郭海新, 王西彬, 梁志強(qiáng), 周天豐, 劉志兵, 張素燕
(1.北京理工大學(xué) 機(jī)械與車輛學(xué)院, 北京 100081; 2.北京理工大學(xué) 先進(jìn)加工技術(shù)國防重點學(xué)科實驗室, 北京 100081)
隨著科學(xué)技術(shù)和工業(yè)生產(chǎn)的迅猛發(fā)展,微小結(jié)構(gòu)件的應(yīng)用日趨廣泛,而微小孔是微小結(jié)構(gòu)件的重要組成部分。這些微小孔零件多采用不銹鋼、高強(qiáng)度鋼等難加工材料,如高溫高壓部件以及發(fā)動機(jī)噴油嘴等。不銹鋼材料因其具有強(qiáng)度高、塑性大以及良好的耐腐蝕、耐高溫等特性,能夠有效地提高微小孔零件的機(jī)械性能和使用壽命。目前不銹鋼微孔多采用微細(xì)鉆削加工,但是在微細(xì)鉆削過程中,由于不銹鋼材料塑性變形大、導(dǎo)熱系數(shù)低,切屑不易折斷分離并容易纏繞堆積在螺旋槽中,影響加工表面質(zhì)量。同時微細(xì)鉆削過程中受尺寸效應(yīng)影響,材料的去除過程以擠壓和耕犁為主,刀具刃口區(qū)域作用力大,容易引起微崩刃和微裂紋,加劇刀具的磨破損失效[1-2]。
微細(xì)鉆削刀具(簡稱微鉆)的幾何結(jié)構(gòu)是影響切屑形成與流動、刀具磨破損機(jī)理、微小孔加工質(zhì)量的重要因素,因此近年來國內(nèi)外學(xué)者致力于設(shè)計和優(yōu)化微鉆的幾何結(jié)構(gòu)。Fu等[3-4]從螺旋角、鉆芯厚度、溝幅比和第1后角等方面論述了PCB微鉆幾何結(jié)構(gòu)對鉆削性能的影響,通過試驗驗證了較大螺旋角、鉆芯厚度、溝幅比能有效地提高高長徑比微鉆的鉆削性能。Zheng等[5-6]發(fā)現(xiàn)微鉆的鋒角、螺旋角、鉆芯厚度對出口毛刺高度和孔壁粗糙度有顯著影響,孔壁粗糙度隨著鋒角增大而增大,隨著螺旋角和鉆芯厚度增大而減小。Liang等[7]用直徑為0.5 mm的微鉆鉆削1Cr18Ni9Ti不銹鋼,發(fā)現(xiàn)隨著螺旋角增大,微鉆鉆削力和毛刺高度減小,微孔表面質(zhì)量提高,但增大鉆芯厚度會產(chǎn)生較大的鉆削力和毛刺高度,并導(dǎo)致較差的表面質(zhì)量。Yoon等[8]基于田口方法和響應(yīng)面分析方法,研究了不同螺旋角、鉆芯厚度對微鉆的鉆削力、刀具磨損的影響規(guī)律,得到螺旋角42°、鉆芯厚度50 μm為最優(yōu)微鉆結(jié)構(gòu)。
平面鉆尖廣泛應(yīng)用于微小孔加工領(lǐng)域,這種鉆尖刃磨方法簡單,加工方便[9]。但其橫刃是直線形狀,并且第1和第2后刀面過渡部分尾隙角較小,將會引起鉆削力增大、溫度升高、刀具磨損加快等問題[10]。非共軸螺旋鉆尖由連續(xù)的螺旋后刀面和S型橫刃組成,相比平面鉆尖能有效地提高刀具的鉆削性能和刃磨效率[11],但是國內(nèi)外學(xué)者針對非共軸螺旋后刀面微鉆幾何結(jié)構(gòu)的研究較少,針對不銹鋼難加工材料非共軸螺旋后刀面微鉆幾何結(jié)構(gòu)設(shè)計優(yōu)化的研究指導(dǎo)匱乏。
為了分析非共軸螺旋后刀面微鉆的幾何結(jié)構(gòu)參數(shù)對不銹鋼材料鉆削性能的影響規(guī)律,本文首先提出微鉆后刀面和螺旋槽的數(shù)學(xué)模型,利用MATLAB軟件計算出具有不同幾何參數(shù)微鉆的切削刃形狀、前角和未變形切屑厚度;然后基于正交試驗方法,采用DEFORM軟件開展有限元鉆削仿真研究,分析非共軸螺旋后刀面微鉆的鋒角、鉆芯厚度和螺旋角對刀具鉆削性能的影響規(guī)律,研究不同結(jié)構(gòu)參數(shù)下的切屑形態(tài)、鉆削力和鉆削溫度,提出優(yōu)化的非共軸螺旋后刀面微鉆幾何結(jié)構(gòu)參數(shù);最后采用日本牧野精機(jī)株式會社生產(chǎn)的CNS7d數(shù)控工具磨床,刃磨制備出符合設(shè)計要求的微鉆。
基于Liang等[12]提出的非共軸螺旋后刀面數(shù)學(xué)模型如圖1所示。圖1中:OdXdYdZd為微鉆坐標(biāo)系,坐標(biāo)原點Od為鉆尖中心位置,Zd軸與微鉆軸線重合,Xd軸方向使主切削刃外緣轉(zhuǎn)點C的坐標(biāo)滿足YdC=-t(2t為鉆芯厚度);H為螺旋面節(jié)距;D為螺旋面軸線ZH與刀具軸線Zd的交點;N為微鉆后刀面F1、鉆頭外圓柱面以及螺旋槽的交點;M為微鉆后刀面F1與鉆頭外圓柱面交線上的任意一點,點M與點OH構(gòu)成螺旋運動發(fā)生線OHM;E表示微鉆俯視圖方向;OtXtYtZt為過渡坐標(biāo)系。非共軸螺旋后刀面F1在微鉆坐標(biāo)系OdXdYdZd中的方程表達(dá)式為
(1)
式中:Xa=Xdcosβ-Ydsinβ;Ya=Ydcosβ+Xdsinβ;θ、β、φ、B、H為后刀面的刃磨參數(shù)。

(2)

微鉆螺旋槽的幾何結(jié)構(gòu)與其刃磨過程息息相關(guān),磨削過程參數(shù)以及砂輪形狀參數(shù)、位置參數(shù)等決定了螺旋槽的槽型。微鉆螺旋槽磨削過程如圖2所示。圖2中:砂輪繞其軸線旋轉(zhuǎn)運動構(gòu)成切削主運動,微鉆以角速度Ωd、線速度vd繞其軸線旋轉(zhuǎn)和移動,構(gòu)成螺旋運動;OwXwYwZw為砂輪坐標(biāo)系,其中原點Ow位于砂輪大端面的中心,Zw軸與砂輪軸線方向一致,Xw軸和Yw軸是位于砂輪大端面上相互垂直的兩坐標(biāo)軸;坐標(biāo)系OfXfYfZf固定在微鉆的初始位置,其中Xf軸與Xw軸方向一致,Zf軸沿微鉆軸線方向,Zf軸與Zw軸之間的夾角為λ(即砂輪偏置角度),微鉆中心Of與砂輪中心Ow之間的偏移距離為(aXd,aYd,aZd);坐標(biāo)系OmXmYmZm為刀具的動態(tài)坐標(biāo)系,隨著微鉆的螺旋運動而動態(tài)變化。螺旋槽的包絡(luò)軌跡為
(3)
為了獲得OdXdYdZd坐標(biāo)系中螺旋槽的數(shù)學(xué)模型,對螺旋槽截型數(shù)值解進(jìn)行樣條插值處理,得到螺旋槽截型方程為:Yd=fH(Xd)。螺旋槽曲面是由螺旋槽截型作螺旋運動形成的,因此螺旋槽數(shù)學(xué)方程[14]為
(4)
式中:w和v為螺旋槽表面形狀參數(shù);ZdC為C點在坐標(biāo)系OdXdYdZd中的坐標(biāo)值。
為了分析微鉆幾何結(jié)構(gòu)參數(shù)對切削性能的影響,首先分析具有不同幾何結(jié)構(gòu)參數(shù)微鉆的幾何特性。微鉆幾何結(jié)構(gòu)參數(shù)對切削刃形狀、工作前角、未變形切屑厚度有很大影響,最終影響切屑變形和鉆削力。因此,計算切削刃的動態(tài)前角分布,并推導(dǎo)切削刃形狀和切削厚度。
切削刃上任意一個單元刀具的位置向量設(shè)為p=(Xd,Yd,Zd)。單元刀具前刀面和后刀面的單位法矢量g、h可表示為g=(gXd,gYd,gZd)=(?F0/?Xd, ?F0/?Yd, ?F0/?Zd),h=(hXd,hYd,hZd)=(?F1/?Xd, ?F1/?Yd, ?F1/?Zd),則單元刀具的單位向量為b=(g×h)/|g×h|. 單元切削刃的工作基面Pre、工作切削平面Pse、工作主剖面Poe的單位法矢量r、s、o分別為r=ve/|ve|,s=(ve×b)/|ve×b|,o=s×r. 其中,切削速度為ve=[-2πnYd/60,2πnXd/60,f/60]T,n為主軸轉(zhuǎn)速(r/min),f為進(jìn)給速度(mm/min)。
因此,工作前角γoe[15]為
工作主偏角κre為
未變形切屑厚度ac為
ac=fcos (arcsin(k·r))sinκre/(2n).
基于數(shù)學(xué)模型和幾何原理,使用MATLAB軟件計算工作前角、工作主偏角與未變形切屑厚度的數(shù)值解。微鉆幾何結(jié)構(gòu)參數(shù)如表1所示,表2為砂輪幾何位置參數(shù)。

表1 微鉆幾何結(jié)構(gòu)參數(shù)
圖3為具有不同結(jié)構(gòu)參數(shù)微鉆的切削刃形狀,相應(yīng)的工作前角和未變形切屑厚度如圖4和圖5所示。隨著鋒角增加,主切削刃的曲線化程度增加(見圖3(a)),沿著主切削刃的工作前角有小幅度增加(見圖4(a)),而未變形切屑厚度顯著增加(見圖5(a));隨著螺旋角增加,主切削刃的曲線化程度增加(見圖3(b)),工作前角大幅度增加(見圖4(b)),而未變形切屑厚度沒有明顯變化(見圖5(b));隨著鉆芯厚度增加,橫刃切削長度增加,主切削刃的工作前角降低(見圖4(c)),從而使切屑變形增加、鉆削力增大。

表2 砂輪幾何位置參數(shù)
為了分析微鉆幾何結(jié)構(gòu)參數(shù)對其切削性能的影響,基于正交試驗方法,對微鉆幾何結(jié)構(gòu)進(jìn)行優(yōu)化。微鉆幾何結(jié)構(gòu)參數(shù)包括鋒角、鉆芯厚度、螺旋角、橫刃斜角和后角等,其中鋒角、鉆芯厚度和螺旋角對刀具鉆削性能影響很大。對于整體硬質(zhì)合金微鉆,鋒角、鉆芯厚度和螺旋角的取值范圍一般分別為100°~140°、0.2d~0.4d和20°~40°. 因此本文對3個因素各取3個水平值,見表3. 根據(jù)試驗因子數(shù)和水平數(shù)選定L9(3)型正交表,具體實驗方案見表4.
9種非共軸螺旋后刀面微鉆的幾何結(jié)構(gòu)如圖6所示。使用DEFORM軟件進(jìn)行鉆削仿真,有限元模型如圖7所示。為了提高計算效率,刀具模型為參與切削的鉆尖部位,工件模型為具有錐形表面的圓柱體,其錐面表面為切削刃掃掠形成,可以快速達(dá)到穩(wěn)定階段。設(shè)置鉆頭類型為剛體類型,工件為塑性體類型。采用自適應(yīng)網(wǎng)格劃分技術(shù)來劃分網(wǎng)格,并將工件材料中欲切除部分和鉆尖切削刃附近的網(wǎng)格進(jìn)行劃分,微細(xì)鉆削參數(shù)見表5.

表3 微鉆幾何結(jié)構(gòu)參數(shù)優(yōu)化因素水平表

表4 鉆尖結(jié)構(gòu)正交試驗表

表5 微細(xì)鉆削有限元仿真參數(shù)
當(dāng)鉆削深度為0.1 mm時,9組不同結(jié)構(gòu)參數(shù)微鉆的切屑形態(tài)仿真結(jié)果如圖8所示。由圖8可見:隨著鋒角增大,橫刃動態(tài)前角降低,增加了切屑變形;隨著鉆芯厚度增大,切削刃有效長度變小,實驗3、實驗6、實驗9的切屑寬度明顯小于其他實驗;隨著螺旋角增大,切削刃曲線化程度增加(見圖3(b)),主切削刃工作前角梯度減小,βh=20°時主切削刃內(nèi)外緣點前角相差58°,βh=40°時主切削刃內(nèi)外緣點前角相差50°(見圖4(b))。切屑沿主切削刃各點的流動速度梯度降低,造成切屑的側(cè)卷和上卷趨勢減弱,切屑軸線與鉆頭軸線夾角較小,最終形成帶狀切屑,如圖8所示的實驗3、實驗5、實驗7.
9組不同結(jié)構(gòu)參數(shù)的微鉆鉆削軸向力FZd、扭矩MZd和最高溫度T仿真結(jié)果及極差分析結(jié)果分別見表6和表7,相應(yīng)的均值主效應(yīng)圖如圖9、圖10、圖11所示。由極差分析結(jié)果可知,極差R2t>Rβh>R2ρ,因此對于軸向力、扭矩和溫度3個指標(biāo)的影響因素主次順序為鉆芯厚度>螺旋角>鋒角。由此可見,在所選范圍內(nèi),隨著鋒角增大,主切削刃動態(tài)前角增大(見圖4(a)),并增大了切削厚度(見圖5(a)),橫刃動態(tài)前角降低,增大了切屑變形,因此軸向力增大而扭矩降低,最終溫度有所下降。隨著鉆芯厚度增大,橫刃上的有效切削長度增大,螺旋槽排屑空間減小,增大了切屑與螺旋槽的摩擦,導(dǎo)致軸向力、扭矩和溫度均大幅度增大。隨著螺旋角增大,主切削刃前角增大(見圖4(b)),切削刃更加鋒利,從而有效地降低了鉆削力和溫度。

表6 不同結(jié)構(gòu)參數(shù)的微鉆鉆削力和溫度仿真結(jié)果

表7 不同結(jié)構(gòu)參數(shù)的微鉆鉆削力和溫度極差
綜上所述,根據(jù)軸向力仿真結(jié)果,得到微鉆最佳結(jié)構(gòu)參數(shù)組合為:鋒角2ρ為100°、鉆芯厚度2t為0.2d、螺旋角βh為40°;根據(jù)扭矩和溫度仿真結(jié)果,得到微鉆最佳結(jié)構(gòu)參數(shù)組合為:鋒角2ρ為140°、鉆芯厚度2t為0.2d、螺旋角βh為40°. 由圖8可知:當(dāng)螺旋角增大為40°時,切屑為帶狀長屑,其軸線與鉆頭軸線夾角較小,切屑容易纏繞在刀體上,造成鉆頭折斷;當(dāng)螺旋角為20°時,微鉆排屑性能最好,但是產(chǎn)生的軸向力與扭矩最大,鉆削溫度最高,因此建議選擇螺旋角為30°. 鋒角對軸向力影響規(guī)律與對扭矩和溫度影響規(guī)律相反,在鉆削304不銹鋼過程中,由于材料導(dǎo)熱系數(shù)較低,刀具粘結(jié)磨損嚴(yán)重,而小的鋒角會引起溫度明顯升高,因此建議鋒角選擇120°,其軸向力小于鋒角140°微鉆,扭矩與溫度小于鋒角100°微鉆。因此,在僅考慮刀具鉆削性能條件下,微鉆較優(yōu)結(jié)構(gòu)參數(shù)組合如下:鋒角2ρ為120°、鉆芯厚度2t為0.2d、螺旋角βh為30°.
采用日本牧野精機(jī)株式會社生產(chǎn)的CNS7d數(shù)控工具磨床對非共軸螺旋后刀面微鉆進(jìn)行刃磨制備,機(jī)床運動原理如圖12所示。在刃磨過程中,微鉆裝卡在A軸上,能實現(xiàn)沿Y軸、U軸的移動以及繞W軸、A軸的旋轉(zhuǎn),與此同時砂輪能實現(xiàn)沿X軸和Z軸的移動。微鉆刃磨過程包括后刀面加工、螺旋槽加工兩個方面,需要使用兩種類型砂輪完成。圖13為微鉆刃磨所需砂輪安裝示意圖和砂輪幾何結(jié)構(gòu)示意圖。采用形狀參數(shù)Dw1=80 mm,t1=3 mm的砂輪1完成后刀面刃磨工序;采用形狀參數(shù)Dw2=135 mm,t2=4 mm,η=π/4 rad的砂輪2完成螺旋槽刃磨工序。
基于Liang等[12]提出的一種五軸聯(lián)動刃磨方法,磨制直徑0.5 mm的硬質(zhì)合金微鉆,鉆頭整體結(jié)構(gòu)如圖14所示。采用日本Keyence公司生產(chǎn)的VK-X100激光掃描顯微鏡和德國蔡司公司生產(chǎn)的V12連續(xù)變倍體視顯微鏡對磨削制備出的微鉆進(jìn)行觀察和測量,非共軸螺旋后刀面微鉆如圖15所示,相應(yīng)的設(shè)計值與實測值如表8所示。微鉆直徑、鉆芯厚度和螺旋角的實測值與設(shè)計值誤差小于3%,非共軸螺旋后刀面微鉆幾何參數(shù)(鋒角、橫刃斜角、后角、尾隙角)的實測值與設(shè)計值誤差小于5%,因此,磨制出的非共軸螺旋后刀面微鉆幾何參數(shù)與預(yù)先設(shè)計的幾何參數(shù)基本一致。

表8 微鉆幾何結(jié)構(gòu)參數(shù)的設(shè)計值與實測值
為了驗證本文優(yōu)化結(jié)構(gòu)參數(shù)下非共軸螺旋后刀面微鉆的鉆削性能,在主軸轉(zhuǎn)速n為14 000 r/min、進(jìn)給速度f為28 mm/min、鉆削深度為0.8 mm條件下,基于德國德瑪吉機(jī)床有限公司生產(chǎn)的DMU80 monoBLOCK加工中心,對304不銹鋼材料進(jìn)行鉆削試驗研究。試驗裝置如圖16所示。
非共軸螺旋后刀面微鉆所加工的微小孔入孔形貌如圖17所示。采用日本Keyence公司生產(chǎn)的VK-X100三維激光掃描顯微鏡對微孔圓度進(jìn)行測量,測量方法如圖18所示,測量4個方向的微小孔直徑D1、D2、D3、D4,取圓度誤差為Dmax-Dmin,圓度誤差測量值為2.631 μm,微小孔具有較高的形狀精度。因此,經(jīng)仿真優(yōu)化的微鉆取得較好的試驗結(jié)果,驗證了本文優(yōu)化結(jié)構(gòu)參數(shù)下非共軸螺旋后刀面微鉆良好的鉆削性能。
本文分析了非共軸螺旋后刀面微鉆幾何結(jié)構(gòu)參數(shù)對不銹鋼材料鉆削性能影響,提出了微鉆螺旋槽和后刀面的數(shù)學(xué)模型,計算了具有不同幾何參數(shù)的微鉆切削刃形狀、前角和未變形切屑厚度。基于DEFORM有限元鉆削仿真,使用9種不同鋒角、鉆芯厚度與螺旋角的微鉆,對不銹鋼材料進(jìn)行了鉆削仿真實驗,通過分析鉆削力、溫度、切屑形態(tài),得出以下結(jié)論:
1)非共軸螺旋后刀面微鉆幾何結(jié)構(gòu)對鉆削304不銹鋼材料鉆削性能影響的主次順序為鉆芯厚度>螺旋角>鋒角。
2)隨著鋒角增加,切削刃曲線化程度增加,沿著主切削刃的工作前角有小幅度增加,而未變形切屑厚度顯著增加,造成軸向力增大,扭矩和溫度降低。
3)隨著螺旋角增加,工作前角大幅度增加,而未變形切屑厚度沒有明顯變化,造成鉆削力和溫度降低,但當(dāng)螺旋角為40°時,產(chǎn)生帶狀切屑,容易阻塞螺旋槽,引起刀具折斷。
4)隨著鉆芯厚度增加,橫刃切削長度增加,切削刃工作前角降低,使鉆削力和鉆削溫度增大,切屑寬度減小。
5)在綜合考慮微鉆排屑能力、鉆削力和鉆削溫度條件下,選擇非共軸螺旋后刀面微鉆的最佳參數(shù)為:鋒角120°,鉆芯厚度0.2d,螺旋角30°;基于五軸聯(lián)動刃磨方法,刃磨制備該參數(shù)下直徑為0.5 mm、長度為1.5 mm的非共軸螺旋后刀面微鉆,磨制出的非共軸螺旋后刀面微鉆幾何參數(shù)與預(yù)先設(shè)計的幾何參數(shù)一致,微細(xì)鉆削試驗研究結(jié)果表明,本文優(yōu)化結(jié)構(gòu)參數(shù)下的微鉆具有良好鉆削性能。
參考文獻(xiàn)(References)
[1] 張好強(qiáng), 王莉娜, 安立寶,等. 0Cr18Ni9不銹鋼的微小孔鉆削[J]. 制造技術(shù)與機(jī)床, 2015, 19(10):111-115.
ZHANG Hao-qiang, WANG Li-na, AN Li-bao, et al.Micro-hole drilling of 0Cr18Ni9 stainless steel[J]. Manufacturing Technology & Machine Tool,2015, 19(10):111-115.(in Chinese)
[2] 唐英, 陳澤, 吳權(quán). 淬硬鋼高速微小孔鉆削工藝試驗研究[J]. 工具技術(shù), 2011, 45(2):67-72.
TANG Ying, CHEN Ze, WU Quan. Experimental study of high speed micro-drilling on hardened steel[J]. Tool Engineering, 2011, 45(2):67-72.(in Chinese)
[3] Fu L Y, Li X G, Guo Q. Development of a micro drill bit with a high aspect ratio[J]. Circuit World, 2010, 36(4): 30-34.
[4] Fu L Y, Guo Q. Development of an ultra-small micro drill bit for packaging substrates[J]. Circuit World, 2010, 36(3): 23-27.
[5] Zheng X H, Dong D, Huang L, et al. Research on fixture hole drilling quality of printed circuit board[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(4): 525-534.
[6] Zheng X H, Liu Z Q, An Q L, et al. Experimental investigation of microdrilling of printed circuit board[J]. Circuit World, 2013, 39(2): 82-94.
[7] Liang Z Q, Zhang S Y, Wang X B. Research on the drilling performance of helical point micro drill with different geometry parameters[J]. Micromachines, 2017, 8(7):208-216.
[8] Yoon H S, Wu R, Lee T M, et al. Geometric optimization of micro drills using Taguchi methods and response surface methodology[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(5): 871-875.
[9] Lin C, Kang S K, Ehmann K F. Planar micro-drill point design and grinding methods[J]. Transactions of the North American Manufacturing Research Institution of SME, 1992, 20: 173-179.
[10] Chyan H C, Ehmann K F. Development of curved helical micro-drill point technology for micro-hole drilling[J]. Mechatronics, 1998,8(4): 337-358.
[11] Zhang S Y, Liang Z Q, Wang X B, et al. Grinding process of helical micro-drill using a six-axis CNC grinding machine and its fundamental drilling performance[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(9/10/11/12): 2823-2835.
[12] Liang Z Q, Jian H C, Wang X B, et al. A 5-axis coordinated CNC grinding method for the flank of a non-coaxial helical micro-drill with the cylinder grinding wheel[J]. Advanced Materials Research, 2014, 1017:654-659.
[13] Yan L, Jiang F. A practical optimization design of helical geometry drill point and its grinding process[J]. International Journal of Advanced Manufacturing Technology, 2013, 64(9/10/11/12):1387-1394.
[14] Zhang S Y, Wang X B, Liang Z Q, et al. Modeling and optimization of the flute profile of micro-drill[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(5/6/7/8):2939-2952.
[15] Wang J L. Development of new drilling force models for improving drill point geometries [J]. Saturday Evening Post, 1994, 128(3):438-446.