999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

COMMUTATORS GENERATED BY LUSIN-AREA INTEGRAL AND LOCAL CAMPANATO FUNCTIONS ON GENERALIZED LOCAL MORREY SPACES

2018-05-21 09:12:26MOHuixiaMARuiqingWANGXiaojuan
數學雜志 2018年3期

MO Hui-xia,MA Rui-qing,WANG Xiao-juan

(School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China)

1 Introduction

Suppose that Sn?1is the unit sphere in Rn(n ≥ 2)equipped with the normalized Lebesgue measure dσ.Let ? ∈ Ls(Sn?1)(1<s≤∞)be homogeneous of degree zero and satisfy the cancellation condition

where

Moreover,letwhere bi∈ Lloc(Rn)for 1 ≤ i≤ m.Then the multilinear commutator generated byand μ?,Scan be de fined as follows:

It is well known that the Lusin-area integral plays an important role in harmonic analysis and PDE(for example,see[1–8]).Therefore,it is a very interesting problem to discuss the boundedness of the Lusin-area integral.In[2],Ding,Fan and Pan studied the weighted Lpboundedness of the area integralμ?,S.In[3],the authors investigated the boundeness ofμ?,Son the weighted Morrey spaces.The commutators generated by μ?,Sattracted much attention too.In[5]and[6],the authors discussed the weighted Lpboundedness and endpoint estimates for the higher order commutators generated by μ?,Sand BMO function,respectively.In[8],the authors showed that the commutator generated by μ?,Sand V MO is a compact operator in the Morrey space.

Moreover,the classical Morrey space Mp,λwere first introduced by Morrey in[9]to study the local behavior of solutions to second order elliptic partial differential equations.And,in[10],the authors introduced the local generalized Morrey spaceand they also studied the boundedness of the homogeneous singular integrals with rough kernel on these spaces.

Motivated by the works of[2,3,5,8,10,13],we are going to consider the boundedness ofμ?,Son the local generalized Morrey spaceas well as the boundedness of the commutators generated by μ?,Sand local Campanato functions.

2 Some De finitions and Lemmas

De finition 2.1[10]Let ?(x,r)be a positive measurable function on Rn× (0,∞)and 1≤p≤∞.For any fixed x0∈Rn,a function fis said to belong to the local Morrey space,if

And we denote

According to this de finition,we recover the local Morrey spaceunder the choice

where

De fine

Remark 2.1[10]Note that,the central BMO spaceandMoreover,imagining that the behavior ofmay be quite different from that of BMO(Rn),since there is no analogy of the John-Nirenberg inequality of BMO for the space

Lemma 2.1[10]Let 1then

And from this inequality,we have

In this section,we are going to use the following statement on the boundedness of the weighted Hardy operator

where w is a fixed function non-negative and measurable on(0,∞).

Lemma 2.2[11,12]Let v1,v2and w be positive almost everywhere and measurable functions on(0,∞).The inequality

holds for some C>0 and all non-negative and non-decreasing g on(0,∞)if and only if

Moreover,ifis the minimum value of C in(2.1),then=B.

Lemma 2.3[2]Suppose that 1< q,s≤ ∞ and ? ∈ Ls(Sn?1)satisfying(1.1).If q,s and weighted function w satisfy one of the following conditions

(i)max{s′,2}= η < q < ∞,and w ∈ Aq/η;

(ii)2 < q < s,and w1?(q/2)′∈ Aq′/s′;

Remark 2.2From Lemma 2.3,it’s obvious that when ? ∈ Ls(Sn?1)(1 < s ≤ ∞)satis fies condition(1.1),the operatorμ?,Sis bounded on Lq(Rn)space for 2≤ q< ∞.

3 Lusin-Area Integral on Generalized Local Morrey Spaces

holds for any ball B(x0,r).

ProofLet B=B(x0,r).We write f=f1+f2,where f1=fχ2Band f2=fχ(2B)c.Thus we have

Since μ?,Sis bounded on Lq(Rn)space(see Lemma 2.3),then it follows that

Our attention will be focused now on

Without loss of generality,we can assume that for any x∈B,(y,t)∈Γ(x)and z∈2j+1B2jB,we haveThus there existssuch that

Hence

When ? ∈ L∞(Sn?1),it follows from the Hlder’s inequality that

When ? ∈ Ls(Sn?1),1 < s < ∞,it is obvious that

Thus from H?lder’s inequality and(3.4),we have

So

Therefore combining(3.1)and(3.6),we have

Thus we complete the proof of Theorem 3.1.

Theorem 3.2Let ? ∈ Ls(Sn?1)(1 < s ≤ ∞)satisfy condition(1.1)and max{2,s′} <q< ∞.Then,if functions ?,ψ :Rn×(0,∞)→ (0,+∞)satisfy the inequality

where C does not depend on x and r,the operatorμ?,Sis bounded from

ProofTakingandthen from Theorem 3.1,we have

Thus from Lemma 2.2,it follows that

Therefore

Thus we complete the proof of Theorem 3.2.

4 Commutators Generated by Lusin-Area Integral on Generalized Local Morrey Spaces

holds for any ball B(x0,r),where λ = λ1+ λ2+ ···+ λm.

ProofWithout loss of generality,it is sufficient for us to show that the conclusion holds for m=2.

Let B=B(x0,r).And we write f=f1+f2,whereThus we have

Let us estimate I and II,respectively.It is obvious that

From Lemma 2.1,it is easy to see that

Moreover,from Lemma 2.1,it is easy to see that

Similarly,

Therefore combining the estimates of I1,I2,I3and I4,we have

Let us estimate II.

SinceThen using H?lder’s inequality and(3.6),we have

In the following,let us estimate II2.For x ∈ B,when ? ∈ L∞(Sn?1),from Lemma 2.1 and estimate of(3.3),we have

For x∈B,when ? ∈ Ls(Sn?1),1< s< ∞,from Lemma 2.1 and the estimate of(3.5),it follows that

Let 1<<∞such thatthenand max{2,s′}<< ∞.Thus,from H?lder’s inequality,(4.4)and(4.5),we obtain

Similarly,

Let us estimate II4.It is analogue to the estimates of(4.4),(4.5)and(4.6),we have the following estimates.

When x∈ B,? ∈ L∞(Sn?1),we have

When x∈B,?∈Ls(Sn?1),1<s<∞,we have

Therefore from(4.7)and(4.8),we have

So from the estimates of II1,II2,II3and II4,it follows that

Therefore from the estimates of I and II,we deduced that

Thus the proof of Theorem 4.1 is completed.

ProofTakingand.It is easy to see that

Thus by Lemma 2.2,we have

So

Thus the proof of Theorem 4.2 is finished.

References

[1]Chang S Y A,Wilson J M,Wolff T H.Some weighted norm inequalities concerning the Schr?dinger operators[J].Comment.Math.Helv.,1985,60(1):217–246.

[2]Ding Y,Fan D S,Pan Y B.Weighted boundedness for a class of rough Marcinkiewicz integrals[J].India Univ.Math.J.,1999,48(3):1037–1055.

[3]Tao S P,Wei X M.Boundeness of Littlewood-Paley operators with rough kernels on the weighted Morrey spaces[J].J.Lanzhou Univ.,2013,49(3):400–404.

[4]Lin Y,Liu Z G,Mao D L,Sun Z K.Parameterized Littlewood-Paley operators and area integrals on weak Hardy spaces[J].Acta.Math.Sin.,2013,29(10):1857–1870.

[5]Ding Y,Lu S Z,Yabuta K.On commutators of Marcinkiewicz integrals with rough kernel[J].J.Math.Anal.Appl.,2002,275(1):60–68.

[6]Ding Y,Xue Q Y.Endpoint estimates for commutators of a class of Littlewood-Paley operators[J].Hokkaido.Math.J.,2007,36(2):245–282.

[7]Chen Y P,Ding Y,Wang X X.Commutators of Littlewood-Paley operators on the generalized Morrey space[J].J.Inequal.Appl.,2010(1),Artical ID:961502,20 pages.

[8]Chen Y P,Wang H.Compactness for the commutator of the parameterized area integral in the Morrey space[J].Math.Inequal.Appl.,2015,18(4):1261–1273.

[9]Morrey C B.On the solutions of quasi-linear elliptic partial differential equations[J].Trans.Amer.Math.Soc.,1938,43(1):126–166.

[10]Balakishiyev A S,Guliyev V S,Gurbuz F,Serbetci A.Sublinear operators with rough kernel generated by Calder′on-Zygmund operators and their commutators on generalized local Morrey spaces[J].J.Inequ.Appl.,2015,2015(1):1–18.

[11]Guliyev V S.Local generalized Morrey spaces and singular integrals with rough kernel[J].Azerb.J.Math.,2013,3(2):79–94.

[12]Guliyev V S.Generalized local Morrey spaces and fractional integral operators with rough kernel[J].J.Math.Sci.,2013,193(2):211–227.

[13]Zhang L,Zheng Q.Boundedness of commutators for singular integral operators with oscillating kernels on weighted Morrey spaces[J].J.Math.,2014,34(4):684–690.

主站蜘蛛池模板: 国产污视频在线观看| 国产性精品| 国产成人高清精品免费软件| 99久久人妻精品免费二区| 国产91蝌蚪窝| 亚洲国内精品自在自线官| 日本不卡在线播放| 亚洲视频免费播放| 国产综合另类小说色区色噜噜| 精品成人一区二区三区电影| 国产成+人+综合+亚洲欧美| a欧美在线| 日本欧美成人免费| 日韩精品无码一级毛片免费| 蝌蚪国产精品视频第一页| 亚洲欧美成人在线视频| 国产在线专区| 欧美国产日韩另类| 三级欧美在线| 精品视频福利| 国产91丝袜| 久久情精品国产品免费| 国产欧美精品午夜在线播放| 日本日韩欧美| 欧美一区二区丝袜高跟鞋| 国产精品永久不卡免费视频| 亚洲午夜福利精品无码不卡 | 成年人免费国产视频| 亚洲日本中文字幕天堂网| 97在线碰| 国产精品林美惠子在线观看| 国产精品美女免费视频大全 | 欧美国产日韩在线观看| 久精品色妇丰满人妻| 国产三级视频网站| 自拍欧美亚洲| 欧美曰批视频免费播放免费| 日韩精品专区免费无码aⅴ | 亚洲自偷自拍另类小说| 免费观看国产小粉嫩喷水| 久久频这里精品99香蕉久网址| 在线观看欧美国产| 日韩人妻少妇一区二区| 国产综合日韩另类一区二区| 男女性午夜福利网站| 国产十八禁在线观看免费| 国产99精品久久| 色婷婷电影网| 日韩毛片在线播放| 亚洲第一极品精品无码| 青青青国产视频| 在线免费无码视频| 国产精品部在线观看| 一区二区三区精品视频在线观看| 色婷婷亚洲十月十月色天| 国产精品私拍在线爆乳| 国产欧美日韩综合一区在线播放| 欧美日韩专区| 久久精品亚洲热综合一区二区| 日韩无码视频网站| 91视频99| 波多野结衣中文字幕久久| 午夜福利免费视频| 国产无码性爱一区二区三区| 成人毛片免费观看| 国产主播在线一区| 日韩A∨精品日韩精品无码| 亚洲中文字幕国产av| 欧洲日本亚洲中文字幕| 亚洲VA中文字幕| 深爱婷婷激情网| 久久网综合| 国产在线视频二区| 亚洲乱亚洲乱妇24p| 国产97视频在线| 欧美国产日韩在线| 第一页亚洲| 国产杨幂丝袜av在线播放| 国产一级小视频| 国产乱人激情H在线观看| 亚洲人成色在线观看| 老司机久久99久久精品播放|