偽隨機序列作為擴頻碼應用于擴頻通信系統。在不同信噪比時,分析不同擴頻碼對通信系統性能的影響。研究結果表明:基于分數階簡化Lorenz系統生成的偽隨機序列更隨機,均通過美國國家科學技術研究所(NIST)的統計測試套件(STS)測試,序列的生成速度快;與整數階混沌系統相比,分數階擴頻系統具有更大的秘鑰空間,具有更好的安全性;分數階混沌擴頻通信系統的性能優(yōu)于Hénon映射、Chen系統、m序列及Gold序列的性能,并且具有更大的多址容量。
擴頻通信;分數階微積分;混沌
擴頻通信技術具有保密性能好、抗干擾能力強、與傳統通信系統共用頻段而不互相干擾的優(yōu)點,被廣泛應用于軍事和民用系統,是現代無線通信技術的熱點技術之一。擴頻通信技術中的擴頻碼性能與系統的抗干擾、抗噪聲、抗截獲、信息隱蔽等能力密切相關。作為擴頻碼的二元偽隨機序列應該具有良好的隨機性、有足夠長的碼周期和復雜度、滿足要求的序列數足夠多且易于產生和處理等特點。目前,人們常用的擴頻碼有m序列、Gold序列等,但存在擴頻碼數量少和保密性能差等不足。由于混沌信號具有初值敏感性、隨機性和寬譜性等特點,用混沌系統可以產生數量較多的序列作為擴頻碼,并且它們具有很好的相關性和平衡性。早在1992年,HEIDARI-BATENI等[1]在直接擴頻(direct-sequence spread spectrum,DS-SS)系統中應用了混沌偽隨機序列,從此,人們開始在這方面不斷地進行研究,采用各種離散混沌系統和整數階連續(xù)混沌系統產生擴頻碼[2?4],使擴頻碼的選擇范圍和性能都得到較大提高。但隨著計算機技術的迅速發(fā)展,破解技術得到更加深入研究和使用,傳統的整數階和離散混沌系統生成的擴頻序列慢慢顯現出它的局限性,如復雜度低、易破譯不足等[5?7]。為了提高擴頻通信的安全性,需要研究性能更優(yōu)的擴頻碼。分數階微積分具有很多優(yōu)點[8?10],因而,分數階混沌系統已成為混沌研究的熱點[11?16]。WANG等[13?14]采用Adomian分解算法研究了分數階簡化Lorenz系統和分數階Lorenz-Stenflo系統,發(fā)現隨著系統微分階數增加,系統的最大Lyapunov指數逐漸減小,即在系統為混沌的階數范圍內,分數階混沌系統的越小,系統越復雜,分數階混沌系統比對應的整數階混沌系統更復雜。HE等[15?16]的研究也表明分數階混沌系統的復雜度比整數階混沌系統的復雜度更高。另外,基于Adomian分解算法在DSP平臺實現了分數階混沌系統,證明分數階混沌系統的數字電路可實現,為分數階混沌系統在擴頻通信中的應用奠定了硬件基礎[13?14]。為此,本文作者以分數階簡化Lorenz系統為例,設計基于分數階混沌系統的擴頻通信系統,并對混沌擴頻通信系統進行仿真和性能測試分析。
分數階簡化Lorenz系統的方程為


其中:h為迭代步長;為Gamma函數;

當=0時,[0,0,0]表示系統的初始狀態(tài)。對于整數階簡化Lorenz系統,一般采用四階龍格庫塔法求解,得到其數值解的形式如下(其中,每次迭代包括59次加法和57次乘法):

其中:




分數階簡化Lorenz系統和整數階簡化Lorenz系統的計算速度比較如表1所示。在迭代過程中進行的乘法和加法次數越多,表示迭代1次花費的時間越多,即速度越慢。所以,在同等條件下,分數階簡化Lorenz系統的計算速度比整數階簡化Lorenz系統的計算速度快。

表1 分數階系統與整數階系統計算速度對比
根據圖1,在式(2)~(6)中,取初始值[0,0,0]= [0.1,0.2,0.3],=5,=0.65,=0.01,對應的分數階簡化Lorenz系統的最大Lyapunov指數為3.067 9,而采用四階龍格庫塔法求得的對應整數階系統的最大Lyapunov指數為0.500 8,這說明在此條件下,分數階簡化Lorenz系統比整數階簡化Lorenz系統更復雜,更有利于產生用于擴頻通信系統的擴頻碼。下面針對迭代過程中得到分數階混沌序列,采用如圖2所示的量化算法,設計偽隨機序列發(fā)生器。
圖2中,將每次迭代得到的混沌序列x+1,y+1和z+1均乘以1011,并取其整數部分,得到3個64位二進制整數(DB63-DB0),分別定義為I,I和I;然后選擇I的后8位(DB7-DB0)作為偽隨機二進制序列的8位,隨著迭代進行,得到一組足夠長的二進制偽隨機序列BS1。同時,計算I⊕I⊕I,取其最后8位作為另一個偽隨機二進制序列BS2的8位。這樣,可同時產生2組偽隨機二進制序列。此量化算法簡單,在實現過程中能節(jié)省系統資源。下面對產生的偽隨機序列進行分析測試。
在眾多偽隨機序列的標準測試工具中,NIST(National Institute of Science and Technology)的STS(statistical test suite)是比較權威的測試方法[17]。對BS1和BS2分別進行NIST測試,測試結果分別如表2和表3所示。其中,有5個測試項目需要測試多次,每一項測試的測試結果和通過測試的比例為多次測試中的最小值。從表2和表3可見:基于分數階簡化Lorenz系統得到的2組偽隨機二進制序列均通過了NIST的STS測試,具有良好的隨機性能。
漢明距離(Hamming distance)是專門用于測試2個二進制序列間互相關性的參數。計算上述得到的2個偽隨機二進制序列BS1和BS2的漢明距離(見表4),以判斷二者的互相關性。當序列長度選取不同值時,BS1和BS2的漢明距離均約為50%,說明上述生成的2個偽隨機二進制序列是互不相關的。

圖2 偽隨機序列發(fā)生器的二值量化算法

表2 BS1的NIST測試結果

表3 BS2的NIST測試結果

表4 不同長度的BS1與BS2的漢明距離
對于基于混沌系統的偽隨機序列發(fā)生器,系統對初始值及系統參數的敏感性決定產生不同偽隨機序列的數量。產生不同的偽隨機序列對應的初始值和系統參數的取值范圍,通常稱其為偽隨機序列發(fā)生器的“秘鑰空間”。相對于整數階混沌系統,在分數階混沌系統中,是除了初始值和系統參數外另一個影響系統特性的分岔參數。這里重點研究的影響。從BS1中隨機獲取長度為107bit的二進制序列KS1,然后,僅改變,使=0.65+10?7,再從新的BS1中相同位置獲取同樣長度的二進制序列KS2,計算不同的KS1和KS2的漢明距離,所得結果如表5所示。從表5可見:考慮了階數后,基于分數階簡化Lorenz系統產生的偽隨機序列發(fā)生器秘鑰空間至少增大107倍。

表5 不同長度的KS1與KS2的漢明距離
采用模塊化設計方法,在Simulink平臺設計分數階混沌擴頻通信系統。將偽隨機序列按幀的格式生成擴頻碼。假設發(fā)送端與接收端已實現同步,故在接收端采用同樣的擴頻碼用作擴頻解調。為了檢測不同信噪比(SN)時通信系統的性能,系統中信道的噪聲可調。載波調制與解調方式使用BPSK(二進制相移鍵控),最后,對接收的數據與發(fā)送的原始數據在誤碼率計算模塊進行誤碼率分析。
從BS1中分別隨機截取8,16和32 bit偽隨機序列作為擴頻碼,測試中傳輸106位碼元,得到誤碼率(BE)隨信噪比SN的變化情況如圖3所示。選擇32 bit擴頻碼,當SN=?2 dB時,誤碼率接近0;選擇8 bit擴頻碼,當SN=4 dB時,誤碼率才接近0;當擴頻通信系統的SN不變時,擴頻碼的位數越多,則BE越小。可見:擴頻碼的位數對擴頻通信系統的性能有很大的影響,位數越多,系統的性能越好。

字節(jié)/bit:1—8;2—16;3—32。
在同樣條件下,選擇基于Hénon映射生成的偽隨機序列(H序列)作為擴頻碼[18],再選擇基于Chen系統生成的偽隨機序列(C序列)作為擴頻碼[19],將上述分數階混沌系統得到的偽隨機序列記作FSL序列。在這3種情況下都選擇32位擴頻碼,誤碼率隨信噪比的變化如圖4所示。從圖4可見:當SN<?5 dB時,這3種情況的誤碼率相近,都比較大,表明在惡劣的通信環(huán)境下,這3種情況的性能均不佳;當SN≥?4 dB時,基于FSL序列的誤碼率比另外2種情況的低;當SN=?2 dB時,基于FSL序列的誤碼率接近0,但其他2種情況下仍有較高的誤碼率;當SN≥?1 dB時,這3種情況的誤碼率都接近0??梢姡夯诜謹惦A簡化Lorenz系統的擴頻通信系統性能優(yōu)于基于Hénon映射和Chen系統的擴頻系統性能。
雖然用Gold序列和m序列作為擴頻碼時,其數量有限,但其通信系統的正確率較高。在同等條件下,都發(fā)送106位碼元,基于FSL序列的偽隨機序列與Glod序列和m序列用于擴頻通信系統的性能對比如圖5所示。從圖5可見:當SN=?2 dB時,基于FSL序列的通信系統的誤碼率接近于0,明顯小于Gold序列和m序列的誤碼率??梢哉f明基于分數階混沌系統設計的偽隨機序列性能優(yōu)于Gold序列和m序列。
擴頻通信技術的優(yōu)點之一就是多個用戶可以在同一個信道通信,互不干擾。增加通信系統的用戶數量到4個,4個用戶選擇不同的初始條件,均截取32位偽隨機序列作為擴頻碼,將4個用戶的發(fā)送信號混合在一起發(fā)送出去,每個用戶發(fā)送104個碼元。通過分別檢測每個用戶的誤碼率隨信噪比變化情況,所得結果如圖6所示。從圖6可見:4個用戶中,每個用戶的通信性能隨信噪比的變化規(guī)律類似,在很低的信噪比下仍保持很低的誤碼率。這說明在同樣的載波頻率下,這4個用戶雖然在同一信道,但由于擴頻碼的性能優(yōu)良,其信號相互干擾很小。

1—分數階簡化Lorenz系統;2—Hénon映射;3—Chen系統

1—分數階簡化Lorenz系統;2—Gold序列;3—m序列。
改變多用戶系統中的用戶數量分別為2,4,6,8和10。為了比較用戶數量對通信系統性能的影響,將每種情況下所有用戶誤碼率取平均值,所得測試結果如圖7所示。從圖7可見:不同用戶數量下的通信性能很接近,當SN≥?1 dB時,誤碼率均約接近于0。這說明使用的擴頻碼具有良好的正交性,系統具有較大的多址容量。

1—用戶1;2—用戶2;3—用戶3;4—用戶4。

用戶數量/個:1—2;2—4;3—6;4—8;5—10。
1) 分數階簡化Lorenz系統的計算速度比整數階簡化Lorenz系統快。
2) 分數階簡化Lorenz系統的秘鑰空間比對應整數階系統的秘鑰空間約大107倍。
3) 在擴頻通信系統中,基于分數階混沌系統產生的偽隨機序列性能優(yōu)于基于Hénon映射和Chen系統產生的偽隨機序列性能,也優(yōu)于m序列及Gold序列性能,適合于設計擴頻通信。
4) 分數階混沌擴頻通信系統具有更大的多址 容量。
[1] HEIDARI-BATENI G, MCGILLEM C D, TENORIO M F. A novel multiple-address digital communication system using chaotic signals[C]//IEEE International Conference on Communications Circuits and Systems (ICCCAS). Chicago, USA, 1992: 1232?1236.
[2] ROVATTI R, SETTI G, MAZZINI G. Chaotic complex spreading sequences for asynchronous DS-CDMA. Part II.Some theoretical performance bounds[J]. IEEE Transactions on Circuits & Systems Ⅰ, 1998, 45(4): 496?506.
[3] QI Aixue, HAN Chunyan, WANG Guangyi. Design and FPGA realization of a pseudo random sequence generator based on a switched chaos[C]//IEEE International Conference on Communications, Circuits and Systems (ICCCAS). Monterrey, USA, 2010: 417?420.
[4] LIU Liye, YAN Xiao, LUO Haoding, et al. A novel composite chaotic sequence for low voltage power line spread spectrum communication[C]//IEEE Power Engineering and Automation Conference (PEAM). Shanghai, China, 2012: 1?6.
[5] WANG Xingyuan, LIU Lingtao. Cryptanalysis and improvement of a digital image encryption method with chaotic map lattices[J]. Chinese Physica B, 2013, 22(5): 198?202.
[6] LI Chengqing, ZHANG Leoyu, OU Rong, et al. Breaking a novel colour image encryption algorithm based on chaos[J]. Nonlinear Dynamics, 2012, 70(4): 2383?2388.
[7] ZHU Congxu, XU Siyuan, HU Yuping, et al. Breaking a novel image encryption scheme based on Brownian motion and PWLCM chaotic system[J]. Nonlinear Dynamics, 2015, 79(2): 1511?1518.
[8] CHEN Xiaolong, GUAN Jian, LIU Ningbo, et al. Maneuvering target detection via radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 939?953.
[9] AROUDI A E, OUAKAD H, BENADERO L, et al. Analysis of bifurcation behavior of a piecewise linear vibrator with electromagnetic coupling for energy harvesting applications[J]. International Journal of Bifurcation & Chaos, 2014, 24(24): 1450066.
[10] ASLAM M S, RAJA M A Z. A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach[J]. Signal Processing, 2015, 107(4): 433?443.
[11] KHAN M, SHAH T. An efficient construction of substitution box with fractional chaotic system[J]. Signal Image & Video Processing, 2015, 9(6): 1335?1338.
[12] HU Jianbing, LU Guoping, ZHAO Lingdong. Synchronization of fractional chaotic complex networks with distributed delays[J]. Nonlinear Dynamics, 2016, 83(1/2): 1101?1108.
[13] WANG Huihai, SUN Kehui, HE Shaobo. Dynamic analysis and implementation of a digital signal processor of a fractional-order Lorenz-Stenflo system based on the Adomian decomposition method[J]. Physica Scripta, 2015, 90(1): 015206.
[14] WANG Huihai, SUN Kehui, HE Shaobo. Characteristic analysis and DSP realization of fractional-order simplified Lorenz system based on Adomian decomposition method[J]. International Journal of Bifurcation & Chaos, 2015, 25(6): 1550085.
[15] HE Shaobo, SUN Kehui, WANG Huihai. Multivariate permutation entropy and its application for complexity analysis of chaotic systems[J]. Physica A Statistical Mechanics & Its Applications, 2016, 461: 812?823.
[16] 賀少波, 孫克輝, 王會海. 分數階混沌系統的Adomian分解法求解及其復雜性分析[J]. 物理學報, 2014, 63(3): 030502.HE Shaobo, SUN Kehui, WANG Huihai. Solution of the fractional-order chaotic system based on Adomian decomposition algorithm and its complexity analysis[J]. Acta Physica Sinica, 2014, 63(3): 030502.
[17] OLVER F W, LOZIER D W, BOISVERT R F, et al. NIST handbook of mathematical functions[M]. London, England: Cambridge University Press, 2010: 1?30.
[18] 李家標, 曾以成, 陳仕必, 等. 改進型Hénon映射生成混沌偽隨機序列及性能分析[J]. 物理學報, 2011, 60(6): 60508. LI Jiabiao, ZENG Yicheng, CHEN Shibi, et al. Modified Hénon map generated chaotic pseudorandom-bit sequences and performance analysis[J]. Acta Physica Sinica, 2011, 60(6): 60508.
[19] HU Hanping, LIU Lingfeng, DING Naida. Pseudorandom sequence generator based on the Chen chaotic system[J]. Computer Physics Communications, 2013, 184(3): 765?768.
(編輯 陳燦華)
Design of communication system of fractional-order chaotic spread spectrum
WANG Huihai, SUN Kehui, HE Shaobo
(School of Physics and Electronics, Central South University, Changsha 410083, China)
In order to improve the performance of the spread spectrum communication system, a fractional-order chaotic spread spectrum communication system was designed. The fractional-order simplified Lorenz system was solved by adopting Adomian decomposition method. The iteration of the fractional-order system was deduced, and the numerical solution was obtained. Several uncorrelated chaotic pseudo-random sequences were generated by a simple binaryzation algorithm for iterative results. The pseudo-random sequence was used as spread spectrum code in spread spectrum communication system. At different signal-to-noise ratios, the influence of different spread spectrum codes on the performance of the communication system was analyzed. The results show that the pseudo-random sequences based on the fractional-order simplified Lorenz system have good randomness, and all pass statistical test suite(STS) of National Institute of Science and Technology(NIST).The generation of these pseudo-random sequences is fast. They have bigger secret key space and better security than the integer-order counterpart. The performance of the spread spectrum communication system designed is better than that of Hénon map, Chen system, m-sequence and Gold sequence, and has a good multiple access capability.
spread spectrum communication; fractional calculus; chaos
TN918.91
A
1672?7207(2018)04?0874?07
10.11817/j.issn.1672?7207.2018.04.014
2017?06?29;
2017?08?22
國家自然科學基金資助項目(61161006,61573383,61502538)(Projects(61161006, 61573383, 61502538) supported by the National Natural Science Foundation of China)
孫克輝,博士,教授,從事混沌理論與應用研究;E-mail:kehui@csu.edu.cn