999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

New Inequalities for the Hadamard Product of Nonsingular M-matrices

2019-05-04 05:52:06ChenFubin
數學理論與應用 2019年1期

Chen Fubin

(Science Department,Oxbridge College,Kunming University of Science and Technology,Kunming 650106,China)

Abstract Some new inequalities for the minimum eigenvalue of nonsingular M-matrices are given. A numerical example is given to show that the new inequalities are better than some existing ones.

Key words M-matrix Hadamard product Lower bound Minimum eigenvalue

1 Introduction

The set of all real (complex) matrices is denoted byRn×n(Cn×n).Ndenotes the set {1,2,…,n} throughout.

If ann×nmatrixAsatisfiesA=λI-Bandλ≥ρ(B), whereBis a nonnegative matrix,λis a nonnegative real number andρ(B) is the spectral radius of matrixB,Iis an identity matrix, thenAis called anM-matrix. Furthermore, ifλ>ρ(B), thenAis called a nonsingularM-matrix, and is denoted asA∈Mn[1]; ifλ=ρ(B), thenAis called a singularM-matrix.

Our work is based on the following simple facts (see Problems 16,19 and 28 in Section 2.5 of [2] ):

(1)τ(A)∈σ(A),τ(A)= min {Re(λ):λ∈σ(A)} denotes the minimum eigenvalue ofA.

(2)τ(A)≥τ(B), whenA,B∈MnandA≥B.

The Hadamard productA°BofAandBis defined asA°B=(aijbij). IfA,B∈Mn, thenB°A-1∈Mn[3].

A matrixAis irreducible if there does not exist any permutation matrixPsuch that

whereA11,A22are square matrices.

Given a matrixA=(aij)∈Rn×n, for anyi∈N, let

In [9], Li et al. gave the following result

Furthermore, ifa11=a22=…=ann, they have obtained

In [10], Li et al. gave the following sharper result

In this paper, our motives are to improve the lower bounds for the minimum eigenvalue ofM-matrices, which improve some existing results.

2 Main results

In this section, we give some lemmas that involve inequalities for the entries ofA-1. They will be useful in the following proofs.

Lemma 2.1[13]LetA,B∈Cn×nand suppose thatE,F∈Cn×nare diagonal matrices. Then

E(A°B)F=(EAF)°B=(EA)°(BF)=(AF)°(EB)=A°(EBF).

Lemma 2.2[14]LetA∈Mn, andD=diag(d1,d2,…,dn),(di>0,i=1,2,…,n). ThenD-1ADis a strictly row diagonally dominantM-matrix.

Lemma 2.4[15]IfA=(aij)∈Cn×n, then there existx1,x2,…,xn(xi>0) such that

Lemma 2.5[16]IfA-1is a doubly stochastic matrix, thenAe=e,ATe=e, wheree=(1,1,…,1)T.

Lemma 2.6[3]IfP∈Mnis irreducible, andPz≥kzfor a nonnegative nonzero vectorz, thenτ(P)≥k.

Theorem 2.1IfA=(aij)∈Mnwith strictly row diagonally dominant, thenA-1=(βij) satisfies

ProofThe proof is similar to the Theorem 2.1 in [9].

Theorem 2.2IfA=(aij)∈Mmwith strictly row diagonally dominant, thenA-1=(βij) satisfies

ProofLetB=A-1. SinceAis anM-matrix, soB≥0. ByAB=In, we have

By Theorem 2.1, we have

i.e.,

Theorem 2.3LetA=(aij)∈Rn×nbe anM-matrix, and suppose thatA-1=(βij) is a doubly stochastic matrix. Then

ProofSinceA-1is a doubly stochastic andAis anM-matrix, we know thatAis strictly diagonally dominant by row. By Lemma 2.5, we have

and

Then, by Theorem 2.1, fori∈N

i.e.,

Theorem 2.4IfA=(aij),B=(bij)∈Mn, then

ProofBy Lemma 2.1, and Lemma 2.2, for convenience and without loss of generality, we assume thatAis a strictly diagonally dominant matrix by row.

First, we assume thatA,Bare irreducible. Letτ(B°A-1)=λandA-1=(βij), by Lemma 2.4 and Theorem 2.1, there exists anisuch that

i.e.,

By Theorem 2.2, we obtain

When one ofAandBis reducible.T=(tij) denotes the permutation matrix witht12=t23=…=tn-1,n=tn1=1, the remainingtijzero. We know thatA-εTandB-εTare irreducible nonsingularM-matrices withε>0[1]. we substituteA-εTandB-εTforAandB, the result also holds.

Corollary 2.1IfA=(aij),B=(bij)∈MnandA-1is a doubly stochastic matrix, then

Corollary 2.2IfA=(aij)∈MnandA-1is a doubly stochastic matrix, then

Theorem 2.5IfA=(aij)∈Mnis irreducible strictly row diagonally dominant, then

ProofSinceAis irreducible, thenA-1=(βij)>0, andA°A-1is again irreducible. Note that

τ(A°A-1)=τ((A°A-1)T)=τ(AT°(AT)-1).

Let

(AT°(AT)-1)e=(d1,d2,…,dn)T,

wheree=(1,1,…,1)T. Without loss of generality, we assume thatd1=mini{di}, by Theorem 2.1, we have

Therefore, by Lemma 2.6, we have

RemarkSinceA∈Mnis a strictly row diagonally dominant,so 0≤sji≤dj<1 , then

By the definition ofhi, we have

hence

By 0≤hi≤1, we havevji≤sjiandvi≤si.

Therefore, it is easy to obtain that

That is to say, the bound of Corollary 2.2 is sharper than Theorem 3.1 and the bound of Theorem 2.5 is sharper than Theorem of 3.5 in [9].

3 An example

Let

By Theorem 3.1 of [9], we have

By Theorem 3.2 of [10], we have

If we apply Corollary 2, we have

主站蜘蛛池模板: 色婷婷电影网| 欧美一区二区啪啪| 日本亚洲国产一区二区三区| 波多野结衣在线se| 亚洲第一黄片大全| 69综合网| 亚洲成人精品久久| 午夜日b视频| 国产在线精品网址你懂的| 五月婷婷激情四射| 亚洲天堂精品在线| 国产精品女主播| 国产亚洲欧美日本一二三本道| 亚洲第一成网站| 成人午夜久久| 国产亚洲精品yxsp| 永久免费无码日韩视频| 亚洲浓毛av| 天天干天天色综合网| 日本伊人色综合网| 色天堂无毒不卡| 99草精品视频| 久久国产精品电影| 99re热精品视频国产免费| 亚洲欧美一区二区三区麻豆| 蜜芽一区二区国产精品| 91视频区| 午夜视频在线观看区二区| 成年人国产网站| 国产美女在线免费观看| 国产精品综合久久久| 日韩成人在线网站| 亚洲天堂在线视频| 熟妇丰满人妻| 99精品视频在线观看免费播放| 波多野结衣亚洲一区| 伊人久久婷婷| 欧美色伊人| 国产人成在线观看| 蜜臀AVWWW国产天堂| 久久久久国产一区二区| 国产成人AV综合久久| 国产欧美视频在线观看| 欧美激情一区二区三区成人| 国产极品嫩模在线观看91| 亚洲人成网站18禁动漫无码| 99热这里只有成人精品国产| 亚洲第一精品福利| 日韩久草视频| 国产无码制服丝袜| 丁香五月激情图片| 97在线碰| 亚洲人成网站在线播放2019| 老司国产精品视频91| 91久久夜色精品国产网站| 精品欧美一区二区三区在线| 亚洲天堂伊人| 91探花国产综合在线精品| 91福利在线看| 欧美日韩另类国产| 久久先锋资源| 午夜福利网址| 国产美女在线观看| 69精品在线观看| 亚洲国产成人在线| 人妻一区二区三区无码精品一区| 爱做久久久久久| 欧美精品成人一区二区视频一| 91美女在线| 波多野结衣在线一区二区| 中国毛片网| 亚洲精品成人片在线观看| 久久精品亚洲中文字幕乱码| 欧美激情二区三区| 亚洲AV无码不卡无码| 国产乱人乱偷精品视频a人人澡| 999国产精品| 精品成人一区二区三区电影 | 老熟妇喷水一区二区三区| 国产精品丝袜在线| 波多野结衣无码中文字幕在线观看一区二区 | 国产欧美在线观看视频|