999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

CENTRAL LIMIT THEOREM AND MODERATE DEVIATION FOR NONHOMOGENENOUS MARKOV CHAINS

2019-01-18 09:17:10XUMingzhouDINGYunzhengZHOUYongzheng
數學雜志 2019年1期

XU Ming-zhou,DING Yun-zheng,ZHOU Yong-zheng

(School of Information and Engineering,Jingdezhen Ceramic Institute,Jingdezhen 333403,China)

Abstract:In this article,we study central limit theorem for countable nonhomogeneous Markov chain under the condition of uniform convergence of transition probability matrices for countable nonhomogeneous Markov chain in Ces`aro sense.By Grtner-Ellis theorem and exponential equivalent method,we obtain a corresponding moderate deviation theorem for countable nonhomogeneous Markov chain.

Keywords:central limit theorem;moderate deviation;nonhomogeneous Markov chain;martingle

1 Introduction

Huang et al.[1]proved central limit theorem for nonhomogeneous Markov chain withfinite state space.Gao[2]obtained moderate deviation principles for homogeneous Markov chain.De Acosta[3]studied moderate deviations lower bounds for homogeneous Markov chain.De Acosta and Chen[4]established moderate deviations upper bounds for homogeneous Markov chain.It is natural and important to study central limit theorem and moderate deviation for countable nonhomogeneous Markov chain.We wish to investigate a central limit theorem and moderate deviation for countable nonhomogeneous Markov chain under the condition of uniform convergence of transition probability matrices for countable nonhomogeneous Markov chain in Ces`aro sense.

Suppose that{Xn,n≥0}is a nonhomogeneous Markov chain taking values inS={1,2,···}with initial probability

and the transition matrices

wherepn(i,j)=P(Xn=j|Xn?1=i).Write

When the Markov chain is homogeneous,P,Pkdenote,respectively.

IfPis a stochastic matrix,then we write

where[a]+=max{0,a}.

LetA=(aij)be a matrix defined asS×S.Write.

Ifh=(h1,h2,···),then we write.Ifg=(g1,g2,···)0,then we write|.The properties below hold(see Yang[5,6])

(a)kABk≤kAkkBkfor all matricesAandB;

(b)kPk=1 for all stochastic matrixP.

Suppose thatRis a‘constant’stochastic matrix each row of which is the same.Then{Pn,n≥1}is said to be strongly ergodic(with a constant stochastic matrixR)if for all.The sequence{Pn,n≥1}is said to converge in the Cesro sense(to a constant stochastic matrixR)if for everym≥0,

The sequence{Pn,n≥1}is said to uniformly converge in the Ces`aro sense(to a constant stochastic matrixR)if

Sis divided intoddisjoint subspacesC0,C1,···,Cd?1,by an irreducible stochastic matrixP,of periodd(d≥1)(see Theorem 3.3 of Hu[7]),andPdgivesdstochastic matrices{Tl,0≤l≤d?1},whereTlis defined onCl.As in Bowerman et al.[8]and Yang[5],we shall discuss such an irreducible stochastic matrixP,of perioddthatTlis strongly ergodic forl=0,1,···,d?1.This matrix will be called periodic strongly ergodic.

Remark 1.1IfS={1,2,···},d=2,P=(p(i,j)),p(1,2)=1,p(k,k?1)=,thenPis an irreducible stochastic matrix of period 2.Moreover,

fork≥2.

where

fork≥1.The solution ofπP=πandare

forn≥3.

Theorem 1.1Suppose{Xn,n≥0}is a countable nonhomogeneous Markov chain taking values inS={1,2,···}with initial distribution of(1.1)and transition matrices of(1.2).Assume thatfis a real function satisfying|f(x)|≤Mfor allx∈R.Suppose thatPis a periodic strongly ergodic stochastic matrix.Assume thatRis a constant stochastic matrix each row of which is the left eigenvectorπ=(π(1),π(2),···)ofPsatisfyingπP=πand.Assume that

and

Moreover,if the sequence ofδ-coefficient satisfies

then we have

Theorem 1.2Under the hypotheses of Theorem 1.1,if moreover

then for each open setG?R1,

and for each closed setF?R1,

In Sections 2 and 3,we prove Theorems 1.1 and 1.2.The ideas of proofs of Theorem 1.1 come from Huang et al.[1]and Yang[5].

2 Proof of Theorem 1.1

Let

WriteFn=σ(Xk,0≤k≤n).Then{Wn,Fn,n≥1}is a martingale,so that{Dn,Fn,n≥0}is the related martingale difference.Forn=1,2,···,set

and

It is clear that

As in Huang et al.[1],to prove Theorem 1.1,we first state the central limit theorem associated with the stochastic sequence of{Wn}n≥1,which is a key step to establish Theorem 1.1.

Lemma 2.1Assume{Xn,n≥0}is a countable nonhomogeneous Markov chain taking values inS={1,2,···}with initial distribution of(1.1)and transition matrices of(1.2).Supposefis a real function satisfying|f(x)|≤Mfor allx∈R.Assume thatPis a periodic strongly ergodic stochastic matrix,andRis a constant stochastic matrix each row of which is the left eigenvectorπ=(π(1),π(2),···)ofPsatisfyingπP=πand.Suppose that(1.4)and(1.5)are satisfied,and{Wn,n≥0}is defined by(2.2).Then

As in Huang et al.[1],to establish Lemma 2.1,we need two important statements below such as Lemma 2.2(see Brown[9])and Lemma 2.3(see Yang[6]).

Lemma 2.2Assume that(?,F,P)is a probability space,and{Fn,n=1,2,···}is an increasing sequence ofσ-algebras.Suppose that{Mn,Fn,n=1,2,···}is a martingale,denote its related martingale difference byξ0=0,ξn=Mn?Mn?1(n=1,2,···).Forn=1,2,···,write

whereF0is the trivialσ-algebra.Assume that the following holds

(i)

(ii)the Lindeberg condition holds,i.e.,for any?>0,

whereI(·)denotes the indicator function.Then we have

Writeδi(j)=δij,(i,j∈S).Set

Lemma 2.3Assume that{Xn,n≥0}is a countable nonhomogeneous Markov chain taking values inS={1,2,···}with initial distribution(1.1),and transition matrices(1.2).Suppose thatPis a periodic strongly ergodic stochastic matrix,andRis matrix each row of which is the left eigenvectorπ=(π(1),π(2),···)ofPsatisfyingπP=πand.Assume(1.4)holds.Then

Now let’s come to establish Lemma 2.1.

Proof of Lemma 2.1Applications of properties of the conditional expectation and Markov chains yield

where

and

We first use(1.4)and Fubini’s theorem to obtain

Hence,it follows from(2.10)andπP=πthat

We next claim that

Indeed,we use(1.4)and(2.9)to have

Thus we use Lemma 2.3 again to obtain

Therefore(2.12)holds.Combining(2.11)and(2.12)results in

which gives

Since{V(Wn)/n,n≥1}is uniformly bounded,{V(Wn)/n,n≥1}is uniformly integrable.By applying the above two facts,and(1.5),we have

Therefore we obtain

which implies that the Lindeberg condition holds.Application of Lemma 2.2 yields(2.3).This establishes Lemma 2.1.

Proof of Theorem 1.1Note that

Write

Let’s evaluate the upper bound of|E[f(Xk)|Xk?1]?E[f(Xk)]|.In fact,we use the C-K formula of Markov chain to obtain

here

Application of(1.6)yields

Combining(1.6),(2.3),(2.16),and(2.17),results in(1.7).This proves Theorem 1.1.

3 Proof of Theorem 1.2

In fact,by(1.8),

and the claim is proved.Hence,by using Grtner-Ellis theorem,we deduce thatWn/a(n)satisfies the moderate deviation theorem with rate function.It follows from(1.8)and(2.17)that??>0,

Thus,by the exponential equivalent method(see Theorem 4.2.13 of Dembo and Zeitouni[10],Gao[11]),we see thatsatisfies the same moderate deviation theorem aswith rate function.This completes the proof.

主站蜘蛛池模板: 欧洲精品视频在线观看| 人人妻人人澡人人爽欧美一区| 中文字幕乱妇无码AV在线| 国产成人亚洲毛片| 国产精品永久在线| 无码高潮喷水在线观看| 久久99热这里只有精品免费看| 亚洲专区一区二区在线观看| 欧美一区二区福利视频| 国产美女主播一级成人毛片| 亚洲三级成人| 欧美亚洲国产精品久久蜜芽| 重口调教一区二区视频| 色欲色欲久久综合网| 国产精品亚洲一区二区三区在线观看| 国产成人精品日本亚洲| JIZZ亚洲国产| 天天视频在线91频| 欧美 亚洲 日韩 国产| 亚洲高清在线播放| 成人福利视频网| 久久成人免费| 亚洲日韩精品伊甸| 婷婷午夜影院| 在线视频97| 国产精品网拍在线| 亚洲一区二区在线无码| 亚洲中文在线视频| 久久中文字幕2021精品| 亚洲国产精品不卡在线| 午夜精品一区二区蜜桃| 国产一级视频久久| 永久免费精品视频| 成人在线第一页| 亚洲av日韩av制服丝袜| 2021国产乱人伦在线播放| 亚洲成人一区二区三区| 精品人妻一区二区三区蜜桃AⅤ| 99热这里只有精品免费国产| 日韩无码视频专区| 国产一区二区三区在线精品专区| 精品无码视频在线观看| 91视频区| 精品91自产拍在线| 亚洲无限乱码| 露脸国产精品自产在线播| 亚洲永久色| 国内毛片视频| 国产97色在线| 国产高清国内精品福利| 丰满人妻久久中文字幕| 婷婷午夜影院| 国产精品性| 国产毛片片精品天天看视频| 丰满人妻一区二区三区视频| 亚洲伊人电影| 国产另类视频| 97精品伊人久久大香线蕉| 91无码人妻精品一区| 一级毛片在线免费看| av无码一区二区三区在线| 国产好痛疼轻点好爽的视频| 国产一级毛片在线| 中文字幕人妻无码系列第三区| 国产精品手机在线播放| 亚洲av成人无码网站在线观看| 日本一本正道综合久久dvd | 久久精品无码一区二区日韩免费| 国产精品黄色片| 无遮挡国产高潮视频免费观看| 2020亚洲精品无码| 老司机午夜精品网站在线观看 | 久久久久夜色精品波多野结衣| 亚洲天堂视频在线播放| 国产精品亚洲片在线va| 久久亚洲AⅤ无码精品午夜麻豆| 高清色本在线www| 青青青国产视频| 狠狠ⅴ日韩v欧美v天堂| 亚洲综合精品香蕉久久网| 国产大片黄在线观看| 夜色爽爽影院18禁妓女影院|