劉雅雯 張尤歷 徐岷
[摘要] 核內不均一核糖核蛋白(hnRNPs)是一類RNA結合蛋白,主要參與RNA剪切、mRNA的加工、端粒合成、DNA修復、基因表達調控及蛋白質翻譯等復雜多樣的生物進程。hnRNPA2/B1屬于該蛋白家族中的成員之一,其在人體大多數組織中表達且具有多種功能。研究發現hnRNPA2/B1在多種惡性腫瘤中均存在差異性表達,并且可參與調控基因的表達、促進增殖與遷移能力、抑制凋亡及調控腫瘤耐藥,在惡性腫瘤的診斷、治療以及預后判斷等方面都具有重要的臨床價值。本文就hnRNPA2/B1在肺癌、乳腺癌、胰腺癌及肝癌等多種惡性腫瘤中的研究進展作一綜述。
[關鍵詞] 核內不均一核糖核蛋白;hnRNPA2/B1;惡性腫瘤
[中圖分類號] R730 [文獻標識碼] A [文章編號] 1673-7210(2019)04(c)-0023-04
[Abstract] Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a group of RNA-binding proteins that play a key role in complex and various biological processes such as RNA splicing, mRNA processing, telomere synthesis, modulation of gene expression, translation of mRNAs. Heteregeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is a member of this proteins family. hnRNPA2/B1 abundantly and ubiquitously expresses in most human tissues and has various functions. Researches indicate that hnRNPA2/B1 is abnormally expressed in diverse malignant tumors, and it can modulate the expression of genes, promote the abilities of proliferation and migration, inhibit apoptosis and regulate tumor resistance in tumors. It also shows that hnRNPA2/B1 has important clinical value in the diagnosis, treatment and prognosis of malignant tumors. Therefore, this paper reviews the development of hnRNPA2/B1 in diverse cancers, such as lung cancer, breast cancer, pancreatic cancer, liver cancer and so on.
[Key words] Heterogeneous nuclear ribonucleoproteins; hnRNPA2/B1; Malignant tumor
核內不均一核糖核蛋白(heterogeneous nuclear ribonucleoproteins,hnRNPs)屬于RNA結合蛋白,其分子結構高度保守,該蛋白家族中至少含有20種蛋白,按照其分子量大小依次從A1至U進行命名[1]。每種hnRNP蛋白都至少包含一個RNA結合區域,如RNA識別元件(RNA recognition motif,RRM)、KH區(K-Homology domain,KH domain)及富含精氨酸/甘氨酸區等均為較常見的RNA結合區域[2]。研究表明hnRNPs在mRNA的加工[3]、可變剪切[4]、轉錄調控[5]、端粒合成[6]、細胞的增殖和凋亡[7-8]等過程中均發揮著重要的生物學功能。hnRNPA2和B1是兩個結構同源蛋白,都屬于hnRNPs蛋白家族,在大多數人類組織中廣泛表達并具有重要的功能[2]。近年來研究表明hnRNPA2/B1在肺癌[15]、乳腺癌[16]、胰腺癌[19]和肝癌[23]等多種腫瘤的發生發展中均發揮了至關重要的作用。
1 hnRNPA2/B1與肺癌
在針對hnRNPA2/B1與肺癌的多項研究中表明,hnRNPA2/B1可作為檢測早期肺癌潛在的生物標志物[2]。早期有研究[9-10]在患者痰液及支氣管灌洗液標本中針對性地檢測hnRNPA2/B1表達水平,研究發現,高表達的hnRNPA2/B1可用于檢測肺癌,并且其敏感度和特異性均高于痰液和支氣管灌洗液中細胞學檢查及影像學檢查。此外,免疫組化檢測的結果表明,hnRNPA2/B1在肺癌患者的血清及組織中明顯高表達,尤其在鱗癌中更為顯著[11]。通過血清蛋白組學分析發現hnRNPA2/B1肺癌中可以引發自身免疫應答,其自身抗體不僅能夠診斷沒有臨床癥狀的早期肺癌患者,還可用于識別肺癌風險的高危人群[12]。這為早期肺癌的診斷提供了新的途徑。
進一步探究hnRNPA2/B1作用的具體分子機制發現,hnRNPA2/B1可直接與轉錄輔激活因子p300相互作用,被p300乙酰化后的hnRNPA2/B1能夠促進與環氧合酶-2(COX-2)啟動子的結合,從而能夠提高COX-2的表達,并可促進非小細胞肺癌細胞的增殖能力[13]。在非小細胞肺癌中,長鏈非編碼RNA CACNA1G-AS1作為hnRNPA2/B1的上游分子,可通過促進hnRNPA2/B1的表達來調節上皮-間質轉化的過程,參與調控非小細胞肺癌的侵襲與遷移能力[14]。另有報道[15]指出轉移抑制基因Nm23-H1能夠增加hnRNPA2/B1蛋白質的穩定性,可共同募集到特異性蛋白-1(Sp1)mRNA的5′UTR,增強Sp1的翻譯活性。由于Sp1在早期肺癌被誘導表達上調,晚期階段表達下調。因此,Nm23-H1、hnRNPA2/B1和Sp1都可以被認為是肺癌的早期生物標志物,并且可用于評估肺癌的預后情況。以上研究結果表明,hnRNPA2/B1不僅可能成為診斷早期肺癌的生物標志物,可作為判斷肺癌患者預后的指標,而且有望成為治療肺癌的新靶點。
2 hnRNPA2/B1與乳腺癌
Hu等[16]研究發現,在乳腺癌組織樣本中,hnRNPA2/B1顯著高表達,此外,還發現乳腺癌細胞中hnRNPA2/B1的表達較正常乳腺上皮細胞明顯上調,這表明hnRNPA2/B1能夠作為臨床生物標志物來診斷乳腺癌。在體外實驗中,下調hnRNPA2/B1能夠抑制乳腺癌細胞的增殖能力,并且使細胞S期延長,從而誘導細胞凋亡。進一步探究其機制發現下調hnRNPA2/B1可降低細胞轉導及磷酸化轉錄激活因子3(signal transducer and activator of transcription 3,STAT3)與磷酸化的細胞外調節蛋白激酶(extra-cellular-signal-regulated kinase 1/2,ERK1/2)的表達。這表明,hnRNPA2/B1可通過激活STAT3和ERK1/2所介導的細胞信號通路來促進乳腺癌的發生。另外,hnRNPA2/B1作為剪切子能夠與凋亡蛋白Bcl-x前mRNA相互作用并調節其選擇性剪接,長鏈非編碼RNABC200不僅可以促進兩者的結合作用,而且能夠通過結合位點形成BC200-Bcl-x-hnRNPA2/B1復合物抑制Bcl-xS的表達,與此同時,促進Bcl-xL的表達,從而促進乳腺癌細胞的增殖能力并且能夠降低癌細胞對化療藥物的敏感性[17]。這為闡明乳腺癌的發生機制以及解決乳腺癌化療耐藥問題提供了一定的幫助。
3 hnRNPA2/B1與胰腺癌
研究[18]表明,hnRNPA2/B1能夠通過參與胰腺癌的增殖、遷移、侵襲、凋亡以及耐藥等多種生物學進程,在胰腺癌的發生發展過程中發揮了至關重要的作用。通過雙向差異凝膠電泳技術發現,胰腺上皮內瘤變組和胰腺癌組大鼠模型中hnRNPA2/B1的表達較正常胰腺組相比均顯著上調[18]。體外實驗證明,上調hnRNPA2/B1的表達可以促進胰腺癌細胞的增殖能力,進一步研究發現hnRNPA2/B1可通過激活ERK/snail細胞信號傳導通路下調上皮細胞的標志分子鈣黏蛋白E(E-cadherin)、上調神經型鈣黏蛋白N(N-cadherin)及波形蛋白(vimentin)的表達來促進胰腺癌細胞發生上皮-間質轉化,從而促進胰腺癌的侵襲能力[19]。hnRNPA2/B1在KRAS依賴性的胰腺癌的發生發展中也扮演了重要的角色,hnRNPA2/B1可通過抑制PI3K/AKT/mTOR信號通路誘導KRAS依賴性的胰腺癌細胞系凋亡[20]。在胰腺癌耐藥性研究[21]中發現,抑制hnRNPA2/B1表達可以誘導胰腺癌細胞凋亡,并能夠提高胰腺癌細胞對吉西他濱、氟脲嘧啶和奧沙利鉑的化療藥物的敏感性[21]。這不僅為hnRNPA2/B1作為胰腺癌治療的潛在分子靶點奠定了基礎,而且為hnRNPA2/B1用于預測胰腺癌患者化療的敏感性提供了理論依據,但這仍需進一步的臨床研究來證明。
4 hnRNPA2/B1與肝癌
與正常肝臟細胞相比,hnRNPA2/B1的mRNA及蛋白水平在肝癌細胞中高度表達,此外,相比于正常肝組織,hnRNPA2/B1在肝炎病毒陽性的肝組織和肝癌組織中過表達也十分顯著[22]。此外,在肝炎病毒感染的肝組織中,hnRNPA2/B1僅存在于細胞核,而當肝癌從高分化階段進展到低分化階段時,hnRNPA2/B1在細胞質中表達增加,而細胞核內的表達明顯降低[22]。另一報道通過臨床病理分析,結果顯示hnRNPA2/B1在細胞質中的表達量與腫瘤分化程度、微血管浸潤程度以及肝癌患者的總體生存率顯著相關,與僅在細胞核中表達hnRNPA2/B1的肝癌患者相比較,在細胞核與細胞質中均表達hnRNPA2/B1的患者的生存率明顯降低[23]。這些研究結果提示檢測hnRNPA2/B1的表達及其在胞質內定位情況不僅可用于肝癌的風險分層和治療監測,而且可以作為肝癌患者總體生存率的獨立預后因子,是非常有前景的診斷性生物標志物。
端粒位于真核生物染色體末端,保持染色體的完整性和控制細胞分裂周期,是控制細胞凋亡的重要因素。端粒酶可對端粒起修復作用,在正常情況下端粒酶的活性被抑制,但在腫瘤中可被重新激活參與惡性轉化。通過免疫共沉淀實驗分析肝癌細胞系樣本時發現,hnRNPA2/B1可與端粒酶逆轉錄酶相互作用,在肝癌細胞中下調hnRNPA2/B1的表達可抑制端粒酶的活性,縮短端粒的長度,從而進一步影響肝癌細胞的增殖[23]。hnRNPA2/B1不僅可以影響端粒的合成,還可以作為RNA結合蛋白在肝癌的進展過程中起重要作用。通過RNA結合蛋白免疫沉淀實驗(RNA-binding protein immunoprecipitation,RIP)發現,長鏈非編碼RNA uc002mbe.2在曲古霉素A的誘導下可直接與hnRNPA2/B1結合并促進其降解,下調hnRNPA2/B1通過介導抑癌基因p21表達以及AKT失活,可使G2/M期的肝癌細胞增多,進而抑制肝癌細胞的生長增殖作用,并且能夠誘導細胞凋亡過程[24]。另有研究[25]表明hnRNPA2/B1可以與長鏈非編碼RNA miR503HG相結合,miR503HG可通過泛素蛋白酶體途徑使hnRNPA2/B1降解,抑制肝細胞癌的轉移能力。這些研究更加深入地闡明了肝癌的發病機制,同時也為肝癌的治療提供了新的思路。
5 hnRNPA2/B1與其他腫瘤
Deng等[26]用免疫組化技術檢測40例人腦膠質瘤組織及正常腦組織中hnRNPA2/B1的表達,發現腦膠質瘤組織中hnRNPA2/B1的表達明顯高于正常腦組織,且hnRNPA2/B1的表達程度與腦膠質瘤的不良預后有關,這意味著hnRNPA2/B1可以作為判斷腦膠質瘤預后的指標。干擾hnRNPA2/B1的表達可抑制體外膠質瘤細胞的增殖、減弱其遷移及侵襲能力并且能夠誘導腦膠質瘤細胞凋亡。在hnRNPA2/B1與胃癌的研究中發現,hnRNPA2/B1在胃癌組織中異常高表達,并且可通過與癌基因和腫瘤抑制基因的相互作用影響腫瘤細胞分化[27]。進一步研究發現,隨著胃癌不斷地分化,hnRNPA2/B1可以從細胞核轉移至細胞質中[28]。體內外實驗均證明降低宮頸癌細胞中hnRNPA2/B1的表達,可以抑制癌細胞的增殖能力,還能夠增加宮頸癌細胞對伊立替康聯合洛鉑化療的敏感性,這些作用主要與PI3K/AKT信號傳導通路有關[29]。
6 小結與展望
綜上所述,hnRNPA2/B1在多種惡性腫瘤組織與細胞系中均存在差異性表達,并且與腫瘤的生長、轉移及化療耐藥有關。此外,hnRNPA2/B1還可通過參與腫瘤相關基因的表達調控、mRNA的選擇性剪切、端粒合成及調節腫瘤細胞周期等多種方式影響腫瘤的發生發展。這些研究結果對發現新的腫瘤生物標志物及詮釋腫瘤的發生機制有重要意義,但其作用機制存在復雜性,有待進一步深入研究闡明。相信隨著對hnRNPA2/B1研究日益展開,hnRNPA2/B1有望成為惡性腫瘤中新型生物標志物、基因治療靶點及預后預測因子,在診斷、預后判斷及治療上均具有重要價值。
[參考文獻]
[1] Li Z,Chen Q,An W,et al. Novel Pathological Role of hnRNPA1(Heterogeneous Nuclear Ribonucleoprotein A1)in Vascular Smooth Muscle Cell Function and Neointima Hyperplasia [J]. Arterioscler Thromb Vasc Biol,2017,37(11):2182-2194.
[2] He Y,Smith R. Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B [J]. Cell Mol Life Sci,2009,66(7):1239-1256.
[3] Han SP,Tang YH,Smith R. Functional diversity of the hnRNPs:past,present and perspectives [J]. Biochem J,2010, 430(3):379-392.
[4] Chen M,Zhang J,Manley JL. Turning on a fuel switch of cancer-nRNP proteins regulate alternative splicing of pyruvate kinase mRNA [J]. Cancer Res,2010,70(22):8977-8980.
[5] Lemieux B,Blanchette M,Monette A,et al. A Function for the hnRNP A1/A2 Proteins in Transcription Elongation [J]. PLoS One,2015,10(5):e0126654.
[6] El-Mazny A,Sayed M,Sharaf S. Human telomerase reverse transcriptase messenger RNA(TERT mRNA)as a tumour marker for early detection of hepatocellular carcinoma [J]. Arab J Gastroenterol,2014,15(2):68-71.
[7] Wang K,Ling T,Wu H,et al. Screening of candidate tumor-suppressor genes in 3p21.3 and investigation,of the methylation of gene promoters in oral squamous cell carcinoma [J]. Oncol Rep,2013,29(3):1175-1182.
[8] Chen T,Cui P,Chen H,et al. A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis [J]. PLoS Genet,2013,9(10):e1003875.
[9] Tockman MS,Mulshine JL,Piantadosi S,et al. Prospective detection of preclinical lung cancer:results from two studies of heterogeneous nuclear ribonucleoprotein A2/B1 overexpression [J]. Clin Cancer Res,1997,3(12 Pt 1):2237-2246.
[10] Fielding P,Turnbull L,Prime W,et al. Heterogeneous nuclear ribonucleoprotein A2/B1 up-regulation in bronchial lavage specimens:a clinical marker of early lung cancer detection [J]. Clin Cancer Res,1999,5(12):4048-4052.
[11] Dowling P,Pollard D,Larkin A,et al. Abnormal levels of heterogeneous nuclear ribonucleoprotein A2B1(hnRNPA2B1)in tumour tissue and blood samples from patients diagnosed with lung cancer [J]. Mol Biosyst,2015,11(3):743-752.
[12] Dai L,Li J,Tsay JJ,et al. Identification of autoantibodies to ECH1 and HNRNPA2B1 as potential biomarkers in the early detection of lung cancer [J]. Oncoimmunology,2017,6(5):e1310359.
[13] Xuan Y,Wang J,Ban L,et al. hnRNPA2/B1 activates cyclooxygenase-2 and promotes tumor growth in human lung cancers [J]. Mol Oncol,2016,10(4):610-624.
[14] Yu PF,Kang AR,Jing LJ,et al. Long non-coding RNA CACNA1G-AS1 promotes cell migration,invasion and epithelial-mesenchymal transition by HNRNPA2B1 in non-small cell lung cancer [J]. Eur Rev Med Pharmacol Sci,2018,22(4):993.
[15] Hung CY,Wang YC,Chuang JY,et al. Nm23-H1-stabilized hnRNPA2/B1 promotes internal ribosomal entry site(IRES)-mediated translation of Sp1 in the lung cancer progression [J]. Sci Rep,2017,7(1):9166.
[16] Hu Y,Sun Z,Deng J,et al. Splicing factor hnRNPA2B1 contributes to tumorigenic potential of breast cancer cells through STAT3 and ERK1/2 signaling pathway [J]. Tumour Biol,2017,39(3):1010428317694318.
[17] Singh R,Gupta SC,Peng WX,et al. Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis [J]. Cell Death & Disease,2016,7(6):e2262.
[18] Wang L,Liu HL,Li Y,et al. Proteomic analysis of pancreatic intraepithelial neoplasia and pancreatic carcinoma in rat models [J]. World J Gastroenterol,2011,17(11):1434-1441.
[19] Dai S,Jie Z,Huang S,et al. HNRNPA2B1 regulates the epithelial-mesenchymal transition in pancreatic cancer cells through the ERK/snail signalling pathway [J]. Cancer Cell Int,2017,17:12.
[20] Barceló C,Etchin J,Mansour MR,et al. Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells [J]. Gastroenterology,2014,147(4):882-892.
[21] Gu WJ,Liu HL. Induction of pancreatic cancer cell apoptosis,invasion,migration,and enhancement of chemotherapy sensitivity of gemcitabine,5-FU,and oxaliplatin by hnRNP A2/B1 siRNA [J]. Anticancer Drugs,2013,24(6):566-576.
[22] Cui H,Feng W,Sun Y,et al. Up-regulation and subcellular localization of hnRNP A2/B1 in the development of hepatocellular carcinoma [J]. BMC Cancer,2010,10:356.
[23] Mizuno H,Honda M,Shirasaki T,et al. Heterogeneous nuclear ribonucleoprotein A2/B1 in association with hTERT is a potential biomarker for hepatocellular carcinoma [J]. Liver Int,2012,32(7):1146-1155.
[24] Chen T,Gu C,Xue C,et al. LncRNA-uc002mbe.2 Interacting with hnRNPA2B1 Mediates AKT Deactivation and p21 Up-Regulation Induced by Trichostatin in Liver Cancer Cells [J]. Front Pharmacol,2017,8:669.
[25] Wang H,Liang L,Dong Q,et al. Long noncoding RNA miR503HG,a prognostic indicator,inhibits tumor metastasis by regulating the HNRNPA2B1/NF-κB pathway in hepatocellular carcinoma [J]. Theranostics,2018:2814-2829.
[26] Deng J,Song C,Feng W,et al. Effects of hnRNP A2/B1 Knockdown on Inhibition of Glioblastoma Cell Invasion,Growth and Survival [J]. Mol Neurobiol,2016,53(2):1132-1144.
[27] Dai P,Wang Q,Wang W,et al. Unraveling Molecular Differences of Gastric Cancer by Label-Free Quantitative Proteomics Analysis [J]. Int J Mol Sci,2016,17(1):E69.
[28] Jing GJ,Xu DH,Shi SL,et al. Aberrant expression and localization of hnRNP-A2/B1 is a common event in human gastric adenocarcinoma [J]. J Gastroenterol Hepatol,2011,26(1):108-115.
[29] Shi X,Ran L,Liu Y,et al. Knockdown of hnRNP A2/B1 inhibits cell proliferation,invasion and cell cycle triggering apoptosis in cervical cancer via PI3K/AKT signaling pathway [J]. Oncol Rep,2018,39(3):939-950.
(收稿日期:2018-10-25 本文編輯:金 虹)