趙 博 黃 磊 周漢飛 張 亮 李 強 黃 敏
(深圳大學信息工程學院 深圳 518060)
合成孔徑雷達(Synthetic Aperture Radar, SAR)具有全天時全天候的遠距離、高分辨探測能力,在遙感測繪、區(qū)域監(jiān)測、地質勘探、災難救援等眾多領域發(fā)揮著重要的作用[1]。隨著對SAR成像需求的日益增加,具有更高波段、更大帶寬的毫米波SAR逐漸成為該領域的研究熱點。相比于低頻段的SAR而言,毫米波SAR能夠更容易地獲得更大的信號帶寬與多普勒帶寬,從而實現(xiàn)更加精細的2維高分辨成像。同時,由于毫米波信號的波長更短,使得相應的SAR天線尺寸也隨之減小,從而有利于SAR系統(tǒng)的小型化。相比于太赫茲波段而言,毫米波具有更好的穿透性,具有準全天時工作的能力[2–6]。但是,信號帶寬的增加為SAR系統(tǒng)帶來了更加沉重的運算負擔。一方面,SAR系統(tǒng)需要對回波數(shù)據(jù)進行高精度的數(shù)據(jù)采集,這將導致數(shù)據(jù)處理位寬增加,對系統(tǒng)的硬件性能提出了更高的要求;另一方面,信號采樣率也需要相應地提升以避免信號頻譜混疊,從而使得數(shù)據(jù)量增加,降低了數(shù)據(jù)處理的效率。
為了降低SAR數(shù)據(jù)采集、存儲、傳輸、處理等的成本,20世紀90年代,國外學者針對SAR數(shù)據(jù)進行了1-bit采樣量化的研究,利用歐洲遙感衛(wèi)星ERS-1、美國航天飛機雷達X-SAR的數(shù)據(jù)進行了實驗,所得到的成像結果并未引起明顯的成像性能衰減[7–9]。該研究初步分析了回波噪聲對成像質量的影響,但并未深入揭示1-bit采樣量化與時變閾值之間的深層關系[10]。近年來,1-bit采樣量化理論在系統(tǒng)架構簡化與效率提升方面的優(yōu)勢再次引起信號處理領域的廣泛關注。將1-bit采樣量化與壓縮感知理論結合,可以在信號滿足稀疏條件時,通過優(yōu)化算法對其進行有效的重構[11]。國內外學者對1-bit壓縮感知理論的研究逐漸深入,提出了貪婪追蹤、置信區(qū)間、線性規(guī)劃、迭代硬閾值、凸優(yōu)化[12–16]等一系列信號重構方法,并在SAR稀疏目標的成像中進行了應用[17,18]。但當SAR場景稀疏性較差時,這類方法的重構性能會受到影響。此外,1-bit采樣量化會造成信號相對幅度的非線性失真,將導致成像結果失真。文獻[19,20]提出了基于隨機閾值的1-bit壓縮感知方法以恢復非線性量化中丟失的幅度信息,但該方法在常規(guī)的應用中會引入量化閾值的高精度存儲問題,并不能有效地簡化系統(tǒng)架構,這與1-bit采樣量化的初衷相違背[21]。
本文提出一種基于單頻時變閾值的1-bit SAR成像方法。該方法在保留1-bit采樣量化在系統(tǒng)簡化、效率提升方面優(yōu)勢的同時,利用單頻時變閾值保持1-bit采樣量化中丟失的幅度信息,解決了閾值的生成與存儲問題,同時避免隨機閾值類噪聲特性的影響,提高1-bit SAR成像質量。本文首先建立了基于單頻時變閾值的1-bit SAR信號模型,然后分析了高次諧波分量對成像結果的影響,并通過單散射點目標、多散射點目標以及2維場景的仿真實驗驗證了算法的有效性。
由式(7)可知,高次諧波的產生會導致信號載頻、帶寬、調頻率等參數(shù)的增大,且隨著諧波階次的升高而趨向于正無窮。在有限的信號采樣率下,無限增大的帶寬必將導致信號頻譜的混疊。而單頻時變閾值的高次分量將進一步對SAR信號高次諧波的頻譜進行搬移,使其頻譜的混疊位置與混疊形式發(fā)生變化。
高次諧波的混疊雖然會在一定程度上降低SAR成像質量,但值得注意的是,諧波帶寬與調頻率的增加也將導致SAR成像匹配濾波器的失配,從而使得高次諧波對原始SAR信號的影響也隨著其階次的升高而逐漸減弱。
寬帶SAR信號在1-bit采樣量化的過程中,其信號帶寬與調頻率等參數(shù)會隨著諧波階次的升高而變大。由于SAR成像所采用的匹配濾波器是按照原始信號的參數(shù)設計的,從而難以與高次諧波的參數(shù)相匹配。為了分析高次諧波在基于匹配濾波處理的SAR成像算法下的特性,可將SAR信號的k次諧波表示為:
其中,Ak為諧波幅度。為了獲得斜距維的高分辨成像,需要將預先設計的匹配濾波器與SAR回波信號進行卷積運算。該卷積過程一般通過兩個信號的頻譜相乘實現(xiàn),即
其中,F(xiàn)-1(·)表示逆傅里葉變換,SMF(fr)表示匹配濾波器的頻譜,其具體形式由SAR信號參數(shù)決定,可表示為:
其中,B為信號帶寬。Sk(fr)表示k次諧波sk(tr)的頻譜,可以根據(jù)駐定相位原理推導得到。
當k=1時,式(8)表示SAR發(fā)射的原始信號,其參數(shù)與匹配濾波器的參數(shù)相匹配,由式(11)可以得到常規(guī)SAR回波的脈沖壓縮結果,即
由式(12)可知,當匹配濾波器與信號的參數(shù)相匹配時,目標點的回波信號可以被壓縮為sinc函數(shù)的形式。sinc函數(shù)的時域寬度由發(fā)射信號的帶寬決定,這也是SAR系統(tǒng)需要利用寬帶信號來獲取距離維高分辨的原因。此外,匹配濾波后的信號幅度還能夠獲得的相干處理增益。對于SAR系統(tǒng)而言,其發(fā)射信號的時寬帶寬積通常較大,即BTr>>1。因此,匹配濾波處理還能夠改善SAR回波的信噪比。
當k>1時,諧波信號的調頻率變?yōu)閗γ,與匹配濾波器的參數(shù)失配。仍采用原始的匹配濾波器進行匹配濾波,得到的結果為:
匹配濾波器的頻譜分布在[-B/2,B/2]之間,因此式(13)的積分區(qū)間也被限制在該范圍內。若將fr替換為tr′,則式(13)中的積分項具有與SAR信號相似的線性調頻形式,相應的調頻率為γ′=(k-1)/kγ。因此,式(13)中的積分仍然可以采用駐定相位法進行求解,即
與式(12)中原始信號的匹配濾波結果相比,k次諧波的匹配濾波結果發(fā)生了散焦,即式(12)中的sinc函數(shù)衰退為矩形窗函數(shù),使得信號能量分散在(k-1)Tr/k的區(qū)域內,該區(qū)域的時域寬度趨近于SAR信號的脈沖寬度Tr。相應的次諧波的幅度也衰減為,隨著的增大而趨向于0。
此外,單頻時變閾值與SAR信號的載頻分量也會在1-bit采樣量化的過程中產生相應的高次諧波,從而導致寬帶信號諧波分量的頻譜搬移,使其不能與匹配濾波器的頻譜完全重合,降低了寬帶高次諧波對匹配濾波結果的影響。基于上述原因,高次諧波對原始SAR信號匹配濾波結果的影響微弱,可以忽略。因此1-bit回波信號可以在傳統(tǒng)的基于匹配濾波的SAR成像算法下,獲得與傳統(tǒng)SAR回波相近的成像性能。
以SAR成像匹配濾波過程中的乘法運算為例,在常規(guī)SAR系統(tǒng)中,由于回波數(shù)據(jù)采集的精度較高,需要處理的數(shù)據(jù)具有較高的位寬,從而需要高復雜度、高性能的乘法計算模塊為支撐,如圖1(a)所示。
而1-bit采樣量化則大大降低了SAR回波信號的數(shù)據(jù)位寬,為簡化SAR成像處理奠定基礎。如圖1(b)所示,對1-bit回波數(shù)據(jù)進行乘法運算,可將匹配濾波器分為1-bit符號位與高位寬數(shù)據(jù)位。其中符號位與1-bit回波信號進行異或非(XNOR)邏輯運算,數(shù)據(jù)位則直接與XNOR運算后的符號位重新組合,進行后續(xù)匹配濾波卷積運算中的求和運算。1-bit回波數(shù)據(jù)可以大大降低SAR成像處理的復雜度與實現(xiàn)成本,提高成像效率[23]。
為了驗證本文所提方法的有效性,分別采用理想點目標與2維SAR場景對所提方法進行驗證。假設SAR工作在條帶模式,其參數(shù)設置見表1。

表1 SAR參數(shù)Tab.1 SAR parameters
其中信號閾值比定義為單次回波信號能量與單頻時變閾值的能量之比。在實際應用中,回波信號能量可在接收到回波之后計算得到,由此確定所需的閾值幅度,并使其在成像過程中保持不變,不需要實時更新。
本文首先采用傳統(tǒng)的采樣量化對SAR回波數(shù)據(jù)進行錄取,從而獲得傳統(tǒng)的SAR成像結果作為成像質量評價的基準;然后利用傳統(tǒng)的1-bit采樣量化方法,將回波數(shù)據(jù)與0閾值進行比較,獲得1-bit回波數(shù)據(jù);接著采用文獻[7]中的方法,利用高斯分布的時變閾值對回波進行1-bit量化以保持信號的幅度信息;最后使用本文提出的基于單頻時變閾值的1-bit采樣量化方法進行數(shù)據(jù)采集。
首先利用單個理想散射點目標進行成像試驗,以便對不同方法的成像聚焦質量進行定量對比。由于基于高斯閾值的1-bit方法與本文所提的基于單頻閾值的1-bit方法均在采樣量化的過程中引入了不確定性,在此對這兩種方法分別進行了5000次蒙特卡洛實驗。得到的單散射點目標仿真成像結果如圖2所示。
由仿真結果可知,傳統(tǒng)采樣方法由于保留了完整的回波信號信息,從而能夠與匹配濾波器較好地匹配,因此可以獲得高質量的距離像。傳統(tǒng)的1-bit采樣量化方法引入了原始回波信號的高次諧波,使得距離像的旁瓣有所提高。而高斯閾值的引入雖然能夠在信號幅度保持方面發(fā)揮一定的作用,但它的類噪聲特性則使得匹配濾波結果進一步惡化,使得散射點的遠區(qū)旁瓣顯著升高。本文采用單頻時變閾值保留信號的幅度信息,能夠降低時變閾值對成像質量的影響,得到低于高斯時變閾值方法的遠區(qū)旁瓣。對單散射點的峰值旁瓣比(Peak Side Lobe Ratio, PSLR)、積分旁瓣比(Integrated Side Lobe Ratio, ISLR)、脈沖響應寬度(Impulse Response Width, IRW)進行分析,可以得到如表2所示的定量分析指標。

表2 單散射點聚焦質量指標Tab.2 Focusing quality indexes of the single scatterer
值得注意的是,對于同一評價指標而言,雖然本文方法與高斯閾值1-bit方法均具有一定的隨機性,但本文方法具有更小的方差,使得單次試驗結果更加穩(wěn)定可靠。
為了進一步分析1-bit采樣量化方法對信號幅度信息的保持性能,本文進一步采用幅度分別為1, 2,3的3個散射點進行仿真實驗,結果如圖3所示。
由圖可知,采用0閾值的傳統(tǒng)1-bit方法無法保持原始信號的幅度信息,從而導致目標絕對幅度的丟失。為了衡量該方法對目標相對幅度的保持能力,在此采用整體縮放的方法對傳統(tǒng)1-bit方法進行調整,縮放系數(shù)準則計算得到,其中分別表示散射點的理論幅度向量與傳統(tǒng)1-bit采樣量化恢復的散射點幅度向量。在此基礎上對不同方法的幅度恢復性能進行定量評價,結果如表3所示。

表3 多散射點幅度質量指標Tab.3 Amplitude quality indexes of multiple scatterers
傳統(tǒng)的采樣量化雖然具有比較高的精度,但量化的過程不可避免地產生誤差,使得多散射點的幅度恢復結果也存在誤差。基于0閾值的傳統(tǒng)1-bit方法經過整體縮放后也能夠獲得較好的幅度信息恢復結果,但縮放系數(shù)A′的計算需要信號幅度的先驗信息,難以在實際問題中應用。高斯時變閾值與單頻時變閾值均能夠有效地恢復信號的幅度信息,但相比之下,本文所提的單頻時變閾值方法能夠得到更小的整體誤差與更加穩(wěn)健的單次試驗結果。
針對不同的方法進行2維場景的成像實驗分析。成像場景包含房屋、道路、車輛、樹木等不同類型的目標,散射系數(shù)的動態(tài)范圍較大,能夠較好地反映不同成像方法的幅度信息保持能力。利用不同的方法對該場景進行成像,結果如圖4所示。
傳統(tǒng)1-bit采樣量化方法會造成信號相對幅度信息的嚴重失真與絕對幅度信息的丟失,因此,與傳統(tǒng)的高精度SAR成像方法相比,圖4(b)中基于0閾值的1-bit成像結果在強散射區(qū)域存在較明顯的失真。以高精度成像結果為基準,利用結構相似度(Structural SIMilarity index,SSIM)[24]對傳統(tǒng)1-bit成像結果進行評價,得到的評價結果為0.7541。而基于高斯時變閾值的1-bit方法雖然能夠較好地保留場景的散射幅度信息,但在成像結果中引入了類噪聲干擾,因此圖4(c)的成像信噪比較差。該方法成像結果的SSIM為0.8543,相比于傳統(tǒng)1-bit方法有所改善。本文采用的基于單頻閾值的1-bit采樣量化方法不僅能夠保留信號的幅度信息,同時避免了在成像過程中引入類噪聲干擾,因此圖4(d)的SSIM指標能夠達到0.9160,相比于其他方法有了較大的提高。將圖4中虛線框內區(qū)域進行局部放大,可以得到圖5所示結果。
圖5(a)的傳統(tǒng)成像結果中,道路與田野的邊緣能夠較清晰地區(qū)分。傳統(tǒng)的1-bit成像方法造成了場景散射系數(shù)的非線性失真,因此圖5(b)中的田野區(qū)域出現(xiàn)了較多的亮斑,且道路與田野邊緣的清晰度明顯下降。而基于高斯時變閾值的1-bit成像結果引入了類噪聲干擾,同時受到高次諧波的影響,使得成像結果的整體信噪比下降,田野中的強散射點(圖5(c)中○所示)幾乎被噪聲淹沒。本文提出的基于單頻時變閾值的1-bit成像方法避免了閾值的類噪聲特性,雖然高次諧波的出現(xiàn)仍然會在一定程度上降低成像信噪比,但圖5(d)中強散射點的質量較圖5(c)有所提高。由于1-bit采樣量化在簡化系統(tǒng)、降低成本、提高效率方面具有不可替代的優(yōu)勢,由高次諧波帶來的成像質量衰減被認為可以接受。
本文針對SAR回波數(shù)據(jù)位寬高、數(shù)據(jù)量大的問題,提出了基于單頻時變閾值的1-bit SAR成像方法,在發(fā)揮1-bit采樣量化在簡化系統(tǒng)、提升效率方面優(yōu)勢的同時,提升了1-bit SAR成像的質量。分析了高次諧波以及交叉調制分量的形成機理,并在基于匹配濾波的成像算法下推導了諧波分量對成像結果的影響。仿真實驗結果表明,本文所提方法能夠較好地保證SAR圖像的聚焦,并避免傳統(tǒng)隨機時變閾值的類噪聲影響,提高1-bit SAR成像的質量。在后續(xù)的工作中,我們將基于本文提出的方法研究1-bit SAR系統(tǒng)的參數(shù)設計策略,降低高次諧波的影響,進一步提升1-bit SAR數(shù)據(jù)的成像質量。