999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE COMPUTING FORMULA FOR TWO CLASSES OF GENERALIZED EULER FUNCTIONS

2019-01-18 09:17:00LIAOQunyingLUOWenli
數學雜志 2019年1期

LIAO Qun-ying,LUO Wen-li

(1.College of Mathematics,Sichuan Normal University,Chengdu 610066,China)

(2.The Middle School Attached to Sichuan University(No.12 Middle School),Chengdu 610061,China)

Abstract:In this paper,we study the computing formula of the generalized Euler function.By using elementary methods and techniques,we obtain the computing formula of the generalized Euler function ?pq(n)for some cases and the computing formula of ?e(n)(e=p,p2)for any prime factor m|nwith m≡1 or?1(mod e)and gcd(m,e)=1,where pand qare distinct primes,which are the generalizations for the corresponding main results given in[5].

Keywords:Euler function;generalized Euler function;Mbius function

1 Introduction

In 18th century,as one of the most outstanding mathematician,Euler first defined the Euler function?(n)of a positive integernto be the number of positive integers not greater thannbut prime ton[1].It’s well known that as one of the important number theory functions,Euler function was applied widely.Euler function played a key role in RSA public-key cryptosystem since 1970’s,and it is also one of the important tools to seek the theoretical basis for the generators of circle groups.There were many interesting open problems on Euler function[2].For example,Carmichael conjectured that for any positive integern,there exists a positive integermsuch thatm 6=nand?(m)=?(n).And then Schinzel conjectured that for any fixed positive integerk,the equation?(n+k)=?(n)has infinitely many positive integer solutions forn.

On the other hand,in 1938,for any odd primep,Lehmer[3]established the following important congruence identity

whereqr(n)denotes the Euler quotient,i.e.,,nandr≥2 are both natural numbers with gcd(n,r)=1.

By using(1.1)and the others similar congruences identity,Lehmer obtained many ways to prove the first case of the well-known Fermat’s last theorem[4].Until 2002 and 2007,basing on(1.1)and the other congruence identities given by Lehmer,Cai,etc[5,6]generalized the modulo from the square of a prime to the square of any positive integer,and defined the generalized Euler function for any positive integernto be

i.e.,?e(n)is the number of positive integers not greater thanbut prime ton,whereeis a positive integer and[x]is the greatest integer which is not greater thanx.It’s easy to verify that?1(n)=?(n)is the known Euler function ofn,and

whereμ(n)is the Mbius function,i.e.,

On the other hand,fore=1,the following computing formula for the generalized Euler function is well-known

Therefore one can naturally to ask the following

QuestionFor any fixed positive integere,determine the explicit algorithm formula for the generalized Euler function?e(n).

In recent years,Cai etc[7,8]obtained the accurate calculation formula for?e(n)(e=2,3,4,6),and then,by using properties for Legendre or Jacobi symbols,they also got some necessary and sufficient conditions for that?e(n)and?e(n+1)(e=2,3,4)are both odd or even numbers.

Proposition 1.1[7,8]Letp1,···,pkbe distinct primes,α1,···,αkbe positive integers,and.

(1) If gcd(pi,3)=1(i=1,···,k)andn=3αn1>3,then

(2) Ifαis a nonnegative integer andn=2αn1>4,then

(3) If gcd(pi,6)=1(i=1,···,k)andn=2α3βn1>6,then

Recently,we[9]obtained the formula for?5(n)and some sufficient conditions for 2|?5(n).The present paper continues the study,based on the elementary methods and techniques,the computing formula for?e(n)(e=p,p2,pq)is obtained,wherepandqare distinct primes(Theorems 1.1–1.5).

For convenience,throughout the paper,we assume thatp,q,p1,···,pkare distinct primes,α1,···,αkare positive integers,αandβare both nonnegative integers,and

Theorem 1.1Ifn=pαn1>p,then

Theorem 1.2Ifn=pαn1>p2,then

Theorem 1.3Forn=pαn1>p2andα≤2.

(1) Ifα=0,then

(2) Ifα=1,then

(3) Ifα=2,then

Theorem 1.4Ifn=pαqβn1>pq,then

Theorem 1.5Forn=pαqβn1>pq.

(1) Ifα=β=0,then

(2) Ifα=1 andβ=0,then

(3) Ifα=0 andβ=1,then

(4) Ifα=β=1,then

(5) Ifα≥2 andβ=0,then

(6) Ifα≥2 andβ=1,then

(7) Ifβ≥2 andα∈{0,1},then

RemarkBy takingp=3 in Theorem 1.1,orp=2 in Theorems 1.2–1.3,one can get(1)or(2)of Proposition 1.1,respectively.And by takingp=2 andq=3 in Theorems 1.4–1.5,one can get(3)of Proposition 1.1.The details is left to interested readers.

2 Proofs for Main Results

Proof for Theorem 1.1(1) Ifα=0 andpi≡?1(modp)(i=1,···,k),i.e.,n=n1and for anyd|n1,d≡±1(modp).Then by(1.2)–(1.4),we have

(a) If 2|?(n)and 2|k,then by(2.1)andn=n1,we have ?(n)= ?(n1),ω(n)=ω(n1)and

(b) If 2|?(n)and 2-k,then by(2.1)we have

For the case 2-?(n)and 2-kor 2-?(n)and 2|k,in the same proof,we can get

(2) Ifα=1 and for anyi=1,···,k,pi≡?1(modp),i.e.,n=pn1and for anyd|n1,d≡±1(modp).Then by(1.2)–(1.3),(2.2)and gcd(p,n1)=1,we have

and then

(3) Ifα≥2,i.e.,n=pαn1,then by gcd(p,n1)=1 and(1.2)–(1.3),we have

and then

(4) Ifα=0 andpi≡1(modp)(i=1,···,k),i.e.,n=n1and for anyd|n1,d≡1(modp).Then by(1.2)and(1.4),we have

(5) Ifα=1 andpi≡1(modp)(i=1,···,k),i.e.,n=pn1,then?(n)=(p?1)?(n1)and for anyd|n1,d≡1(modp).Thus by(1.2)–(1.3),gcd(p,n1)=1 and(4)we have

Now from(2.2)–(2.6),Theorem 1.1 is proved.

Proof for Theorem 1.2(1) For the caseα=0,the result is obvious.

(2) Ifα=1,i.e.,n=pn1,then by gcd(p,n1)=1 and(1.2)–(1.3),we have

(3) Ifα=2,i.e.,n=p2n1,then by gcd(p,n1)=1 and(1.2)–(1.3),we have

(4) Ifα≥3,i.e.,n=pαn1,then by gcd(p,n1)=1 and(1.2)–(1.3),we have?(n)=p2(pα?2?pα?3)?(n1),and then

Now from(2.7)–(2.9),we complete the proof of Theorem 1.2.

Proof for Theorem 1.3(1) Ifα=0,i.e.,n=n1,and then gcd(n,p)=1.Suppose thatpi≡1(modp2)(i=1,···,k),then for anyd|n,d≡1(modp2),thus by(1.2)–(1.4),we have

Suppose thatpi≡?1(modp2)(i=1,···,k),i.e,for anyd|n,d≡±1(modp2),and then by(1.2),(1.4)and the proof of Theorem 1.1(1),we can get

Now from(2.10)–(2.11),we complete the proof of(1).

(2) Ifα=1,i.e,n=pn1,then by gcd(p,n1)=1,we have

And so by Theorems 1.1–1.2,(2.12)and(1),we can obtain

This completes the proof of(2).

(3) Ifα=2,i.e,n=p2n1,then by gcd(p,n1)=1,we have

Thus by Theorems 1.1–1.2 and(2.13),in the same proof as that of Theorem 1.3(2),(3)is immediate.

This completes the proof of Theorem 1.3.

Proof for Theorem 1.4(1) Ifα=0,β=0,the result is obvious.

(2) Ifα=1,β=0,i.e.,n=pn1,then by gcd(pq,n1)=gcd(p,q)=1 and(1.2)–(1.3),we have

(3) For the caseα=1,β=0,in the same proof of(2),the result is obvious.

(4) Ifα=β=1,i.e.,n=pqn1,then by gcd(pq,n1)=gcd(p,q)=1 and(1.2)–(1.3),in the same proof as that of(2),(4)is immediate.

(5) Ifα≥2 andβ=0,i.e.,n=pαn1,then by gcd(p,n1)=1 and(1.2)–(1.3),we can obtain

While byα≥2 and(1.2)–(1.4),we know that

thus by(2.15)–(2.16),we have?pq(n)=?q(pα?1n1).Thus(5)is proved.

(6) Ifα≥2 andβ=1,i.e.,n=pαqn1,then by gcd(p,n1)=1,we have

Thus by(1.2)–(1.4),(2.16)and(2.17),we can get

(7) Ifα≥2 andβ≥2,then by gcd(pq,n1)=gcd(p,q)=1,and(1.2)–(1.4),we have

and then

This completes the proof of(7).

Proof for Theorem 1.5(1) For the caseα=β=0,i.e.,n=n1.

(i) Ifpi≡1(modpq)(i=1,···,k),then for anyd|n,d≡1(modpq).Thus by(1.2)and(1.4),we have

(ii) Ifpi≡?1(modpq)(i=1,···,k),i.e.,for anyd|n,d≡±1(modpq).Then by(1.2)–(1.4)and the proof of Theorem 1.1(1),we have

From(2.18)–(2.19),we complete the proof of(1).

(2) Forα=1 andβ=0,i.e.,n=pn1,then by gcd(pq,n1)=gcd(p,q)=1,we have

(i) Ifpi≡1(modpq),thenpi≡1(modq)(i=1,···,k).And so by Theorem 1.1,Theorem 1.4 and(2.18),we have

(ii) Ifpi≡?1(modpq),thenpi≡?1(modq)(i=1,···,k),thus by Theorem 1.1,Theorem 1.4,and(2.19),we have

Now from(2.20)–(2.21),we complete the proof of(2).

(3) Forα=0 andβ=1,in the same proof as that of(2),the result is immediate.

(4) Forα=β=1,i.e.,n=pqn1,then by gcd(pq,n1)=gcd(p,q)=1,we have

(i) Ifpi≡1(modpq),i.e.,pi≡1(modq)andpi≡1(modq)(i=1,···,k).Then by Theorem 1.1,Theorem 1.4 and(2.18),we have

(ii) Ifpi≡?1(modpq),then by Theorem 1.1,Theorem 1.4 and(2.19),we have

Now from(2.22)–(2.23),we complete the proof of(4).

(5) Forα≥2 andβ=0,i.e.,n=pαn1,then by gcd(n1,pq)=gcd(p,q)=1,we have

(i) Ifp≡pi≡1(modq)(i=1,···,k),then by Theorem 1.1,Theorem 1.4 and(2.24),we have

(ii) Ifp≡pi≡?1(modq)(i=1,···,k),then by Theorem 1.1,Theorem 1.4 and(2.24),we have

Now from(2.25)–(2.26),we complete the proof of(5).

(6) Forα≥2 andβ=1,i.e.,n=pαqn1,then by gcd(n1,pq)=gcd(p,q)=1,we have

(i) Ifp≡pi≡1(modq)(i=1,···,k),then by Theorem 1.1,Theorem 1.4 and(2.27),we have

(ii) Ifp≡pi≡?1(modq)(i=1,···,k),then by Theorem 1.1,Theorem 1.4 and(2.27),in the same proof as that of case(5)(ii),one can get

Now from(2.28)–(2.29),we complete the proof of(6).

(7) Ifβ≥2 andα=0 or 1,in the same proofs as those of(4)and(5),the result is obvious.

From the above,Theorem 1.5 is proved.

主站蜘蛛池模板: 婷婷六月综合网| 久久大香香蕉国产免费网站| 国产极品嫩模在线观看91| 韩国自拍偷自拍亚洲精品| 国产在线98福利播放视频免费| 国产精品高清国产三级囯产AV| 日韩精品高清自在线| 亚洲一级毛片免费观看| 国产黑人在线| 国产一级毛片在线| 55夜色66夜色国产精品视频| 欧美国产精品不卡在线观看| 精久久久久无码区中文字幕| 丁香亚洲综合五月天婷婷| 在线观看国产精美视频| 综合天天色| 久久午夜夜伦鲁鲁片不卡| 免费观看三级毛片| 国产日韩欧美在线视频免费观看| 精品在线免费播放| 人妻精品久久无码区| 国产精品亚洲一区二区在线观看| 男女性午夜福利网站| 国产h视频在线观看视频| 中文精品久久久久国产网址| 国产福利一区视频| 久久频这里精品99香蕉久网址| 国产精品福利在线观看无码卡| 国产日韩精品一区在线不卡| 伊人久久久大香线蕉综合直播| 国产清纯在线一区二区WWW| 亚洲天堂啪啪| 在线无码av一区二区三区| 国产在线第二页| 国产农村1级毛片| 国产一区二区影院| 亚洲第一精品福利| 狂欢视频在线观看不卡| 久久国产成人精品国产成人亚洲| 婷婷激情五月网| 日本91在线| 美女亚洲一区| 国产导航在线| 99热这里都是国产精品| 青青青视频91在线 | 中文一区二区视频| 99青青青精品视频在线| 亚洲综合色婷婷| 国产免费怡红院视频| 久久黄色视频影| 精品国产免费观看一区| 亚洲婷婷六月| 538精品在线观看| 亚洲男人天堂2018| 国产精品播放| 亚洲一区毛片| 国产精品三级专区| 92精品国产自产在线观看| 国产剧情一区二区| 综合天天色| 97青草最新免费精品视频| 99久久性生片| 国产精品v欧美| 欧美激情第一欧美在线| 国产精品亚洲一区二区三区在线观看| 色噜噜狠狠狠综合曰曰曰| 国产99精品久久| 国产99在线| 91美女在线| 久久91精品牛牛| 亚洲欧美在线综合一区二区三区| 国产成人亚洲精品无码电影| 1024国产在线| 亚洲美女操| 免费jizz在线播放| 亚洲精品黄| 久青草国产高清在线视频| 欧美午夜视频| 91国内视频在线观看| 97超级碰碰碰碰精品| 99在线观看国产| 久久久久免费精品国产|