999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

SELF-ADAPTIVE SLIDING MODE SYNCHRONIZATION OF A CLASS OF UNCERTAIN FRACTIONAL-ORDER VICTOR-CARMEN SYSTEMS

2019-01-18 09:17:08MAOBeixingWANGDongxiaoCHENGChunrui
數學雜志 2019年1期

MAO Bei-xing,WANG Dong-xiao,CHENG Chun-rui

(College of Science,Zhengzhou University of Aeronautics,Zhengzhou 450015,China)

Abstract:In this paper,we investigate the sliding mode synchronization problem of fractional-order uncertain Victor-Carmen systems.By using self-adaptive sliding mode control approach,sufficient conditions on sliding mode synchronization are provided for the fractional-order systems,which verifies that the master-slave systems of fractional-order Victor-Carmen systems are sliding mode synchronization by choosing proper sliding mode surface and controllers.

Keywords:uncertain fractional-order;Victor-Carmen systems;siding mode;self-adaptive

1 Introduction

Recently,the chaos synchronization of fractional-order systems gained a lot of attention,such as[1–11].Sun in[12]addressed the sliding mode synchronization problem of fractional-order uncertainty systems,which the master-slave systems can realize project synchronization.The authors in[13]studied the problem of self-adaptive sliding mode synchronization of a class of fractional-order chaos systems,which the drive-response systems achieved chaos synchronization.Chaos synchronization control problem was investigated for fractional-order systems in[14].Zhang in[15]considered the self-adaptive trace project synchronization problem of the fractional-order Rayleigh-Duffing-like systems.Since the Victor-Carmen chaos systems involving lots of secreted key parameters and getting extensive use in communications,some results on this topic were investigated.For example,a novel chaotic systems was studied for random pulse generation in[16],and in[17],the terminal sliding mode chaos control of fractional-order systems was studied.In this paper,the problem of sliding mode synchronization of a class of fractional-order uncertain Victor-Carmen systems is tackled using self-adaptive sliding mode control approach,and sufficient conditions on sliding mode synchronization are derived for the fractional-order systems.

Definition 1.1(see[18])The fractional derivative of Caputo is given as follows

2 Main Results

Consider the following integer-order Victor-Carmen systems

wherex1,x2,x3∈R3are system states,a,b,α,β,γare constant parameters.

The responsive systems are as follows

where?fi(y)is uncertain,di(t)is bounded disturbance,uiis controller,subtracting(2.2)to(2.1),we get

Assumption 2.1?fi(y)anddi(t)are bounded,mi,ni>0,|?fi(y)|

Assumption 2.2miandniare unknown for alli=1,2,3.

Assumption 2.3Definite?fi(y)+di(t)=gi(t),i=1,2,3.

Assumption 2.4gi(t)satisfies the condition|gi(t)|≤ε|ei(t)|,where 0<ε<1.

Assumption 2.5Ifei(t)=0,thengi(t)=0 and ifei(t)6=0,thengi(t)6=0.

Lemma 2.6(Barbalat’s lemma,see[19])Iff(t)is uniform continuity in[0,+∞),andis exist,then.

Lemma 2.7(see[19])If there exists a symmetric and positive-definite matrix P such that,where the systems order number 0<α≤1,then general fractional-order autonomous systemsis asymptotic stable.

Theorem 2.8Under Assumptions 2.1–2.5,choosing sliding mode functions(t)=e1+e2+e3,and the following controllers

whereη>0,are the estimate values ofmiandni,and for alli=1,2,3,designing self-adaptive laws

Then the master-slave systems(2.1)and(2.2)of integer-order Victor-Carmen systems are self-adaptive sliding mode synchronization.

ProofWhen the systems state moving on the sliding mode surface,then we can gets(t)=0,(t)=0,because

If we substitute(2.4)to(2.3),thensgn(s),i=1,2 fors(t)=0,it is easy to get.On the other hand,forsgn(s)?ηsgn(s),from(2.5),it is easy to gete1+e2=?e3,so we get,,i=1,2,3.According to Lyapunov stability theory,when,found Lyapunov function,we get

When the systems aren’t moving on the sliding mode surface,we found Lyapunov function as,so it has

sos(t)is bounded and integrable.From Lemma 2.6,we gets(t)→0?ei(t)→0,so the errors converge to zero.

Consider the master systems of fractional-order Victor-Carmen systems

Design the slave systems as following

where?fi(y)is uncertainty,y=[y1y2y3],di(t)is bounded disturbance,uiis controller,subtract(2.7)to(2.6),we get the following errors equation

Theorem2.9Under Assumptions 2.1–2.5,design sliding mode function,choosing controller

whereη>0,are the estimate values ofmi,ni,design self-adaptive laws

Then the master-slave systems(2.6)and(2.7)of fractional-order Victor-Carmen systems are self-adaptive sliding mode synchronization.

ProofWhen the systems state moving on the sliding mode surface,s(t)=0,s˙(t)=0,then,so we get,such that we have

Substitute controller(2.9)to(2.8),we get,i=1,2,when the systems state moving on the sliding mode surfaces(t)=0,so it is easy to get

According to Lemma 2.7,the solution of following equation,soei(t)→0,i=1,2,3.When the systems state moving on the sliding mode surfaces(t)=0,then the solution of errors equation(2.8)is asymptotic stable such that we getei(t)→0,i=1,2,3.

When the systems aren’t moving on the sliding mode surface,we found Lyapunov functionsuch that we get

According to Lemma 2.6,s(t)→0,so we getei(t)→0.

3 Numerical Simulation

In this section,the example is provided to verify the effectiveness of the proposed method.The systems appears chaos attractors,when

the disturbance is bounded

From Figure 1,we see that the systems aren’t getting synchronization without controller.From Figure 2,we see the systems getting rapidly synchronization with controller.From Figure 3,we see that the errors approaching zero,which verifies the systems getting chaos synchronization rapidly.

In Theorem 2.8,g1(t)=cos(2πy2)+0.2cost,g2(t)=0.5cos(2πy3)+0.6sint,g3(t)=0.3cos(2πy2)+cos3t,η=2.5.The uncertainty and outer disturbance as Theorem 2.9,η=3,q=0.873,the systems errors as Figure 4.

4 Conclusion

In this paper,we study the self-adaptive sliding mode synchronization problem of a class of fractional-order Victor-Carmen systems based on fractional-order calculus.The conclusion indicates that the systems are self-adaptive synchronization if designing appropriate controller and sliding mode function.We give out the strict proof in mathematics,and the numerical simulation demonstrates the effectiveness of the proposed method.

Figure 2:State of master-slave with control

Figure 3:The system errors of Theorem 2.8

Figure 4:The system errors of Theorem 2.9

主站蜘蛛池模板: 亚洲国产综合精品中文第一| 国产一二视频| 亚洲一区二区三区香蕉| 精品久久久久久成人AV| 午夜欧美理论2019理论| 亚洲国产成熟视频在线多多| 香蕉国产精品视频| 人妻丰满熟妇av五码区| 国内精品免费| 国产美女在线免费观看| 日本一区二区三区精品视频| 99视频国产精品| 国产一级毛片高清完整视频版| 手机在线看片不卡中文字幕| 玖玖免费视频在线观看| 欧美97欧美综合色伦图| 国产国产人成免费视频77777| 成人va亚洲va欧美天堂| 91美女视频在线| 久久精品aⅴ无码中文字幕| 国产综合精品日本亚洲777| 国产地址二永久伊甸园| 精品国产免费观看| 国产综合日韩另类一区二区| 久久婷婷五月综合色一区二区| 欧美黄色网站在线看| 久操中文在线| 日韩精品一区二区三区swag| 亚洲成网777777国产精品| 亚洲成aⅴ人在线观看| 欧美第二区| 亚洲第一在线播放| 欧美精品啪啪| 高清无码一本到东京热| 婷婷伊人五月| 亚洲热线99精品视频| 亚洲第七页| 午夜视频日本| av色爱 天堂网| 日本欧美视频在线观看| 欧美亚洲综合免费精品高清在线观看| 国产91导航| 国产成人精品三级| 国产a v无码专区亚洲av| 91精品啪在线观看国产60岁 | 日韩国产黄色网站| 免费在线一区| 欧美国产在线一区| 久久视精品| 3344在线观看无码| 日韩无码精品人妻| 色妞永久免费视频| 久草网视频在线| 免费午夜无码18禁无码影院| jijzzizz老师出水喷水喷出| 成人综合在线观看| 高清视频一区| 国产香蕉97碰碰视频VA碰碰看 | a毛片免费在线观看| 免费无码一区二区| 奇米影视狠狠精品7777| 亚洲精品国产综合99| 四虎影视库国产精品一区| 一级黄色片网| 中日韩一区二区三区中文免费视频| 亚洲 欧美 中文 AⅤ在线视频| 久久香蕉国产线看观看亚洲片| 国产成人AV综合久久| 极品国产一区二区三区| 国产免费自拍视频| 久青草国产高清在线视频| 亚洲一级毛片在线观播放| 久久婷婷综合色一区二区| 日韩免费中文字幕| 热99re99首页精品亚洲五月天| 欧美另类视频一区二区三区| 性做久久久久久久免费看| 伊人色天堂| 欧美性色综合网| 国内精品久久人妻无码大片高| 精品国产香蕉在线播出| 黄色在线网|