李鵬飛,孟金柱,景炅婕,畢錫麟,王鍇,朱芷葳,呂麗華
?
轉(zhuǎn)錄組測(cè)序篩選牛卵泡發(fā)育相關(guān)基因及其表達(dá)差異分析
李鵬飛1,孟金柱2,景炅婕3,畢錫麟3,王鍇3,朱芷葳1,呂麗華3
(1山西農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,山西太谷 030801;2銅仁學(xué)院烏江學(xué)院,貴州銅仁 554300;3山西農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,山西太谷 030801)
【目的】通過(guò)不同生理狀態(tài)牛卵泡高通量測(cè)序篩選與卵泡發(fā)育相關(guān)的基因。【方法】母牛同期發(fā)情后,B超聲波連續(xù)監(jiān)測(cè)并適時(shí)采集第一卵泡波出現(xiàn)偏差前的最大卵泡(the largest follicle at predeviation,PDF1)和第二大卵泡(the second largest follicle at predeviation,PDF2),構(gòu)建RNA文庫(kù)后Illumina平臺(tái)測(cè)序,經(jīng)數(shù)據(jù)庫(kù)比對(duì),設(shè)定參數(shù)篩選高表達(dá)基因、差異表達(dá)基因并進(jìn)行GO分析,Genecards基因功能查詢(xún)進(jìn)一步篩選與卵泡發(fā)育直接相關(guān)的調(diào)控基因,qRT-PCR對(duì)篩選的基因進(jìn)行表達(dá)量驗(yàn)證分析。【結(jié)果】?jī)蓚€(gè)轉(zhuǎn)錄本中共獲得263個(gè)差異表達(dá)基因;GO功能聚類(lèi)分析共分為三大類(lèi)90組:其中生物學(xué)過(guò)程占64.4%,細(xì)胞組分占17.8%,分子功能占17.8%;獲得一些重要的功能富集通路,如調(diào)控信號(hào)轉(zhuǎn)導(dǎo)和細(xì)胞因子應(yīng)答的生物途徑;基因表達(dá)量分析篩選出10個(gè)高表達(dá)的上調(diào)和下調(diào)基因,獲得參與雌激素合成和胎兒性別發(fā)育的、參與類(lèi)固醇激素合成的、細(xì)胞發(fā)育過(guò)程中調(diào)節(jié)細(xì)胞凋亡的以及調(diào)節(jié)ERK和MEK1/2信號(hào)通路的。Genecards功能查詢(xún)共獲得6個(gè)基因與卵泡發(fā)育關(guān)系較為密切,其中上調(diào)基因分別為;下調(diào)基因?yàn)楹停籷RT-PCR結(jié)果顯示,和在DF中的表達(dá)量顯著高于SF(<0.05),在SF中的表達(dá)量極顯著高于DF(<0.01),和在DF和SF中的表達(dá)量不存在顯著差異(>0.05),但其表達(dá)變化趨勢(shì)與高通量測(cè)序結(jié)果相一致。【結(jié)論】轉(zhuǎn)錄組測(cè)序結(jié)果真實(shí)可靠,和在卵泡發(fā)育過(guò)程中發(fā)揮正調(diào)控作用,在卵泡發(fā)育過(guò)程中發(fā)揮負(fù)調(diào)控作用,獲得的牛卵泡發(fā)育相關(guān)基因和重要調(diào)節(jié)途徑,對(duì)后期深入探討卵泡發(fā)育調(diào)控機(jī)理的研究具有重要意義。
牛;卵泡;轉(zhuǎn)錄組;PDF1;PDF2;發(fā)育
【研究意義】卵泡發(fā)育是一個(gè)復(fù)雜的生理過(guò)程,受動(dòng)物遺傳、體況、內(nèi)分泌激素和卵泡內(nèi)生長(zhǎng)因子等多方面因素的綜合調(diào)控。目前,對(duì)卵泡發(fā)育影響的研究多集中在單胎動(dòng)物上,基因組測(cè)序技術(shù)的發(fā)展,為其生物學(xué)研究提供了更全面、便利的平臺(tái)。本研究通過(guò)對(duì)不同生理狀態(tài)牛卵泡的高通量測(cè)序來(lái)篩選與卵泡發(fā)育相關(guān)的基因,對(duì)全面分析牛卵泡發(fā)育的關(guān)鍵調(diào)控因子具有重要意義,同時(shí)為闡明牛卵泡發(fā)育的調(diào)控機(jī)理奠定基礎(chǔ)?!厩叭搜芯窟M(jìn)展】在卵泡發(fā)育過(guò)程中,基因轉(zhuǎn)錄和蛋白表達(dá)等一系列關(guān)鍵事件是通過(guò)特定基因順序表達(dá)基礎(chǔ)上完成的,是調(diào)控卵泡募集、選擇及卵泡細(xì)胞凋亡的內(nèi)在因素[1]。因此,研究者通過(guò)基因芯片和新一代高通量測(cè)序技術(shù)對(duì)影響動(dòng)物卵泡發(fā)育的相關(guān)調(diào)控基因展開(kāi)了研究,TERENINA等[2]通過(guò)基因芯片技術(shù)對(duì)豬閉鎖卵泡和健康卵泡顆粒細(xì)胞(granulesa cells, GCs)全基因表達(dá)譜進(jìn)行分析,共發(fā)現(xiàn)1 684個(gè)差異表達(dá)的調(diào)控基因,其中兩個(gè)轉(zhuǎn)錄組共有287個(gè)高表達(dá)基因,有11個(gè)差異表達(dá)基因(和)可能是卵泡閉鎖的標(biāo)記基因。TICIANELLI等[3]對(duì)不同品種牛和不同應(yīng)激溫度處理組卵泡的卵母細(xì)胞、卵丘細(xì)胞進(jìn)行轉(zhuǎn)錄組分析,共獲得127個(gè)卵泡發(fā)育相關(guān)基因,qRT-PCR檢測(cè)發(fā)現(xiàn)在荷斯坦奶牛卵泡細(xì)胞中表達(dá)顯著上調(diào),促凋亡基因和膜轉(zhuǎn)運(yùn)基因則顯著下調(diào)。課題組前期也通過(guò)Illumina測(cè)序平臺(tái)對(duì)牛第一卵泡波的最大卵泡(PDF1)和出現(xiàn)優(yōu)勢(shì)化的最大卵泡ODF1進(jìn)行轉(zhuǎn)錄組測(cè)序,獲得的83個(gè)差異表達(dá)基因中,有42個(gè)屬于上調(diào)基因,41個(gè)屬于下調(diào)基因,其中和被認(rèn)為是與牛卵泡發(fā)育密切相關(guān),如和直接參與類(lèi)固醇激素的生物合成[4]?!颈狙芯壳腥朦c(diǎn)】PDF1和第一卵泡波的第二大卵泡(PDF2)是牛卵泡發(fā)育波中具有顯著生理特征的兩個(gè)發(fā)育階段,隨著卵泡的進(jìn)一步發(fā)育,PDF1最終可能出現(xiàn)優(yōu)勢(shì)化進(jìn)而成為優(yōu)勢(shì)卵泡(dominant follicles, DF),而PDF2卵泡必將成為從屬卵泡(subordinate follicles, SF),本研究以牛第一卵泡波PDF1和PDF2作為研究對(duì)象篩選卵泡發(fā)育相關(guān)基因,并通過(guò)qRT-PCR交叉檢測(cè)DF和SF中這些基因的表達(dá)譜,具有可靠的理論依據(jù)?!緮M解決的關(guān)鍵問(wèn)題】試驗(yàn)中運(yùn)用轉(zhuǎn)錄組測(cè)序技術(shù)、qRT-PCR技術(shù)研究影響牛卵泡發(fā)育的調(diào)控基因,并從功能上進(jìn)行驗(yàn)證分析,提高了卵泡發(fā)育基因篩選的準(zhǔn)確性。
選取8頭10月齡海福特青年母牛(2013年9月),同期發(fā)情(前列腺素F2α)處理后,B超聲波監(jiān)測(cè)并記錄卵泡的生長(zhǎng)狀況,山西省文水縣胡蘭鎮(zhèn)肉牛屠宰廠(chǎng)屠宰并采集第一卵泡波優(yōu)勢(shì)化前的PDF1(直徑6—8 mm)和PDF2(直徑5—6 mm),該階段的卵泡處于發(fā)情開(kāi)始5 d內(nèi)[5-6]。qRT-PCR試驗(yàn)中DF和SF的采集通過(guò)卵泡黃體形態(tài)觀(guān)察和雌激素/孕酮比值進(jìn)行確定,具體方法參照課題組前期研究[7]。采集后的雙側(cè)卵巢放入滅菌的DPBS中,實(shí)驗(yàn)室分離GCs。
1.2.1 Illumina平臺(tái)測(cè)序 分離PDF1和PDF2卵泡GCs,提取總RNA后Illumina平臺(tái)對(duì)PDF1和PDF2轉(zhuǎn)錄組測(cè)序,具體方法參照課題組前期研究[4, 8]。
1.2.2 差異表達(dá)基因的篩選及GO分析 參照AUDIC等[9]的算法,將Illumina平臺(tái)對(duì)PDF1和PDF2測(cè)序得到的結(jié)果進(jìn)行數(shù)據(jù)庫(kù)比對(duì),設(shè)定RPKM≥0.5,獲得有意義的表達(dá)基因;設(shè)定參數(shù):PDF1 RPKM /PDF2 RPKM>2及PDF2 RPKM /PDF1 RPKM>2,F(xiàn)DR校正的-value<0.05,獲得差異表達(dá)基因;應(yīng)用DAVID v6.8對(duì)獲得的差異表達(dá)基因進(jìn)行GO(Gene ontology)功能顯著性富集分析(-value<0.05),Excel作圖。
1.2.3 反轉(zhuǎn)錄及引物設(shè)計(jì) 提取DF和SF顆粒細(xì)胞總RNA,反轉(zhuǎn)錄反應(yīng)條件為:7℃15 min,85℃5 s,-20℃保存;參考NCBI上提交的()各基因的序列,Primer 3.0設(shè)計(jì)引物(表1),將作為內(nèi)參基因,引物合成由北京六合華大完成。

表1 熒光定量引物
1.2.4 qRT-PCR檢測(cè) 依據(jù)qRT-PCR檢測(cè)技術(shù)要求,數(shù)據(jù)需經(jīng)內(nèi)參基因校正、物理校正和重復(fù)校正,擴(kuò)增前先制作標(biāo)準(zhǔn)曲線(xiàn)。根據(jù)標(biāo)準(zhǔn)曲線(xiàn)和不同基因的擴(kuò)增條件進(jìn)行qRT-PCR反應(yīng),構(gòu)建20 μL反應(yīng)體系,試驗(yàn)流程參照qRT-PCR說(shuō)明書(shū)進(jìn)行;反應(yīng)條件:95℃變性10 s,95℃5 s,60℃25 s,40個(gè)循環(huán)。
采用△△CT法計(jì)算各目的基因的相對(duì)表達(dá)量,各基因的相對(duì)表達(dá)水平=2–△△CT。結(jié)果采用均值±標(biāo)準(zhǔn)差表示,各基因的表達(dá)量經(jīng)內(nèi)參基因0表達(dá)量校正,設(shè)定在DF的表達(dá)量作為對(duì)照組[10],實(shí)驗(yàn)數(shù)據(jù)運(yùn)用SPSS(V 18.0)統(tǒng)計(jì)軟件進(jìn)行t檢驗(yàn)分析。
將Illumina平臺(tái)對(duì)PDF1和PDF2測(cè)序得到的結(jié)果進(jìn)行數(shù)據(jù)庫(kù)比對(duì),設(shè)定RPKM≥0.5,共獲得15 760個(gè)基因,表2中列出了表達(dá)量最高的10個(gè)基因,從中可以發(fā)現(xiàn)一些基因是已經(jīng)明確了與卵泡發(fā)育直接相關(guān),如卵泡抑素(follistatin, FST)和抑制素β(inhibin, beta A,INHBA)都屬于負(fù)調(diào)控卵泡發(fā)育的因子。

表2 轉(zhuǎn)錄組PDF1和PDF2中表達(dá)量最高的10個(gè)基因
數(shù)據(jù)庫(kù)比對(duì)結(jié)果設(shè)定參數(shù):RPKM≥0.5,PDF1-RPKM /PDF2-RPKM>2,F(xiàn)DR校正<0.05,共獲得196差異表達(dá)基因,表3列出了前10個(gè)高差異上調(diào)基因及其功能;設(shè)定參數(shù)PDF2-RPKM /PDF1-RPKM>2,F(xiàn)DR校正<0.05,共獲得67差異表達(dá)基因,表4列出了前10個(gè)高差異下調(diào)基因及其功能。應(yīng)用DAVID v6.8對(duì)263個(gè)篩選出的差異表達(dá)基因進(jìn)行GO功能聚類(lèi)分析,共分為三大類(lèi)90組:其中生物學(xué)過(guò)程占64.4%,細(xì)胞組分占17.8%,分子功能占17.8%(圖1)。

餅狀圖數(shù)字表示基因富集數(shù) The numbers in pie chart represent the numbers of gene enrichment

表3 轉(zhuǎn)錄組PDF1和PDF2中的上調(diào)基因及其功能

表4 轉(zhuǎn)錄組PDF1和PDF2中的下調(diào)基因及其功能
篩選出的263個(gè)差異表達(dá)基因,經(jīng)Genecards功能查詢(xún)分析,共獲得6個(gè)基因與卵泡發(fā)育關(guān)系較為密切。其中上調(diào)基因分別為;下調(diào)基因?yàn)楹停ū?)。qRT-PCR分析結(jié)果顯示(圖2),6個(gè)基因在DF和SF的表達(dá)變化趨勢(shì)與高通量測(cè)序結(jié)果相一致,其中和在DF中的表達(dá)量顯著高于SF(<0.05);CPXM1在SF中的表達(dá)量極顯著高于DF(<0.01);和在DF和SF中的表達(dá)量不存在顯著差異(>0.05)。
動(dòng)物卵泡發(fā)育是一個(gè)復(fù)雜的生理過(guò)程,受到基因、蛋白水平以及內(nèi)分泌激素等多方面調(diào)控,因此,動(dòng)物卵泡發(fā)育的關(guān)鍵調(diào)控因子及作用機(jī)理仍不明確。轉(zhuǎn)錄組水平的研究是對(duì)特定組織或細(xì)胞在不同生理狀態(tài)下所有RNA轉(zhuǎn)錄集合的全方位分析,其顯著特點(diǎn)是測(cè)序通量高,可深度挖掘研究對(duì)象中各基因表達(dá)的細(xì)微變化[11-12]。與基因芯片技術(shù)相比較,新一代測(cè)序技術(shù)在基因挖掘、表達(dá)靈敏度方面優(yōu)勢(shì)明顯;MARIONI等[13]對(duì)動(dòng)物組織采用基因芯片和新一代測(cè)序技術(shù)進(jìn)行了對(duì)比研究,發(fā)現(xiàn)在相同的FDR校正下,Illumina技術(shù)獲得的差異表達(dá)基因比基因芯片多檢測(cè)出30%;同時(shí),Illumina測(cè)序結(jié)果重復(fù)性好,技術(shù)誤差也較小[14]。因此,本試驗(yàn)通過(guò)Illumina技術(shù)對(duì)牛卵泡轉(zhuǎn)錄組PDF1和PDF2進(jìn)行深度測(cè)序,結(jié)合Genecards功能查詢(xún)共篩選出6個(gè)差異表達(dá)基因與卵泡發(fā)育相關(guān);經(jīng)qRT-PCR檢測(cè)確定了各基因差異表達(dá)趨勢(shì)與轉(zhuǎn)錄組測(cè)序結(jié)果相一致,其中和在DF中的表達(dá)量顯著高于SF(<0.05),CPXM1在SF中的表達(dá)量極顯著高于DF(<0.01)。

表5 PDF1/PDF2和PDF2/PDF1轉(zhuǎn)錄本中篩選卵泡發(fā)育相關(guān)基因

**和*分別表示在顯著水平0.01和0.05的結(jié)果 Superscript ** and * indicate significantly different at the level of 0.05 and 0.01
PRSS35(Serine protease 35)是以絲氨酸為活性中心的蛋白水解酶,在動(dòng)物體內(nèi)主要通過(guò)抑制或激活蛋白酶原,參與蛋白質(zhì)的合成與降解[15]。其生理功能的執(zhí)行主要通過(guò)絲氨酸蛋白酶抑制劑(serine protease inhibitor,SPI)的調(diào)節(jié),在病原入侵、細(xì)胞分化、組織重建、血管形成和胚胎發(fā)育等過(guò)程中都發(fā)揮著重要作用[16]。WAHLBERG等通過(guò)基因芯片技術(shù)對(duì)參與小鼠排卵期的蛋白酶進(jìn)行了鑒定,其中,在促性腺激素誘導(dǎo)下表達(dá)上調(diào);深入研究促性腺激素誘導(dǎo)的未性成熟的小鼠和假孕小鼠黃體期的表達(dá)譜發(fā)現(xiàn),在發(fā)育卵泡的膜細(xì)胞層表達(dá),并強(qiáng)烈誘導(dǎo)排卵期前的卵泡GCs表達(dá)該基因;同時(shí),在黃體的形成和退化過(guò)程中也有表達(dá);這些結(jié)果表明PRSS35可能參與了動(dòng)物排卵以及黃體的形成和退化[17]。LI等研究也表明PRSS35在排卵期和黃體期存在較高水平的表達(dá),類(lèi)固醇替代實(shí)驗(yàn)研究表明卵泡破裂之前的mRNA的表達(dá)依賴(lài)于黃體酮的調(diào)節(jié)[18]。
ARID(AT rich interactive domain)即核苷酸AT富集區(qū)域,主要存在于DNA雙螺旋大溝中,該區(qū)域呈螺旋-轉(zhuǎn)角-螺旋結(jié)構(gòu),在生物進(jìn)化過(guò)程中高度保守。該特殊區(qū)域最先在果蠅Dri基因[19]以及鼠特異性轉(zhuǎn)錄因子[20]上發(fā)現(xiàn)。目前,在人和動(dòng)物中共發(fā)現(xiàn)15個(gè)ARID家族基因,7個(gè)亞家族之間ARID結(jié)構(gòu)域的核苷酸和氨基酸序列相似性均較低[21]。ARID蛋白家族在動(dòng)物體內(nèi)執(zhí)行廣泛的生理功能,如在基因表達(dá)調(diào)控、細(xì)胞分化、增殖和分裂以及染色體重塑過(guò)程中發(fā)揮重要作用[22]。ARID4有ARID4A和ARID4B兩個(gè)異構(gòu)體,二者氨基酸序列相似性為74%,其顯著特點(diǎn)是二者均包含一個(gè)TD(Tudor domain)和CD(Chrome domain)結(jié)構(gòu)域。CAO等研究表明在細(xì)胞生長(zhǎng)間期,ARID4過(guò)表達(dá)會(huì)引起轉(zhuǎn)錄因子E2F依賴(lài)性基因轉(zhuǎn)錄沉默,抑制細(xì)胞進(jìn)入DNA合成期,從而阻礙細(xì)胞正常生長(zhǎng),這表明ARID4具有轉(zhuǎn)錄抑制活性[23]。動(dòng)物正常組織中,ARID4B的表達(dá)具有規(guī)律性并受到嚴(yán)格限制,由于其在人癌組織表達(dá)豐富,ARID4B通常作為標(biāo)記物用于早期腫瘤檢測(cè)[24]。本研究發(fā)現(xiàn),ARID4B在牛第一卵泡波DF顆粒細(xì)胞中表達(dá)量顯著高于SF(<0.05),而第一卵泡波中的DF最終不排卵,因此,ARID4B可能在DF的生長(zhǎng)發(fā)育過(guò)程中阻礙顆粒細(xì)胞的增殖和雌激素的分泌,從而抑制了排卵。
羧肽酶(carboxypeptidases)是專(zhuān)一性從多肽鏈C-末端逐個(gè)降解并釋放游離氨基酸的肽鏈外切酶,在生物體各組織器官中廣泛分布,發(fā)揮重要生理功能[25]。羧肽酶依據(jù)活性中心金屬離子和氨基酸殘基的不同,可分為半胱氨酸羧肽酶、金屬羧肽酶、絲氨酸羧肽酶[26]。編碼金屬羧肽酶蛋白(carboxypeptidase X, Member 1,CPXM1)也稱(chēng)為CPX1,其氨基酸序列中包含有一個(gè)由160個(gè)氨基酸構(gòu)成的DSD蛋白結(jié)合后區(qū)域[27]。GO功能聚類(lèi)分析顯示,CPXM1具有金屬羧肽酶活性并與鋅離子連接有關(guān),其功能是將肽鏈C-末端降解為精氨酸和賴(lài)氨酸短肽,選擇性地對(duì)肽類(lèi)激素進(jìn)行加工和修飾[28]。有研究表明,小鼠通過(guò)基因點(diǎn)突變?cè)斐蓹C(jī)體羧肽酶E缺乏,但小鼠仍具有完整的神經(jīng)內(nèi)分泌調(diào)節(jié)能力,這表明各類(lèi)羧肽酶之間肽類(lèi)激素加工及其調(diào)節(jié)存在相互替代的現(xiàn)象;進(jìn)一步通過(guò)原位雜交對(duì)小鼠胚胎和胎兒組織研究發(fā)現(xiàn),從頭到胸部CPXM1均有表達(dá),提示神經(jīng)內(nèi)分泌肽可能通過(guò)CPXM1的加工,實(shí)現(xiàn)對(duì)細(xì)胞間相互作用的調(diào)節(jié),從而對(duì)細(xì)胞生長(zhǎng)和發(fā)育產(chǎn)生調(diào)控作用[29]。目前對(duì)CPXM1功能研究的相關(guān)報(bào)道較少,UEHIRO等[30]研究表明,CPXM1的表達(dá)受表觀(guān)遺傳調(diào)控,在乳腺癌發(fā)展過(guò)程中作為腫瘤抑制基因存在。
綜上所述,通過(guò)轉(zhuǎn)錄組數(shù)據(jù)分析并結(jié)合Genecards功能查詢(xún)篩選調(diào)控卵泡發(fā)育相關(guān)基因,為進(jìn)一步對(duì)影響卵泡發(fā)育各信號(hào)通路關(guān)鍵蛋白的功能研究及調(diào)控網(wǎng)絡(luò)基因擾動(dòng)研究提供了依據(jù),也為深入探討卵泡發(fā)育調(diào)控機(jī)理奠定了基礎(chǔ)。
牛第一卵泡波的最大卵泡和第二大卵泡轉(zhuǎn)錄組測(cè)序共獲得15 760個(gè)轉(zhuǎn)錄本,其中篩選出263個(gè)差異表達(dá)基因;經(jīng)Genecards基因功能注釋分析,4個(gè)上調(diào)基因和2個(gè)下調(diào)基因,與卵泡發(fā)育相關(guān);qRT-PCR分析表明,和在優(yōu)勢(shì)卵泡和從屬卵泡表達(dá)量存在顯著差異,推測(cè)在牛卵泡發(fā)育過(guò)程中可能參與了卵泡的優(yōu)勢(shì)化或閉鎖。
[1] BEG M A, BERGFELT D R, KOT K, GINTHER O J. Follicle selection in cattle: dynamics of follicular fluid factors during development of follicle dominance., 2002, 66(1): 120-126.
[2] TERENINA E, FABRE S, BONNET A, MONNIAUX D, ROBERT- GRANIé C, SANCRISTOBAL M, SARRY J, VIGNOLES F, GONDRET F, MONGET P, TOSSER-KLOPP G. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia., 2017, 49(2):67-80.
[3] TICIANELLI J S, EMANUELLI I P, SATRAPA R A, CASTILHO A C, LOUREIRO B, SUDANO M J, FONTES P K, PINTO R F, RAZZA E M, SURJUS R S, SARTORI R, ASSUMPCAO M E, VISINTIN J A, BARROS C M, PAULA-LOPES F F. Gene expression profile in heat-shocked Holstein and Nelore oocytes and cumulus cells., 2016, doi: 10.1071/ RD16154.
[4] LI P, MENG J, LIU W, SMITH G W, YAO J, LYU L. Transcriptome analysis of bovine ovarian follicles at predeviation and onset of deviation stages of a follicular wave., 2016, doi:10.1155/2016/3472748.
[5] SAVIO J D, KEENAN L, BOLAND M P, ROCHE J F. Pattern of growth of dominant follicles during the oestrous cycle of heifers., 1988, 83(2):663-671.
[6] SIROIS J, FORTUNE J E. Ovarian follicular dynamics during the estrous cycle in heifers monitored by real-time ultrasonography., 1988, 39(2):308-317.
[7] 李鵬飛,畢錫麟,王鍇,景炅婕,呂麗華. CART在不同發(fā)育階段牛卵泡顆粒細(xì)胞中的表達(dá)和定位. 中國(guó)農(nóng)業(yè)科學(xué),2016, 49(12): 2389-2396.
LI P F, BI X L, WANG K, JING J J, Lü L H. Research on the expression and localization of CART in bovine granulosa cells at different developmental stages., 2016, 49(12):2389-2396. (in Chinese)
[8] 李鵬飛, 孟金柱, 謝建山, 朱芷葳, 劉巖, 姜曉龍, 陳建偉, 姚曉磊, 趙妙妙, 呂麗華. 牛卵泡ODF1 與ODF2 轉(zhuǎn)錄組發(fā)育相關(guān)基因篩選及表達(dá)差異分析. 畜牧獸醫(yī)學(xué)報(bào),2015, 46(11):1961-1966.
LI P F, MENG J Z, XIE J S, ZHU Z W, LIU Y, JIANG X L, CHEN J W, YAO X L, ZHAO M M, Lü L H. Screening and analyse study of genes associated with follicular development in bovine ODF1 and ODF2 transcript., 2015, 46(11): 1961-1966. (in Chinese)
[9] AUDIC S, CLAVERIE J M. The significance of digital gene expression profiles., 1997, 7(10):986-995.
[10] 李鵬飛. 牛卵泡可卡因-苯丙胺調(diào)節(jié)轉(zhuǎn)錄肽(CART)受體的篩選[D]. 太谷:山西農(nóng)業(yè)大學(xué),2014.
LI P F. Screening of cocaine-and amphetamine-regulated transcript peptide (CART) receptor of cattle follicle [D]. Taigu: Shanxi Agricultural University, 2014. (in Chinese)
[11] WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool for transcriptomics., 2009, 10(1):57-63.
[12] HAAS B J, ZODY M C. Advancing RNA-Seq analysis., 2010, 28(5):421-423.
[13] MARIONI J C, MASON C E, MANE S M, STEPHENS M, GILAD Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays., 2008, 18(9): 1509-1517.
[14] CROUCHER N J, FOOKES M C, PERKINS T T, TURNER D J, MARGUERAT S B, KEANE T, QUAIL M A, HE M, ASSEFA S, B?HLER J, KINGSLEY R A, PARKHILL J, BENTLEY S D, DOUGAN G, THOMSON N R. A simple method for directional transcriptome sequencing using Illumina technology., 2009, 37(22): e148.
[15] SOON W W, MILLER L D, BLACK M A, DALMASSO C, CHAN X B, PANG B, ONG C W, SALTO-TELLEZ M, DESAI K V, LIU E T. Combined genomic and phenotype screening reveals secretory factor SPINK1 as an invasion and survival factor associated with patient prognosis in breast cancer., 2011, 3(8): 451-464.
[16] DIAO H, XIAO S, LI R, ZHAO F, YE X. Distinct spatiotemporal expression of serine proteases Prss23 and Prss35 in periimplantation mouse uterus and dispensable function of Prss35 in fertility., 2013, 8(2):e56757.
[17] WAHLBERG P, NYLANDER A, AHLSKOG N, LIU K, NY T. Expression and localization of the serine proteases high-temperature requirement factor A1, serine protease 23, and serine protease 35 in the mouse ovary., 2008, 149(10):5070-5077.
[18] LI S H, LIN M H, HWU Y M, LU C H, YEH L Y, CHEN Y J, LEE R K. Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development., 2015, 13:93. doi: 10.1186/s12958-015-0091-3.
[19] KIM S, ZHANG Z, UPCHURCH S, ISERN N, CHEN Y. Structure and DNA-binding sites of the SWII AT-rich interaction domain (ARID) suggest determinants for sequence-specific DNA recognition., 2004, 279(16):16670-16676.
[20] HERRSCHER R F, KAPLAN M H, LELSZ D L, DAS C, SCHEUERMANN R, TUCKER P W. The immunoglobulin heavy chain matrix associating regions are bound by Bright: a B cell-specific trans-activator that describes a new DNA-binding protein family., 1995, 9(24):3067-3082.
[21] WILSKER D, PATSIALOU A, DALLAS P B, MORAN E. ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development., 2002, 13(3):95-106.
[22] LAI A, MARCELLUS R C, CORBEIL H B, BRANTON P E. RBP1 induces growth arrest by repression of E2F-dependent transcription., 1999, 18(12):2091-2100.
[23] CAO J, GAO T, STANBRIDGE E J, IRIE R. RBP1L1, a retinoblastoma- binding protein-related gene encoding an antigenic epitope abundantly expressed in human carcinomas and normal testis., 2001, 93(15):1159-1165.
[24] ATEEQ B, TOMLINS S A, LAXMAN B, ASANGANI I A, CAO Q, CAO X, LI Y, WANG X, FENG F Y, PIENTA K J, VARAMBALLY S, CHINNAIYAN A M. Therapeutic targeting of SPINK1-positive prostate cancer., 2011, 3(72): 72ra17.
[25] GHADGE G D, SLUSHER B S, BODNER A, CANTO M D, WOZNIAK K, THOMAS A G, ROJAS C, TSUKAMOTO T, MAJER P, MILLER R J, MONTI A L, ROOS R P. Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models., 2003, 100(16):9554-9559.
[26] GOMIS-RüTH F X, COMPANYS V, QIAN Y, FRICKER L D, VENDRELL J, AVILéS F X, COLL M. Crystal structure of avian carboxypeptidase D domain II: a prototype for the regulatory metallocarboxypeptidase subfamily., 1999, 18(21): 5817-5826.
[27] KIM Y H, O'NEILL H M, WHITEHEAD J P. Carboxypeptidase X-1 (CPX-1) is a secreted collagen-binding glycoprotein., 2015, 468(4):894-899.
[28] CHANG E J, KWAK H B, KIM H, PARK J C, LEE Z H, KIM H H. Elucidation of CPX-1 involvement in RANKL-induced osteoclastogenesis by a proteomics approach., 2004, 564(1/2):166-170.
[29] LEI Y, XIN X, MORGAN D, PINTAR J E, FRICKER L D. Identification of mouse CPX-1, a novel member of the metallocarboxypeptidase gene family with highest similarity to CPX-2., 1999, 18(2):175-185.
[30] UEHIRO N, SATO F, PU F, TANAKA S, KAWASHIMA M, KAWAGUCHI K, SUGIMOTO M, SAJI S, TOI M. Circulating cell-free DNA-based epigenetic assay can detect early breast cancer., 2016, 18(1):129-142.
(責(zé)任編輯 林鑒非)
Follicular Development Related Genes Screening and Differential Expressed Analysis by Transcriptome Sequencing in Bovine Ovary
LI PengFei1, MENG JinZhu2, JING JiongJie3, BI XiLin3, WANG Kai3, ZHU ZhiWei1, Lü LiHua3
(1College of Life Science, Shanxi Agricultural University, Taigu 030801, Shanxi;2Wujiang College, Tongren University, Tongren 554300, Guizhou;3College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, Shanxi)
【Objective】The study focused on screening some genes involved in follicular development through high- throughput sequencing in bovine follicles at different physiological states. 【Method】Cows were selected for estrus synchronization, and the largest follicle and second largest follicle at predeviation during the first follicle wave were gathered by B-type ultrasonography. Thereafter, the RNA libraries were constructed and RNA sequencing was performed by Illumina platform. Compared with the database, parameters were set to screen high-expressed genes and differentially expressed genes, and then GO analysis was conducted. Further screened regulatory genes directly related to follicular development by Genecards, and qRT-PCR was performed to validate expression of screened genes associated with follicular development. 【Result】Results showed that 263 differentially expressed genes were obtained from the two transcripts, which could be assigned into 90 groups under three categories by GO clustering analysis (biological processes, 64.4%; cell component, 17.8%; molecular function, 17.8%). Some important functional enrichment pathways were obtained, such as regulating signal transduction and cytokine response biological pathways; 10 high-expressed up-regulated and down-regulated genes were selected by gene expression analysis,involved in estrogen synthesis and fetal gender development,participated in steroid hormone synthesis,regulated cell apoptosis in process of cell development, andregulated ERK and MEK1/2 signaling pathways. Six genes were found closely associate with follicular development by Genecards: up-regulated genes includedand, down-regulated genes includedand. qRT-PCR results showed that expression ofandwere significantly higher in DF than in SF (<0.05), andexpression was significantly higher in SF than in DF (<0.01). There was no significant difference in the expression of,andbetween DF and SF (>0.05),however, the expression variation trend was consistent with high-throughput sequencing results. 【Conclusion】The transcriptome sequencing results were accurate,andplayed positive roles andplayed a negative role in regulating follicular development, genes related to bovine follicular development and important regulated pathways, which were of great significance to further study the regulation mechanism of follicular development.
bovine; follicle; transcript; PDF1; PDF2; development
2017-03-28;
2018-07-06
山西省重點(diǎn)研發(fā)計(jì)劃(一般)農(nóng)業(yè)項(xiàng)目(201703D221020-1)、山西省國(guó)際科技合作項(xiàng)目(201603D421006)、山西省三晉學(xué)者和人才引進(jìn)項(xiàng)目、山西農(nóng)業(yè)大學(xué)創(chuàng)新基金項(xiàng)目(zdpy201403/201503)、引進(jìn)人才博士科研啟動(dòng)基金(2014ZZ04)和青年拔尖創(chuàng)新人才支持計(jì)劃(TYIT201403)
李鵬飛,E-mail:adamlpf@126.com。通信作者呂麗華,E-mail:lihualvsxau@126.com
10.3864/j.issn.0578-1752.2018.15.0015