999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

耦合非線性Schr?dinger方程初邊值問題整體解的適定性

2018-10-17 01:45:30陳渝芝張曉強金世剛
關鍵詞:重慶

陳渝芝,張曉強, 金世剛

(重慶理工大學 理學院, 重慶 400054)

1 Introduction

The coupled nonlinear Schrodinger equations:

(SE)

were proposed by [3] to describe the two-wave interaction through cubic nonlinear optical media(see also [2,4]). LetΩbe a domain inR2with compactly smooth boundaryΓ. We consider the following initial-boudary value problem:

(1.1)

(1.2)

u(t,x)=0,v(t,x)=0 (t,x)∈[0,∞)×Γ

(1.3)

u(0,x)=u0(x),v(0,x)=v0(x),x∈Ω

(1.4)

whereu(t,x) andv(t,x) are complex valued functions denoting the complex amplitudes of two interacting waves in nonlinear optical media,respectively.

Problem (1.1)-(1.4) whenΩ=R2has been studied in[2-5],but to our best knowledge,there is no any result whenΩ≠R2. In the present paper, we study the existence and uniqueness of global solution to the initial-boundary value problem (1.1)-(1.4). The main result of this paper reads as follows.

(1.5)

Δφ-φ+φ3=0

(1.6)

Then there exists a unique solution (u,v) for the problem (1.1)-(1.4) such that

(u,v)∈[C([0,∞);H2(Ω))∩C1([0,∞);L2(Ω))]×

[C([0,∞);H2(Ω))∩C1([0,∞);L2(Ω))]

2 Preliminaries

In this section, we give some preliminaries which are key to the proof of Theorem 1.1. In what follows we denote byCvarious constants depending only onΩ.

Firstly, the following result holds from Lemma 2 in[1]

Lemma2.1For (u,v)∈H2(Ω)×H2(Ω) with ||u||H1(Ω)+||v||H1(Ω)≤1, we have

(2.1)

Lemma2.2For (u,v)∈H2(Ω)×H2(Ω), we have

(2.2)

(2.3)

(2.4)

(2.5)

ProofFor (u,v)∈H2(Ω)×H2(Ω),letDdenote any first order differential operator, we have

(2.6)

which implies that

(2.7)

On the other hand,by Gagliardo-Nirenberg inquality,one has

(2.8)

(2.7) and (2.8) yield the estimante (2.2).

We next prove the estimate (2.3).By a direct calculation, we have

(2.9)

(2.10)

Combining (2.9) with (2.10) yields that

(2.11)

Thus, (2.3) follows from (2.11).

Similarly,we can obtain the estimates (2.4) and (2.5).

At the end of this section, we give the following result which is similar to Theorem 1 in Segal [6].

Lemma2.3Assume thatHis a Hibert space andAi:D(Ai)?H→His an m-acctrtive linear operator,wherei=1,2. LetFi(i=1,2) be a mapping fromD(A1)×D(A2) into itself which is Lipschitz on every bounded set ofD(A1)×D(A2).Then for any (u0,v0)∈D(A1)×D(A2),there exists a unique solution (u,v) of the Cauchy problem

(2.12)

3 Proof of Theorem 1.1

In this section,we prove Theorem 1.1.We first give a lemma which concerns the conservation laws of the energy and of the mass by a direct calculation.

||u(t)||L2(Ω)=||u0||L2(Ω), ||v(t)||L2(Ω)=||v0||L2(Ω)

(3.1)

E(u(t),v(t))=E(u0,v0)

(3.2)

where

(3.3)

We now return to show Theorem 1.1

ProofofTheorem1.1Using Lemma 2.3, we let

(3.4)

We divide the proof into two steps.

Step1In this step, we show that ||u(t)||H1(Ω)and ||v(t)||H1(Ω)remain bounded fort>0.

(3.5)

Applying Gagliardo-Nirenberg inequality

(3.6)

whereφis the ground state solution of (1.6), noting that (3.1), we have

(3.7)

Combining (3.5) with (3.7) yields that

||u(t)||H1(Ω)+||v(t)||H1(Ω)≤C

whereCis independent oft.

Step2In this step, we istablish that boundedness of ||u(t)||H2(Ω)and ||v(t)||H2(Ω).

LetSu(t) be theL2isometry group generated byA1,Sv(t) be theL2isometry group generated byA2. By (1.1) and (1.2), we have

(3.8)

(3.9)

and

(3.10)

(3.11)

Thus one has

(3.12)

(3.13)

It follows from Lemma 2.2 that

(||u(s)||H2(Ω)+||v(s)||H2(Ω))≤C(||u(s)||L∞(Ω)+||v(s)||L∞(Ω))2·

(||u(s)||H2(Ω)+||v(s)||H2(Ω))

(3.14)

(||u(s)||H2(Ω)+||v(s)||H2(Ω))≤C(||u(s)||L∞(Ω)+||v(s)||L∞(Ω))2·

(||u(s)||H2(Ω)+||v(s)||H2(Ω))

(3.15)

Furthermore, Lemma 2.1, (3.12), (3.13), (3.14) and (3.15) lead to

[1+log(1+||u(s)||H2(Ω)+||v(s)||H2(Ω))]ds

(3.16)

Let

(3.17)

Then we have

J′(t)=C(||u(t)||H2(Ω)+||v(t)||H2(Ω))·[1+log(1+||u(t)||H2(Ω)+||v(t)||H2(Ω))]≤

CJ(t)[1+log(1+J(t))]≤C(1+J(t))[1+log(1+J(t))]

(3.18)

Hence (3.18) yields that

(3.19)

Hence Integrating (3.19), we obtain the estimate for ||u(t)||H2(Ω)+||v(t)||H2(Ω)of the form

||u(t)||H2(Ω)+||v(t)||H2(Ω)≤eαeβt

(3.20)

whereαandβare two constants indepent oft. Therefore, ||u(t)||H2(Ω)+||v(t)||H2(Ω)remains bounded on every finite time interval. Thus we must haveTmax=∞.

The proof of Theorem 1.1 is completed.

猜你喜歡
重慶
重慶人的浪漫
重慶客APP
新基建,重慶該怎么干?
公民導刊(2022年4期)2022-04-15 21:03:14
平凡英雄 感動重慶
當代黨員(2022年6期)2022-04-02 03:14:56
重慶人為什么愛吃花
數說:重慶70年“賬本”展示
當代黨員(2019年19期)2019-11-13 01:43:29
“逗樂坊”:徜徉相聲里的重慶味
視覺重慶
城市地理(2016年6期)2017-10-31 03:42:32
重慶非遺
在這里看重慶
今日重慶(2017年5期)2017-07-05 12:52:25
主站蜘蛛池模板: 国产精品私拍99pans大尺度| 天堂网国产| 天天色天天综合| 97免费在线观看视频| 欧美a网站| 久久天天躁狠狠躁夜夜2020一| 国产污视频在线观看| 国产成人综合网| 四虎AV麻豆| 欧美精品不卡| 亚洲动漫h| 国产真实乱人视频| 亚洲精品福利视频| 欧美成人亚洲综合精品欧美激情| 青青草国产在线视频| 欧美有码在线观看| 91精品国产91久久久久久三级| 国产91精品最新在线播放| a毛片免费观看| 国产91透明丝袜美腿在线| 欧美一区二区自偷自拍视频| 韩日无码在线不卡| 成年人免费国产视频| 亚洲欧洲免费视频| 亚洲精品第一页不卡| 日韩精品视频久久| 国产精品美女自慰喷水| 亚洲五月激情网| 国产尤物在线播放| 爽爽影院十八禁在线观看| 亚洲福利视频一区二区| 亚洲视频三级| 一区二区三区四区日韩| 一本大道视频精品人妻 | 亚洲国内精品自在自线官| 亚洲最大在线观看| 免费人成在线观看成人片 | AV不卡国产在线观看| 国产日韩精品一区在线不卡 | 99精品视频在线观看免费播放| 亚洲国产精品日韩av专区| 国产伦精品一区二区三区视频优播| 欧美中文字幕在线视频| 亚洲精品免费网站| 久久综合色视频| 中文字幕欧美成人免费| 91日本在线观看亚洲精品| 青青青草国产| 91精品日韩人妻无码久久| 国产一级裸网站| 亚洲va视频| 人妻精品全国免费视频| 国产区在线观看视频| 国产精品女主播| 欧美三级不卡在线观看视频| 亚洲不卡网| 欧美精品成人一区二区在线观看| 日韩av在线直播| 国产区福利小视频在线观看尤物| 国产激爽大片高清在线观看| 中文天堂在线视频| 乱人伦视频中文字幕在线| 中文字幕欧美日韩| 免费一看一级毛片| 在线免费不卡视频| 亚洲国产日韩在线观看| 人妻丰满熟妇αv无码| 久青草免费视频| 精品久久人人爽人人玩人人妻| 国产激情无码一区二区APP| 午夜爽爽视频| 正在播放久久| 91在线免费公开视频| 欧美视频二区| 亚洲成人在线免费观看| 久久久精品无码一二三区| 在线毛片网站| 美女无遮挡被啪啪到高潮免费| 亚洲日本中文字幕乱码中文| 亚洲精品不卡午夜精品| 真人高潮娇喘嗯啊在线观看| 色亚洲激情综合精品无码视频|