馬俊 李元齊
摘要:外掛混凝土墻板是裝配式鋼結(jié)構(gòu)建筑、甚至普通鋼框架結(jié)構(gòu)建筑的主要圍護墻體材料,對結(jié)構(gòu)自振周期的影響不容忽視.在對各國規(guī)范中鋼框架結(jié)構(gòu)基本自振周期計算方法進行歸納的基礎(chǔ)上,基于已有的一棟帶蒸壓輕質(zhì)加氣混凝土墻板足尺鋼框架結(jié)構(gòu)模型試驗數(shù)據(jù)和一棟帶預制裝配式混凝土墻板鋼框架教學樓實測數(shù)據(jù),分析了相關(guān)規(guī)范計算方法的適用性.結(jié)果表明,考慮墻體的經(jīng)驗公式對帶外掛混凝土墻板鋼框架結(jié)構(gòu)自振周期的估計較為準確.基于40棟帶外掛混凝土墻板鋼框架結(jié)構(gòu)自振周期實測數(shù)據(jù),提出了帶外掛混凝土墻板鋼框架結(jié)構(gòu)自振周期經(jīng)驗公式.公式以結(jié)構(gòu)高度為自變量,基本自振周期為結(jié)構(gòu)高度的冪函數(shù),公式計算結(jié)果離散度較小,與實測結(jié)果吻合較好,可供設計人員參考.
關(guān)鍵詞:鋼框架;外掛混凝土墻板;自振周期;經(jīng)驗公式
中圖分類號:TU391 文獻標志碼:A
Effect of Exterior Concrete Wall Panels on Natural Period of
Steel Frame Structures
MA Jun1,2?偉j , LI Yuanqi1
(1. College of Civil Engineering, Tongji University, Shanghai 200092, China;
2. China Construction Eighth Engineering Division Co, Ltd, Shanghai 200122, China)
Abstract: Exterior concrete wall panels are becoming one of the main building envelope materials for steel frame structures in china, and the effect of exterior concrete wall panels on natural period of steel frames should be realized in the design stage. The formulas for fundamental natural period of steel frame buildings in codes of some countries are summarized, and the feasibility of these formulas for steel frames with exterior concrete wall panels is evaluated by comparing the empirical results with the test data of a full-scale steel frame structure with ALC panels and with the field measured data of a steel frame school building with precast concrete wall panels, the results show that empirical formulas considering the effect of wall materials are most reasonable. Based on the field measured natural periods of steel frames with exterior concrete wall panels, the empirical formula for estimating fundamental natural period of steel frame structures with exterior concrete wall panels is put forward. The structural height is adopted as independent variable in the empirical formula, and the fundamental natural period is a power function of the structural height. The results obtained from the empirical formula have little discreteness and agree well with the field measured data. The empirical formula may serve engineering designers as a reference.
Key words: steel frames; exterior concrete wall panel; natural periods; empirical formulas
鋼框架結(jié)構(gòu)自振周期是鋼框架結(jié)構(gòu)抗震設計中的重要參數(shù),其取值關(guān)系到地震作用、基底剪力等參數(shù)的計算.為了滿足空間功能分隔和外部圍護等建筑功能要求,鋼框架建筑中通常具有大量圍護墻體材料.墻體的存在增強了鋼框架結(jié)構(gòu)的側(cè)向剛度,減小了結(jié)構(gòu)的自振周期[1-2].各國規(guī)范在計算鋼框架結(jié)構(gòu)自振周期時均考慮了墻體的影響,但在實際應用中,由于墻體材料不同和墻體的安裝、布置方式非常靈活,墻體對鋼框架自振周期的影響程度很難進行統(tǒng)一描述.
隨著我國墻改政策的實施和工業(yè)化建筑的推廣,外掛混凝土墻板已逐步成為鋼框架結(jié)構(gòu)的主要圍護墻體材料.外掛混凝土墻板的材料性質(zhì)和安裝方式與傳統(tǒng)的填充墻截然不同,對結(jié)構(gòu)自振周期的影響也有別于傳統(tǒng)墻體.然而,已有研究主要集中在磚或混凝土砌塊砌體填充墻對鋼框架結(jié)構(gòu)自振周期的影響,對于采用外掛混凝土墻板的鋼框架結(jié)構(gòu)自振周期取值還缺乏相關(guān)研究,設計過程中也缺少相關(guān)依據(jù)[3-4].因此,有必要研究外掛混凝土墻板對鋼框架結(jié)構(gòu)自振周期的影響,提出合理的自振周期計算公式.
本文首先對國內(nèi)外規(guī)范中鋼框架結(jié)構(gòu)基本自振周期的計算方法進行歸納,隨后采用規(guī)范中計算方法對已完成的一棟帶蒸壓輕質(zhì)加氣混凝土墻板足尺鋼框架結(jié)構(gòu)試驗模型和一棟帶預制裝配式混凝土墻板鋼框架教學樓的基本自振周期進行計算,并將計算結(jié)果與試驗結(jié)果進行對比,分析了規(guī)范計算方法對帶外掛混凝土墻板鋼框架結(jié)構(gòu)的適用性.基于收集到的40棟已有的帶外掛混凝土墻板鋼框架結(jié)構(gòu)自振周期實測數(shù)據(jù),提出了帶外掛混凝土墻板鋼框架結(jié)構(gòu)基本自振周期經(jīng)驗公式,供設計人員參考.
1 1 規(guī)范中鋼框架基本自振周期計算方法
國內(nèi)外規(guī)范[5-19]中的鋼框架結(jié)構(gòu)基本自振周期計算方法主要包括經(jīng)驗公式法和瑞利公式法.經(jīng)驗公式在實測數(shù)據(jù)基礎(chǔ)上經(jīng)統(tǒng)計分析后歸納而成,已經(jīng)包含了墻體影響.根據(jù)是否在表達式中明確考慮墻體布置影響,經(jīng)驗公式可分為忽略和考慮墻體布置兩類形式.瑞利公式法是基于結(jié)構(gòu)質(zhì)量和剛度的動力計算方法,計算結(jié)果通常需要采用周期折減系數(shù)進行修正,以考慮墻體對自振周期的影響.
%1.1 1.1經(jīng)驗公式
1.1.1忽略墻體布置的經(jīng)驗公式
在實測數(shù)據(jù)基礎(chǔ)上,多數(shù)規(guī)范建議了基于結(jié)構(gòu)特征參數(shù)的鋼框架結(jié)構(gòu)基本自振周期經(jīng)驗公式.這些經(jīng)驗公式大體上可分為基于結(jié)構(gòu)高度、基于建筑樓層數(shù)、基于結(jié)構(gòu)高度和底部寬度三類,部分規(guī)范中建議了多個基本自振周期經(jīng)驗公式.
第一類基本自振周期經(jīng)驗公式以鋼結(jié)構(gòu)建筑的高度作為自變量.澳大利亞規(guī)范[5]、意大利規(guī)范[6]、瑞士規(guī)范[7]、韓國規(guī)范[8]和我國臺灣規(guī)范[9]中,鋼框架結(jié)構(gòu)基本自振周期是結(jié)構(gòu)高度的函數(shù),如下:
T1=αhβ. (1)
式中:T1為結(jié)構(gòu)基本自振周期,s;h為結(jié)構(gòu)高度,m;α和β是經(jīng)驗公式系數(shù),取值根據(jù)各國規(guī)范有所不同.澳大利亞規(guī)范中,α和β分別取為0.137 5和0.75,意大利、瑞士、韓國和我國臺灣規(guī)范中,鋼框架結(jié)構(gòu)的α和β分別取為0.085和0.75.
第二類基本自振周期經(jīng)驗公式以建筑樓層數(shù)作為自變量.我國《建筑結(jié)構(gòu)荷載規(guī)范》(GB 50009—2012)[10]和《高層民用建筑鋼結(jié)構(gòu)技術(shù)規(guī)程》(JGJ 99—98)[11]中,鋼框架結(jié)構(gòu)基本自振周期是建筑樓層數(shù)的線性函數(shù),如下所示:
T1=λN. (2)
式中:N是建筑樓層數(shù);λ是經(jīng)驗公式系數(shù).對于高層鋼結(jié)構(gòu)建筑,文獻[10]中,λ取為0.1~0.15;文獻[11]中,λ取為0.1.
第三類基本自振周期經(jīng)驗公式是結(jié)構(gòu)高度和沿作用力方向結(jié)構(gòu)寬度的函數(shù).法國規(guī)范[12]、西班牙規(guī)范[13]、埃及規(guī)范[14]、印度規(guī)范[15]中建議了該類經(jīng)驗公式,如下所示,
T1=αhd. (3)
式中:h為結(jié)構(gòu)高度,m;d是沿作用力方向的結(jié)構(gòu)寬度,m;α是經(jīng)驗公式系數(shù).法國規(guī)范和西班牙規(guī)范中,α取為0.1;埃及和印度規(guī)范中,α取為0.09.
國內(nèi)外規(guī)范中的鋼框架結(jié)構(gòu)基本自振周期經(jīng)驗公式大致分為以上三類,同時,部分國家規(guī)范中建議了多個不同形式的經(jīng)驗公式.
美國ASCE7—10[16]中分別建議了基于結(jié)構(gòu)高度和建筑樓層數(shù)的經(jīng)驗公式.當框架結(jié)構(gòu)承擔全部地震作用時,可采用基于結(jié)構(gòu)高度的經(jīng)驗公式計算鋼框架結(jié)構(gòu)的基本自振周期:
T1=0.0724h0.8. (4)
同時,對于總層數(shù)在12層以下且各層層高不小于3 m的鋼框架結(jié)構(gòu),可采用基于建筑樓層數(shù)的經(jīng)驗公式計算鋼框架結(jié)構(gòu)的基本自振周期:
T1=0.1N. (5)
日本規(guī)范[17]中同時建議了基于結(jié)構(gòu)高度和建筑樓層數(shù)的經(jīng)驗公式:
T1=(0.02+0.01αh)h, (6)
T1=(0.1±0.03)N. (7)
式(6)中,基本自振周期是結(jié)構(gòu)高度的函數(shù),αh是采用鋼結(jié)構(gòu)建造的樓層高度與結(jié)構(gòu)總高度之比.式(7)中,基本自振周期是建筑樓層數(shù)的函數(shù),經(jīng)驗公式系數(shù)根據(jù)墻體和支撐的布置進行調(diào)整.
1.1.2考慮墻體布置經(jīng)驗公式
部分國家規(guī)范中明確考慮了墻體布置對結(jié)構(gòu)自振周期的影響.歐洲規(guī)范[18]和新西蘭規(guī)范[19]建議采用式(8)~式(11)計算高度在40 m以內(nèi)的帶填充墻的鋼框架結(jié)構(gòu)基本自振周期,
T1=Cth0.75, (8)
Ct=0.075/Ac, (9)
Ac=∑[Ai·(0.2+(lwi/h))2]. (10)
式中:Ct是針對填充墻布置的修正系數(shù);Ac是首層填充墻有效面積,m2;Ai是首層第i片填充墻的有效截面積,m2;lwi是沿水平力作用方向填充墻長度,m;h是結(jié)構(gòu)高度,m.同時,墻體長高比lwi/h需小于等于0.9.
歐洲規(guī)范和新西蘭規(guī)范均用修正系數(shù)Ct考慮了填充墻布置對結(jié)構(gòu)自振周期的影響.值得注意的是,規(guī)范中僅考慮了底層填充墻的影響,對于其余樓層中的填充墻則沒有具體考慮.
%1.2 1.2瑞利公式
除了經(jīng)驗公式方法,國內(nèi)外規(guī)范中還推薦使用瑞利公式來計算鋼框架結(jié)構(gòu)的基本自振周期.瑞利公式如下所示:
T=2π∑ni=1Wid2ig∑ni=1Fidi. (11)
式中:Wi是第i層的重力荷載,kg;Fi是第i層所受水平力,N;di是相應的第i層彈性變形,m.
為了便于使用,部分規(guī)范中給出了簡化的瑞利公式.我國《高層民用建筑鋼結(jié)構(gòu)技術(shù)規(guī)程》(JGJ 99—98)針對質(zhì)量和剛度沿高度分布比較均勻的鋼結(jié)構(gòu)建筑,建議了考慮非結(jié)構(gòu)構(gòu)件影響的簡化瑞利公式:
T1=1.7ξTun. (12)
式中:un是將各層重力荷載作為樓層集中水平力后按彈性靜力方法計算得到的頂層側(cè)移,m;ξT是考慮非結(jié)構(gòu)構(gòu)件影響的修正系數(shù),宜取為0.9.
歐洲、新西蘭和瑞士規(guī)范中給出的簡化瑞利公式如下:
T1=2Δ. (13)
式中:Δ是將各層重力荷載作為水平荷載后得到的結(jié)構(gòu)頂點彈性水平位移,m.
日本規(guī)范針對質(zhì)量和剛度分布均勻的結(jié)構(gòu),建議了基本自振周期的簡化瑞利公式:
T1=δ5~δ5.7. (14)
式中:δ是將各層重力荷載作為水平荷載后得到的結(jié)構(gòu)頂點彈性水平位移,cm.δ/5適用于單自由度系統(tǒng),δ/5.7對應多自由度系統(tǒng).
瑞利公式基于結(jié)構(gòu)動力計算,考慮了材料性質(zhì)、構(gòu)件截面等參數(shù)影響.經(jīng)驗公式則基于實測數(shù)據(jù),考慮了墻體作用等動力計算中不能考慮的不確定因素.實際應用中,許多國家規(guī)范將經(jīng)驗公式計算結(jié)果作為基本自振周期上限值,避免地震力設計值過度降低.譬如:美國規(guī)范規(guī)定基本自振周期取值不得大于經(jīng)驗公式計算值;我國臺灣規(guī)范規(guī)定基本自振周期取值不得大于經(jīng)驗公式值的1.4倍;澳大利亞規(guī)范規(guī)定基底剪力設計值不得小于根據(jù)自振周期經(jīng)驗公式計算值所得基底剪力計算值的80%.
2 2 各國規(guī)范基本自振周期計算方法對比
為了分析規(guī)范計算方法對帶外掛混凝土墻板鋼框架結(jié)構(gòu)的適用性,根據(jù)規(guī)范中建議公式,對已有的一棟帶蒸壓輕質(zhì)加氣混凝土墻板鋼框架結(jié)構(gòu)試驗模型和一棟帶預制裝配式混凝土墻板鋼框架教學樓的基本自振周期進行了計算,并將計算結(jié)果與試驗和實測結(jié)果進行對比.
%1.3 2.1帶蒸壓輕質(zhì)加氣混凝土墻板鋼框架結(jié)構(gòu)
2.1.1結(jié)構(gòu)介紹
帶蒸壓輕質(zhì)加氣混凝土墻板鋼框架結(jié)構(gòu)試驗模型為日本防災科學技術(shù)研究所完成的足尺4層鋼框架結(jié)構(gòu)[20].試驗模型如圖1所示,結(jié)構(gòu)的標準層平面圖及外立面布置如圖2所示.鋼框架結(jié)構(gòu)X向1跨,Y向2跨,平面尺寸為10 m×6 m,結(jié)構(gòu)總高度為14.375 m,其中底層層高3.875 m,其余樓層層高3.5 m.鋼框架結(jié)構(gòu)中框架柱均采用截面為RHS-300×9的方鋼管,框架梁截面尺寸見表1.外掛混凝土墻板采用125 mm厚蒸壓輕質(zhì)加氣混凝土墻板,墻板在結(jié)構(gòu)的X向兩側(cè)和Y向沿B軸一側(cè)滿布布置,在Y向沿A軸一側(cè)未布置墻板.蒸壓輕質(zhì)加氣混凝土墻板安裝方式:采用搖擺工法,墻板通過內(nèi)置螺栓和導向角鋼連接到鋼框架,連接構(gòu)造如圖3所示.搖擺工法使墻板具有隨動變形性能,墻板能適應主體結(jié)構(gòu)在各種外力作用下的變形.實際工程中,蒸壓輕質(zhì)加氣混凝土外掛墻板的連接方式主要有外墻豎裝時的搖擺工法、滑動工法、固定工法,以及外墻橫裝時的搖擺工法和固定工法[21].
該鋼框架結(jié)構(gòu)在模擬振動臺上進行了不同激勵幅度的振動臺試驗.當輸入地震波為5%、10%、12.5%、20%的JR鷹取波時,基于測得的加速度時程數(shù)據(jù),采用單輸入多輸出的ARX模型對該結(jié)構(gòu)的模態(tài)參數(shù)進行了識別,結(jié)構(gòu)基本自振周期識別結(jié)果依次為0.810 4 s、0.820 3 s、0.830 6 s、0.825 8 s[22].對不同激勵幅度下的基本自振周期試驗結(jié)果取平均值,得到鋼框架模型的基本自振周期為0.82 s.
2.1.2各國規(guī)范基本自振周期計算結(jié)果對比
對于忽略墻體經(jīng)驗公式,除澳大利亞規(guī)范外,根據(jù)其余規(guī)范計算得到的基本自振周期計算結(jié)果均小于試驗值,誤差范圍約為24%~66%.基于結(jié)構(gòu)高度的經(jīng)驗公式計算結(jié)果誤差多數(shù)在25%左右,但是日本規(guī)范的計算結(jié)果誤差較大,約為48%.基于結(jié)構(gòu)樓層數(shù)的基本自振周期計算結(jié)果變化范圍較大,誤差范圍為27%~66%.基于結(jié)構(gòu)高度和底部寬度的經(jīng)驗公式計算結(jié)果誤差分別為36%和29%.值得注意的是,我國規(guī)范中建議的基于建筑樓層數(shù)的經(jīng)驗公式誤差范圍為27%~51%,與試驗結(jié)果相差偏大.
對于考慮墻體布置經(jīng)驗公式,歐洲規(guī)范和新西蘭規(guī)范的計算結(jié)果與試驗結(jié)果非常接近,誤差僅為11%.與忽略墻體經(jīng)驗公式計算結(jié)果相比,考慮墻體布置經(jīng)驗公式的計算結(jié)果與試驗結(jié)果更加接近.
對于瑞利公式方法,基于簡化瑞利公式的基本自振周期計算結(jié)果均大于試驗結(jié)果.我國《高層民用建筑鋼結(jié)構(gòu)技術(shù)規(guī)程》(JGJ 99—98)中的建議公式由于考慮了非結(jié)構(gòu)構(gòu)件的影響,修正后的基本自振周期計算結(jié)果與試驗結(jié)果最為接近,但對于修正系數(shù)的取值仍需進一步研究.
%1.4 2.2帶預制裝配式混凝土墻板鋼框架教學樓
2.2.1結(jié)構(gòu)介紹
帶預制裝配式混凝土墻板鋼框架教學樓為日本名古屋大學東山校區(qū)的IB電子情報館.建筑外觀如圖4所示,標準層平面圖如圖5所示,結(jié)構(gòu)體系為純鋼框架.鋼框架結(jié)構(gòu)X向11跨,Y向3跨,平面尺寸60 m×15.2 m,結(jié)構(gòu)總高度41.1 m,建筑樓層數(shù)10層.鋼框架結(jié)構(gòu)中框架柱采用方鋼管,框架梁采用H型鋼,截面尺寸見文獻[23].外掛混凝土墻板采用150 mm厚預制裝配式混凝土墻板,墻板沿結(jié)構(gòu)四周滿布布置.
該鋼框架教學樓建成后,進行了多次環(huán)境激勵.基于環(huán)境激勵下的結(jié)構(gòu)振動加速度,采用隨機減量技術(shù)對結(jié)構(gòu)模態(tài)參數(shù)進行了識別,結(jié)構(gòu)基本自振周期識別結(jié)果為1.0 s[23].
對于忽略墻體經(jīng)驗公式,根據(jù)規(guī)范計算得到的基本自振周期計算結(jié)果誤差范圍為0~123%.基于結(jié)構(gòu)高度的經(jīng)驗公式計算結(jié)果誤差范圍為23%~123%,其中澳大利亞規(guī)范的計算結(jié)果誤差較大,為123%.基于結(jié)構(gòu)樓層數(shù)的基本自振周期計算結(jié)果誤差范圍為0%~50%,其中我國規(guī)范下限值和美國規(guī)范的計算結(jié)果與實測結(jié)果吻合.基于結(jié)構(gòu)高度和底部寬度的經(jīng)驗公式計算結(jié)果誤差為5%,與實測結(jié)果接近.
對于考慮墻體布置經(jīng)驗公式,歐洲規(guī)范和新西蘭規(guī)范的計算結(jié)果與實測結(jié)果一致,較好地預測了鋼框架教學樓的基本自振周期.
對于瑞利公式方法,基于簡化瑞利公式的基本自振周期計算結(jié)果大于實測結(jié)果.我國《高層民用建筑鋼結(jié)構(gòu)技術(shù)規(guī)程》(JGJ 99—98)中的建議公式考慮了非結(jié)構(gòu)構(gòu)件的影響,修正后的基本自振周期計算結(jié)果誤差為3%,與實測結(jié)果接近.歐洲規(guī)范、新西蘭規(guī)范和日本規(guī)范由于未考慮非結(jié)構(gòu)構(gòu)件對結(jié)構(gòu)自振周期的影響,基本自振周期計算結(jié)果誤差分別為34%和18%.
通過上述兩棟鋼框架結(jié)構(gòu)基本自振周期實測值與規(guī)范計算結(jié)果的對比可知,對于帶外掛混凝土墻板鋼框架結(jié)構(gòu),歐洲規(guī)范和新西蘭規(guī)范建議的經(jīng)驗公式中由于考慮了墻體布置的影響,結(jié)構(gòu)基本自振周期計算值最接近真實值;美國、意大利等國家規(guī)范中基于結(jié)構(gòu)高度的經(jīng)驗公式與法國、西班牙等國家規(guī)范中基于結(jié)構(gòu)高度和寬度的經(jīng)驗公式未明確考慮墻體類型、布置等影響,需對經(jīng)驗公式系數(shù)進行修正;基于結(jié)構(gòu)樓層數(shù)的經(jīng)驗公式計算結(jié)果范圍較大;基于瑞利公式的計算結(jié)果大于實測結(jié)果,需用考慮非結(jié)構(gòu)構(gòu)件影響的修正系數(shù)予以修正.
3 3 帶外掛混凝土墻板鋼框架自振周期
%1.5 3.1帶外掛混凝土墻板鋼框架自振周期實測數(shù)據(jù)
本文收集了40棟已有的帶外掛混凝土墻板鋼框架結(jié)構(gòu)建筑或足尺試驗模型,結(jié)構(gòu)自振周期實測數(shù)據(jù)見表4,表中同時給出了結(jié)構(gòu)的長、寬、高、樓層數(shù)、激勵方式以及外掛混凝土墻板類型、建筑用途、數(shù)據(jù)來源等信息.表中結(jié)構(gòu)體系為鋼框架,外掛混凝土墻板主要為預制裝配式混凝土墻板和蒸壓輕質(zhì)加氣混凝土墻板,建筑高度為4~70 m,建筑樓層數(shù)為2~20層.
%1.6 3.2自振周期計算公式回歸分析
基于實測數(shù)據(jù),采用非線性回歸技術(shù),建立帶外掛混凝土墻板鋼框架結(jié)構(gòu)的基本自振周期經(jīng)驗公式.經(jīng)驗公式形式參考各國規(guī)范中建議公式,以高度、寬度等結(jié)構(gòu)特征參數(shù)作為自變量,形式見表5.基于樓層數(shù)的經(jīng)驗公式由于結(jié)果離散性較大,因此表中未列出該類公式形式.非線性回歸分析采用最小二乘法對實測數(shù)據(jù)進行統(tǒng)計回歸,回歸結(jié)果見表5.對于回歸結(jié)果,采用相關(guān)系數(shù)和模型效率EF對回歸效果進行評價,評價公式如下:
r=∑ni-=1(xi-x-)(yi-y-)∑ni=1(xi-x-)2·∑ni=1(yi-y-)2. (15)
式中:xi和yi為待回歸數(shù)據(jù)和回歸值;x-和y-為均值.
EF=[∑ni=1(yi-y-)2-∑ni=1(yi-y^i)2]∑ni=1(yi-y-)2. (16)
式中:yi為待回歸數(shù)據(jù);y-為待回歸數(shù)據(jù)均值;y^i為對應的回歸值.
4 4結(jié) 論
本文研究了外掛混凝土墻板對鋼框架結(jié)構(gòu)自振周期的影響,主要結(jié)論如下:
1)對于帶外掛混凝土墻板鋼框架結(jié)構(gòu),考慮墻體布置的經(jīng)驗公式計算結(jié)果與實際結(jié)構(gòu)基本自振周期最為接近,基本自振周期經(jīng)驗公式宜考慮墻體布置.
2)忽略墻體布置經(jīng)驗公式中,基于結(jié)構(gòu)高度的經(jīng)驗公式與基于結(jié)構(gòu)高度和寬度的經(jīng)驗公式需對公式系數(shù)進行修正;基于結(jié)構(gòu)樓層數(shù)的經(jīng)驗公式計算結(jié)果離散性較大.
3)瑞利公式計算結(jié)果大于實際結(jié)構(gòu)基本自振周期,需用考慮非結(jié)構(gòu)構(gòu)件影響的修正系數(shù)對計算結(jié)果予以修正.
4)基于帶外掛混凝土墻板鋼框架結(jié)構(gòu)自振周期實測數(shù)據(jù),采用非線性回歸技術(shù),建議了考慮外掛混凝土墻板影響的鋼框架結(jié)構(gòu)基本自振周期經(jīng)驗公式,經(jīng)驗公式以結(jié)構(gòu)高度作為自變量,可供設計人員參考.
參考文獻
[1] BARGHI M, AZADBAKHT M. Evaluating the effect of masonry infills on natural period of buildings with moment-resisting frame [J]. Structural Design of Tall and Special Buildings, 2011,20(6):649-660.
[2] MEMARI A M, AGHAKOUCHAK A A, ASHTIANY M G, et al. Full-scale dynamic testing of a steel frame building during construction[J]. Engineering Structures, 1999,21(12):1115-1127.
[3] 張望喜,岳風華,劉杰,等.多參數(shù)影響下的砌體墻體抗震性能分析[J]. 湖南大學學報(自然科學版),2017,44(3):45-54.
ZHANG W X, YUE F H, LIU J, et al. Analysis on seismic performance of masonry walls under multiple influence parameters[J]. Journal of Hunan University(Natural Sciences), 2017,44(3):45-54. (In Chinese)
[4] 黃遠,張銳,朱正庚,等.外墻掛板的混凝土框架結(jié)構(gòu)抗震性能試驗研究[J]. 湖南大學學報(自然科學版),2015,42(7):36-41.
HUANG Y, ZHANG R, ZHU Z G, et al. Experimental study on seismic performance of concrete frame structure with exterior cladding walls[J]. Journal of Hunan University(Natural Sciences), 2015,42(7):36-41. (In Chinese)
[5] AS 1170.4—2007 Structural design actions: part 4 earthquake actions in Australia[S]. Sydney: Standards Australia, 2007:17.
[6] NTC 2008 Technical standards on constructions[S]. Rome: Italian Council of Public Works, 2008:14-15.
[7] SIA 261:2003 Actions on structures[S]. Zurich: Swiss Society of Engineers and Architects, 2003:14.
[8] KBC-2005 Korean building code-structural[S]. Seoul: Architectural Institute of Korea, 2005:12.
[9] 臺內(nèi)營字第0990810250號 建筑物耐震設計規(guī)范及解說[S]. 臺北: 建筑管理組, 2011:2-7.
CPAMI 0990810250 Seismic design specifications and commentary of buildings[S]. Taipei: Building Administration Division, 2011:2-7. (In Chinese)
[10]GB 50009—2012 建筑結(jié)構(gòu)荷載規(guī)范[S]. 北京: 中國建筑工業(yè)出版社, 2012:154.
GB 50009—2012 Load code for the design of building structures[S]. Beijing: China Architecture & Building Press, 2012:154. (In Chinese)
[11]JGJ 99—98 高層民用建筑鋼結(jié)構(gòu)技術(shù)規(guī)程[S]. 北京: 中國建筑工業(yè)出版社, 1998:17.
JGJ 99—98 Technical specification for steel structure of tall buildings [S]. Beijing: China Architecture & Building Press, 1998:17.(In Chinese)
[12] AFPS—90 Recommendation for the redaction of rules relative to the structures and installations built in regions prone to earthquakes[S]. Paris: French Association for Earthquake Engineering, 1990:23.
[13] NCSE—02 Code of earthquake-resistant building: general part and construction[S]. Madrid: Ministry of Development, 2009:26-27.
[14] ESEE 1998 Regulation for earthquake-resistant design of buildings in Egypt[S]. Cairo: Egyptian Society for Earthquake Engineering, 1988:19-20.
[15] IS 1893—2002 Criteria for earthquake resistant design of structures: part 1 general provisions and buildings[S]. New Delhi: Bureau of Indian Standards, 2002:27.
[16]ASCE 7—10 Minimum design loads for buildings and other structures[S]. Reston, Virginia: American Society of Civil Engineers, 2010:90-91.
[17]AIJ-RLB 2004 Recommendations for loads on buildings[S]. Tokyo: Architectural Institute of Japan, 2004:17-18. (In Japanese)
[18] EN1998-1:2004 Eurocode8: Design of structures for earthquake resistance:part 1 general rules, seismic actions and rules for buildings[S]. Brussels: European Committee for Standardization, 2004:57-58.
[19] NZS 1170.5:2004 Structural design actions:part 5 earthquake actions[S]. Wellington: Standards New Zealand, 2004:31.
[20]SUITA K, MATSUOKA Y, YAMADA S, et al. Collapse experiments on full-scale 4-story steel building: part 1 experimental procedure and outline of responses[J]. Architectural Institute of Japan, Kinki Branch, 2008, 48:437-440. (In Japanese)
[21]Asahi Kasei Construction Materials Corporation. Hebel technical handbook[M]. Tokyo: Asahi Kasei Construction Materials Corporation, 2014:30-57.
[22]IKEDA Y. Verification of identification methods for linear systems utilizing shaking table tests of full-scale 4-story steel building[J]. AIJ Journal of Technology and Design, 2010, 16:889-894. (In Japanese)
[23]小島宏章. 実測記録に基づく中低層建物の動的相互作用効果に関する研究[D]. 名古屋: 名古屋大學大學院環(huán)境學研究科, 2005:20-73. (In Japanese)
[24]TAKAHASHI K, ARIMA F, MIYAZAKI M, et al. Studies on response control technologies for building structures: part 1 vibration tests of the large damping structures[R]. Nagasaki: Faculty of Engineering, Nagasaki University, 1989, 87-96. (In Japanese)
[25]MIYAKE T, FUKUCHI Y. Study on anti-seismic effects of nonstructural members in several story steel structure: part 1 share in story shear force and improvement of damping by nonstructural members[J]. Journal of Structural and Construction Engineering, 1994, 462:151-160. (In Japanese)
[26]OSAWA Y, TAKADA S, MIYAKE N, et al. Vibration experiments of full scale steel frame buildings[C]// Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 1970, 45:405-406. (In Japanese)
[27]FUNAKI N, KANG J, KAWAMATA S. Vibration response of a three-storied full-scale building frames by means of turbulent flow dampers sealed by viscoelastic material[J]. Architectural Institute of Japan, Tohoku Branch, 2000, 63:157-160. (In Japanese)
[28]KIRIYAMA S, NAKATA S, HANAI T, et al. Comparison of seismic performance of base-isolated house with various devices[J]. Journal of Structural and Construction Engineering, 2004, 50:561-574.(In Japanese)
[29]HIGASHIDA T, KATO S, YANO K. Structural characteristic verification by shaking table test on two story seismically non-isolated house and isolated house with steel frame[J]. Journal of Structural and Construction Engineering, 2006, 52:237-247.(In Japanese)
[30]KAWASHIMA M, SUZUKI T, HIRITA Y, et al. Pseudo-damage detection in a five-storey structure based on shaking test[C]// Summaries of Tchnical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 2010, B2:159-160. (In Japanese)
[31]KANAZAW K, SATO D, KITAMURA H, et al. Long-term vibration monitoring on passively controlled steel building of E-defense full-scale test[C]// Proceedings of the 13th Japanese Earthquake Engineering Symposium. Tsukuba: Architectural Institute of Japan, 2014:1538-1543. (In Japanese)
[32] MORI T, YOSHIKAWA Y, HAYASHI M, et al. Forced vibration tests on a light-weight steel brace structure building of three stories: effect of ALC curtain walls on the vibration characteristics of a building[C]// Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 1991, B:559-560. (In Japanese)
[33]ANDO N, NITTA F, KATO Y. A design method of small buildings for vibration control under the influence of traffic[J]. Journal of Architecture, Planning and Environmental Engineering, 2000, 537:29- 36. (In Japanese)
[34]MIWA M, NAKATA S, KIRIYAMA S, et al. Stiffness of exterior ALC walls of a steel structure building in the environmental vibration[C]// Summaries of technical papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 2007, B2:485-486. (In Japanese)
[35] FUKUWA N, NISHIZAKA R, YAGI S, et al. Field measurement of damping and natural frequency of an actual steel-framed building over a wide range of amplitudes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 59:325-347.
[36] SONG S. Damping properties evaluation of lightweight low-rise structure[D]. Tokyo: Graduate School of Creative Science and Engineering, Waseda University, 2013:147-163. (In Japanese)
[37]YAMAMOTO S, SEKI T, SUZUKI N, et al. Vibration experiments of steel office buildings[C]// Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 1969, 44:707-708.(In Japanese)
[38]SUZUKI T, SUZUKI S, HIRASAWA M, et al. Vibration experiments of a 9-storey steel building: part 1 forced vibration test[C]// Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 1970, 45:401-402. (In Japanese)
[39]SIGIMOTO Y, KONNO T, NAKANO T, et al. Vibration experiments of a low-rise steel telephone office building: part 1 complete of the skeleton work[C]// Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 1972, 47:525-526. (In Japanese)
[40]ODAKA T. Nonlinear response analysis of plastic hinged frames subjected to earthquake ground motions[J]. Bulletin of Aichi Institute of Technology, 1982, B17:239-253. (In Japanese)
[41]HAYASHI M. Forced vibration test on an eccentrical steel frames of 6 stories[C]// Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 1993, B:873-874. (In Japanese)
[42]OKADA Y, SUZUKI T, NISIMURA Y, et al. Evaluation on vibrational properties of a 13-story steel-framed building excited by shaker part 1 outline of the building and vibration tests[C]// Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 1995, B2:909-910. (In Japanese)
[43]YAMASHIDA Y, YOSHIKAWA Y, MORI T, et al. Effect of active mass damper on a low or medium-rise building for vibration characteristic: part 2 a medium-rise steel structure[C]// Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 1998, D1:287-288. (In Japanese)
[44]FUKANO H, OHMIYA M, TERAMOTO T, et al. Dynamic analysis of the NIKKEN SEKKEI building based on seismic observation record part 7 microtremor observation and free vibration tests[C]// Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 2005, B2:413-414. (In Japanese)
[45]SODA S, HANAI T, MINAGAWA T, et al. Development of DIY seismic retrofit of low-rise steel structures part 7 preparation of design and construction manual[C]// Summaries of Technical Papers of Annual Meeting. Tokyo: Architectural Institute of Japan, 2013, 1365-1366. (In Japanese)
[46]TOBITA Y, FUKUMOTO N, KIKUCHI K, et al. Vibration experiments for a 13 story steel structure building[C]// Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 1994, B:1121-1122. (In Japanese)
[47]MIWA M, KIRIYAMA S, MAKATA S. A report of four story steel framed building constructed near the expressway and a measure against vibration[C]// Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 2000, D1:345-346. (In Japanese)
[48]OWADA S, SHIROTA H, JOH M, et al. Vibration measurement of SEMITOMO SEIMEI building in Sapporo[J]. Architectural Institute of Japan, Hokkaido Branch, 1973, 39:57-60. (In Japanese)
[49]NAKAO Y, MORIHATA T. A study on vibrational characteristics of a steel framed building of 15 stories:part 1 microtremors observation and effects of PC curtain walls[C]// Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 1987, B:941-942. (In Japanese)
[50]NAGAYA T, MATSUI T, KANAZAWA K, et al. System identification of a high-rise building on the ambient vibration measurement: Case study for “Tower 75” in Meijo University[C]// Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 2007, B2: 517-518. (In Japanese)
[51]ARAKAWA T, HARA K. The evaluation of vibration characteristics for a middle rise steel building based on measurement data: part 1 the structural health monitoring[C]//Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 2009, B2:579-580. (In Japanese)
[52]SHIMADA S, FUJINAMI T, JODAI S. Vibration control of a building under traffic loading on viaduct by tuned mass damper[J]. Journal of Structural Engineering, 1993, 39A:689-698. (In Japanese)