蔡斌,周立明
?
基于非均勻光滑有限元法的含圓孔功能梯度壓電板應(yīng)力和電場集中因子分析
蔡斌1,周立明2
(1. 吉林建筑大學(xué) 土木工程學(xué)院,吉林 長春,130118;2. 吉林大學(xué) 機械科學(xué)與工程學(xué)院,吉林 長春,130025)
為提高含圓孔功能梯度壓電板應(yīng)力和電場集中因子的求解精度,提出含圓孔功能梯度壓電板的力電耦合非均勻基于單元的光滑有限元法。采用高斯點處的真實材料屬性進行計算,分析材料屬性按某一方向呈指數(shù)函數(shù)梯度變化時含孔功能梯度壓電板應(yīng)力和電場集中因子,并與非均勻有限元求解結(jié)果進行對比。研究結(jié)果表明:該方法求解力電耦合作用下功能梯度壓電板的應(yīng)力集中因子和電場集中因子具有較高的精度。
功能梯度壓電材料;非均勻光滑有限元法;應(yīng)力集中因子;電場集中因子
功能梯度壓電材料是新一代高性能多功能材料,其結(jié)構(gòu)的完整性直接影響著他們的應(yīng)用領(lǐng)域。由于功能梯度壓電材料兼?zhèn)鋲弘姴牧虾凸δ芴荻炔牧系膬?yōu)點,具有良好的機電耦合特性,被廣泛應(yīng)用于智能先進結(jié)構(gòu)中。在工程應(yīng)用中,功能梯度壓電元件往往以板、殼的結(jié)構(gòu)形式存在,在力電載荷作用下,常常會因為制備過程中的缺陷(如孔洞、裂紋、夾雜物和分層等)發(fā)生疲勞斷裂或介質(zhì)擊穿導(dǎo)致結(jié)構(gòu)功能失效,因此,求解含孔功能梯度壓電材料板的應(yīng)力和電場集中因子對提升相關(guān)器件性能具有重要意義。目前,人們已在功能梯度壓電材料這一領(lǐng)域[1?3]開展較多研究。NOURMOHAMMADI等[4?5]對功能梯度壓電板的多場耦合問題進行了分析。SELIM等[6]基于高階剪切變形理論對功能梯度壓電板的振動問題進行了研究。ZHAO等[7]基于無網(wǎng)格法對不同載荷作用下功梯度壓電板的靜態(tài)彎曲問題進行了分析。KOMIJANI等[8]分析了多物理場下功能梯度壓電材料執(zhí)行器非線性響應(yīng)問題。DAI等[9]對功能梯度壓電材料的反平面裂紋問題進行了研究。JODAEI[10]基于微分求積法對不同邊界條件下功梯度壓電板的靜態(tài)問題進行了分析。RANGELOV等[11?12]采用邊界積分方程法對功能梯度壓電材料的平面和反平面斷裂問題進行了研究。孟廣偉等[13]采用擴展無網(wǎng)格法對含孔功能梯度壓電板的應(yīng)力集中問題進行了研究。然而,對含孔功能梯度壓電體應(yīng)力和電場集中因子的求解還有待于進一步研究。由于功能梯度壓電材料的非均勻性和多場耦合特性,使得求解離散方程的難度大大增加。在基于單元的數(shù)值方法中,往往因為系統(tǒng)剛度偏硬,導(dǎo)致力場和電場計算出現(xiàn)誤差。為了降低離散系統(tǒng)剛度,LIU 等[14?16]提出基于梯度光滑技術(shù)的有限元算法。NGUYEN-VAN等[17]將光滑有限元法拓展到壓電材料中,之后,NGUYEN-XUAN等[18?19]基于邊光滑有限元法對二維壓電結(jié)構(gòu)靜力力學(xué)問題進行了研究,發(fā)現(xiàn)光滑有限元可提高解的精度,具有廣闊的應(yīng)用前景。本文作者推導(dǎo)出含孔功能梯度壓電板的力電耦合非均勻基于單元的光滑有限元法,求解含孔功能梯度壓電板應(yīng)力和電場集中因子,討論材料屬性按某一方向呈指數(shù)函數(shù)梯度變化時功能梯度壓電板的力學(xué)響應(yīng),并與有限元(FEM)求解結(jié)果進行對比。
功能梯度壓電材料場基本方程為

應(yīng)變和電場相容方程為

本構(gòu)方程為

功能梯度壓電材料物參服從指數(shù)分布規(guī)律:




對于橫觀各向同性功能梯度壓電板,在坐標(biāo)1?3平面內(nèi)滿足:


將求解域離散成p個單元,包含n個節(jié)點,每個單元內(nèi)的廣義位移向量和廣義電勢向量表示為:


式中:N和分別為非均勻基于單元的光滑有限元(ICS-FEM)位移形函數(shù)和電勢形函數(shù);和分別為節(jié)點位移向量和節(jié)點電勢向量。
將四節(jié)點單元劃分為4個光滑子元,場節(jié)點、邊中間光滑節(jié)點、中心光滑節(jié)點、邊高斯點、外法向向量分布情況及形函數(shù)如圖1所示。

(a) 光滑子元;(b) 形函數(shù)值



式中:

將式(14)代入式(12)和(13)可得



將式(16)和式(17)改寫為:


式中:e為光滑子元個數(shù)。


式中:N為相關(guān)節(jié)點的形函數(shù)。


功能梯度壓電耦合系統(tǒng)的平衡方程如下:

式中各剛度矩陣表達式如下:









圖3所示為離散單元。表2和表3所示分別為底部材料為P?7和PZT?H5時,采用非均勻基于單元的光滑有限元法(SFEM)和非均勻有限元法(FEM)計算含圓孔功能梯度壓電材料板應(yīng)力集中因子和電場集中因子的結(jié)果對比。取非均勻有限元法離散20 000個單元的求解結(jié)果為參考解。由表2~3可知:在相同網(wǎng)格數(shù)下,SFEM精度高于FEM精度,SFEM是正確有效的。
圖4所示為采用SFEM和FEM求解得到不同梯度參數(shù)(為0,0.2,0.5和1.0)下功能梯度壓電板(P?7為底邊)的應(yīng)力云圖和電場強度云圖。由圖4可知:SFEM的相關(guān)數(shù)值高于FEM的數(shù)值,說明將梯度光滑技術(shù)引入非均勻有限元可降低其系統(tǒng)剛度,提高求解精度。

圖3 離散單元

表1 材料常數(shù)

表2 底部材料為P?7時應(yīng)力集中因子和電場集中因子的結(jié)果對比

表3 底部材料為PZT?H5時應(yīng)力集中因子和電場集中因子的結(jié)果對比

(a) 應(yīng)力云圖(SFEM,=0);(b) 應(yīng)力云圖(FEM,=0)--;(c) 電場強度云圖(SFEM,=0);(d) 電場強度云圖(FEM,=0);(e) 應(yīng)力云圖(SFEM,=0.2);(f) 應(yīng)力云圖(FEM,=0.2);(g) 電場強度云圖(SFEM,=0.2);(h) 電場強度云圖(FEM,=0.2);(i) 應(yīng)力云圖(SFEM,=0.5);(j) 應(yīng)力云圖(FEM,=0.5);(k) 電場強度云圖(SFEM,=0.5);(l) 電場強度云圖(FEM,=0.5);(m) 應(yīng)力云圖(SFEM,=1.0);(n) 應(yīng)力云圖(FEM,=1.0);(o) 電場強度云圖(SFEM,=1.0);(p) 電場強度云圖(FEM,=1.0)
圖4 不同梯度參數(shù)下功能梯度壓電板(P?7為底邊)的應(yīng)力云圖和電場強度云圖
Fig. 4 Stress contours and electric field contours of functionally graded piezoelectric plate (P?7 as the base) with varied gradient parameters
圖5所示為采用SFEM和FEM求解得到不同梯度參數(shù)(為0,0.2,0.5和1.0)下功能梯度壓電板(PZT?H5為底邊)的應(yīng)力云圖和電場強度云圖。由圖5可知:SFEM的求解精度高于FEM的求解精度,進一步驗證了梯度光滑技術(shù)引入非均勻有限元中可降低其系統(tǒng)剛度,提高解的精度;同時也驗證了非均勻基于單元的光滑有限元法的正確性與有效性。
從圖4和圖5可以看出:當(dāng)梯度參數(shù)從0變化到1.0時,應(yīng)力云圖變化不大,應(yīng)力集中的位置就在圓孔中間位置兩側(cè),應(yīng)力對材料參數(shù)小梯度變化不敏感。當(dāng)梯度參數(shù)從0變化到1.0時,電場集中的位置也在圓孔中間位置兩側(cè),但電場高強度區(qū)域有明顯增大趨勢,這是由于隨著梯度參數(shù)變大,功能梯度壓電板底部材料屬性與頂部材料屬性差異變大,電場強度對材料參數(shù)小梯度變化較敏感所導(dǎo)致。

(a) 應(yīng)力云圖(SFEM,=0);(b) 應(yīng)力云圖(FEM,=0)--;(c) 電場強度云圖(SFEM,=0);(d) 電場強度云圖(FEM,=0);(e) 應(yīng)力云圖(SFEM,=0.2);(f) 應(yīng)力云圖(FEM,=0.2);(g) 電場強度云圖(SFEM,=0.2);(h) 電場強度云圖(FEM,=0.2);(i) 應(yīng)力云圖(SFEM,=0.5);(j) 應(yīng)力云圖(FEM,=0.5);(k) 電場強度云圖(SFEM,=0.5);(l) 電場強度云圖(FEM,=0.5);(m) 應(yīng)力云圖(SFEM,=1.0);(n) 應(yīng)力云圖(FEM,=1.0);(o) 電場強度云圖(SFEM,=1.0);(p) 電場強度云圖(FEM,=1.0)
圖5 不同梯度參數(shù)下功能梯度壓電板(PZT?H5為底邊)的應(yīng)力云圖和電場強度云圖
Fig. 5 Stress contours and electric field contours of functionally graded piezoelectric plate(PZT?H5 as the base) with varied gradient parameters
1) 非均勻基于單元的光滑有限元求解精度高于非均勻有限元求解精度,梯度光滑技術(shù)引入非均勻有限元中可改善非均勻有限元的系統(tǒng)剛度。
2) 當(dāng)材料參數(shù)小梯度變化時,功能梯度壓電板應(yīng)力集中位置基本不變,應(yīng)力對材料參數(shù)小梯度變化不敏感。
3) 當(dāng)材料參數(shù)小梯度變化時,功能梯度壓電板電場集中位置基本不變,電場強度對材料參數(shù)小梯度變化較敏感。
[1] SAADATFAR M. Effect of multiphysics conditions on the behavior of an exponentially graded smart cylindrical shell with imperfect bonding[J]. Meccanica, 2015, 50(8): 2135?2152.
[2] AREFI M. The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers[J]. Smart Structures and Systems, 2015, 15(5): 1345?1362.
[3] WU C P, LIU Yancheng. A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells[J]. Composite Structures, 2016, 147: 1?15.
[4] NOURMOHAMMADI H, BEHJAT B. Design criteria for functionally graded piezoelectric plates under thermo-electro- mechanical loadings[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(16): 2249?2260.
[5] MIKAEELI S, BEHJAT B. Three-dimensional analysis of thick functionally graded piezoelectric plate using EFG method[J]. Composite Structures, 2016, 154: 591?599.
[6] SELIM B A, ZHANG L W, LIEW K M. Active vibration control of FGM plates with piezoelectric layers based on Reddy’s higher-order shear deformation theory[J]. Composite Structures, 2016, 155: 118?134.
[7] ZHAO X, LEE Y Y, LIEW K M. Free vibration analysis of functionally graded plates using the kp-Ritz method[J]. Journal of Sound and Vibration, 2009, 319(3/4/5): 918?939.
[8] KOMIJANI M, REDDY J N, ESLAMI M R. Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators[J]. Journal of the Mechanics and Physics of Solids, 2014, 63: 214?227.
[9] DAI Yao, CHONG Xiao, LI Shimin. The higher order crack tip fields for anti-plane crack in functionally graded piezoelectric materials[J]. Applied Mechanics and Materials, 2014, 472: 617?620.
[10] JODAEI A. 3D elasticity solution for static analysis of functionally graded piezoelectric annular plates on elastic foundations using SSDQM[J]. Meccanica, 2014, 49(1): 215?237.
[11] RANGELOV T, DINEVA P, GROSS D. Effects of material inhomogeneity on the dynamic behavior of cracked piezoelectric solids: a BIEM approach[J]. Journal of Applied Mathematics and Mechanics, 2008, 88(2): 86?99.
[12] DINEVA P, GROSS D, MüLLER R, et al. Time-harmonic crack problems in functionally graded piezoelectric solids via BIEM[J]. Engineering Fracture Mechanics, 2010, 77(7): 1101?1115.
[13] 孟廣偉, 王暉, 周立明, 等. 含孔功能梯度壓電材料板的力電耦合無網(wǎng)格伽遼金法[J]. 中南大學(xué)學(xué)報(自然科學(xué)版), 2015, 46(11): 4015?4020. MENG Guangwei, WANG Hui, ZHOU Liming et al. Electromechanical element-free Galerkin method for functionally graded piezoelectric plate with circular hole[J]. Journal of Central South University (Science and Technology), 2015, 46(11): 4015?4020.
[14] LIU Guirong, NGUYEN-THOI T, DAI K Y, et al. Theoretical aspects of the smoothed finite element method (SFEM)[J]. International Journal for Numerical Methods in Engineering, 2007, 71(8): 902?930.
[15] LIU Guirong, NGUYEN-THOI T, LAM K Y. An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids[J]. Journal of Sound and Vibration, 2009, 320(4/5): 1100?1130.
[16] LIU Guirong, NGUYEN-XUAN H, NGUYEN-THOI T. A theoretical study on the smoothed FEM (S-FEM) models: Properties, accuracy and convergence rates[J]. International Journal for Numerical Methods in Engineering, 2010, 84(10): 1222?1256.
[17] NGUYEN-VAN H, MAI-DUY N, TRAN-CONG T. A node-based element for analysis of planar piezoelectric structures[J]. CMES: Computer Modeling in Engineering and Sciences, 2008, 36(1): 65?95.
[18] NGUYEN-XUAN H, LIU Guirong, NGUYEN-THOI T, et al. An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures[J]. Smart Materials and Structures, 2009, 18(6): 065015.
[19] CHEN L, ZHANG Y W, LIU G R, et al. A stabilized finite element method for certified solution with bounds in static and frequency analyses of piezoelectric structures[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 241: 65?81.
(編輯 伍錦花)
Analysis of stress and electric field concentration in a functionally graded piezoelectric plate with a circular hole based on nonhomogeneous smoothed finite element method
CAI Bin1, ZHOU Liming2
(1. School of Civil Engineering, Jilin Jianzhu University, Changchun 130118, China;2. School of Mechanical Science and Engineering, Jilin University, Changchun 130025, China)
In order to improve the calculation precision of stress and electric field concentration factor for the functionally graded piezoelectric plate with a circular hole, electromechanical coupling nonhomogeneous cell-based smoothed finite element method was proposed. Real material properties of Gaussian point were used to calculate. Stress and electric field concentration factor of functionally graded piezoelectric plate with a hole was studied, in which material properties of the piezoelectric plate was changing exponentially in a certain direction. The results show that this method has high precision in calculating stress and electric field concentration factor for the functionally graded piezoelectric plate.
functionally graded piezoelectric materials; nonhomogeneous smoothed finite element method; stress field concentration factor; electric field concentration factor
10.11817/j.issn.1672-7207.2018.05.008
TB330.1;TB115
A
1672?7207(2018)05?1080?07
2017?05?17;
2017?06?27
國家自然科學(xué)基金資助項目(11502092);吉林省科技計劃項目(20160520064JH, 20170101043JC);中央高校基本科研業(yè)務(wù)費專項資金資助項目(451170306066) (Project(11502092) supported by the National Natural Science Foundation of China; Projects (20160520064JH, 20170101043JC) supported by Scientific and Technology Program of Jilin Province; Project(451170306066) supported by the Fundamental Research Funds for the Central Universities)
周立明,博士,副教授,從事計算固體力學(xué)研究;E-mail: lmzhou@jlu.edu.cn