周溢甜,徐璐奕,徐黎蔚,代 偉
?
Zn/Ni/Cu-BTC強化吸附剛果紅性能研究
周溢甜,徐璐奕,徐黎蔚,代 偉*
(浙江師范大學化學與生命科學學院,浙江 金華 321004)
運用水熱合成法制備了一種新型三金屬單配體多孔材料Zn/Ni/Cu-BTC,運用氮氣吸脫附、掃描電鏡、X射線衍射等對材料進行了表征.研究了其常溫常壓條件下(25℃,1atm)靜態吸附剛果紅的性能.結果表明,由于三金屬不飽和配位點的協同效應導致剛果紅在Zn/Ni/Cu-BTC多孔材料上的吸附容量從630mg/g增加到1250mg/g,增加了98.4%.準二級動力學模型和Langmuir吸附模型較好地描述了Zn/Ni/Cu-BTC對剛果紅的吸附行為.
三金屬單配體;剛果紅;吸附;Zn/Ni/Cu-BTC
我國是染料生產和使用的大國,印染廢水深度凈化迫在眉睫,特別是染料中的陰離子型染料分子結構復雜、分子量較大,易與帶正電荷的分子生成更難在環境中被降解、氧化和代謝的污染物[1-3].直接排放富含陰離子染料的污水不僅影響水環境的感觀,而且會降低水生植物的光合作用,破壞水體生態系統的平衡,嚴重威脅水生生物和人類的健康[4-5].
利用吸附劑和吸附質間特殊的相互作用,吸附法能選擇性地捕獲染料分子,實現印染廢水的深度凈化[6].吸附法的關鍵和核心是如何制備出高比表面積和高選擇性的新型高效吸附劑.金屬有機多孔材料(MOMs)是由金屬離子和有機配體通過配位鍵聯接而成的有機-無機雜化材料.由于其結構中存在金屬不飽和位點,可選擇性吸附帶有負電荷的陰離子型染料分子[7]. MOMs材料通常是單金屬和單配體間的一對一配位構型.最近有文獻報道,由于雙金屬的協同效應,含有雙金屬不飽和配位的MOMs材料提升了其選擇性和吸附容量,使其在吸附應用領域有廣闊的發展前景[8-9].然而MOMs材料對陰離子染料的吸附是否同樣具有較好的選擇性和吸附容量仍然有待研究,以期為其應用打下技術和理論支撐.
作為典型的陰離子染料, 剛果紅可與金屬陽離子產生陰陽離子配位作用,進而形成選擇性吸附效應.Cu-BTC(典型的羧酸配體類MOMs)骨架中的Cu(II)具有不飽和配位,可實現對剛果紅的選擇定位吸附.另外,性質和結構相似的金屬不飽和配位點,會產生多金屬協同配位效應.這種效應是指摻雜多種金屬產生的復合疊加性能高于其任何一種或兩性能種成分所具有的功能.因此,含有三金屬離子的Zn/Ni/Cu-BTC材料,三金屬離子與陰離子型剛果紅分子間會產生吸附協同效應.這種效應是基于源自混雜配位能力高于一種活性金屬;或是多金屬給質子位置的疊加效應;或是材料顆粒上表面細微差異導致電子結構的變化[2,7].基于此,為了進一步提高選擇性和吸附容量,本文以均苯三甲酸(H3BTC)為單一配體,選用元素周期表上與Cu(II)相鄰的Ni(II)和Zn(II) 金屬離子部分替代Cu-BTC骨架上的Cu(II), 水熱合成Cu-BTC、Ni/Cu-BTC和Zn/Ni/Cu-BT.研究對比3種MOMs材料對典型的剛果紅陰離子染料的吸附性能,為深度凈化印染廢水提供新思路.
Cu-BTC、Ni/Cu-BTC和Zn/Ni/Cu-BTC的制備參考相關文獻報道的水熱合成技術[7-9],3種材料合成方法相似,不同之處在于金屬離子源的摻雜.例如,合成Zn/Ni/Cu-BTC的實驗步驟如圖1所示.

圖1 Zn/Ni/Cu-BTC的合成過程
剛果紅與去離子水按一定質量比配成模型廢水,將容量瓶定容為50~750mg/L一系列不同初始濃度的模型廢水.運用紫外分光光度計(Thermo Fisher Evolution 300PC)在波長496nm,外標法測定平衡后剛果紅濃度.
靜態吸附實驗步驟如圖2所示,根據式(1)計算出平衡吸附量e.

式中:qe為平衡吸附量,mg/g;C0為模型廢水中剛果紅初始濃度,mg/L;Ce為吸附飽和時剛果紅的平衡濃度,mg/L;V為模型廢水用量,mL;m為Zn/ Ni/Cu-BTC用量,mg.相同實驗條件下,重復實驗3次,取平均值.
在-196℃條件下,Cu-BTC、Ni/Cu-BTC和Zn/Ni/Cu-BTC的氮氣吸脫附等溫線如圖3所示.在低壓區,氮氣吸附等溫線是一個快速上升的過程,在相對壓力0.1時就基本達到平衡.根據國際純粹與應用化學聯合會規定,3種MOMs材料氮氣吸附曲線形狀相同,均為典型的I型吸脫附等溫線.在結構中摻雜了Zn(II)、Ni(II)2種金屬離子后,多金屬MOFs材料仍然具有超過1000m2/g的比表面積,為剛果紅分子提供了容量空間. 3種材料的結構信息如表1所示.

圖3 Cu-BTC、Ni/Cu-BTC和Zn/Ni/Cu-BT的氮氣吸脫附等溫線

表1 3種MOFs的結構信息
Zn/Ni/Cu-BTC的掃描電鏡圖及各元素組成的掃描電鏡能譜結果如圖4和表2所示.結果表明,Zn和Ni的引入并沒有改變材料的結構,仍然是正八面體結構.這也與文獻報道的SEM表征結果一致[9]. Zn/Ni/Cu-BTC中含有15.5wt%的Zn,17.8wt%的Ni和19.3wt%的Cu,證明此材料具有三金屬特征.

圖4 Zn/Ni/Cu-BTC掃描電鏡

表2 掃描電鏡能譜各元素組成

圖5 Zn/Ni/Cu-BTC的XRD譜圖
單金屬Cu-BTC、雙金屬Ni/Cu-BTC和三金屬Zn/Ni/Cu-BTC的XRD表征結果如圖5所示,當添加Zn和Ni后,Zn/Ni/Cu-BTC的特征峰出峰位置沒有發生變化,晶胞參數基本一致(===26.353± 0.001).由于Zn(II)、Ni(II)與Cu(II)離子半徑大小相近,所以當摻雜Ni(II)和Zn(II)后,只是部分代替了Cu(II)與配體配位組合,不影響其晶體結構,與文獻報道一致[8-9].
剛果紅染料在Zn/Ni/Cu-BTC表面上的吸附受多種因素綜合影響,主要有以下幾點.第一,根據文獻報道,剛果紅分子尺寸的長寬高分別為2.29nm× 0.82nm×0.60nm[2],Cu-BTC具有3種孔籠結構,分別是直徑為0.9nm的方形主孔穴,直徑為0.5nm的孔籠,以及二者之間的0.35nm貫通孔籠[7],從篩分的角度看,部分剛果紅染料分子可以以“竹竿”式吸附擴散進入Cu-BTC的主孔籠.第二,暴露于表面的金屬簇的不飽和點位會與陰離子剛果紅產生配位吸附作用.第三,剛果紅分子結構中含有苯環,Zn/Ni/Cu- BTC結構中也含有大量苯環,彼此之間會產生π-π共軛的吸附作用.

圖6 pH值對Zn/Ni/Cu-BTC表面Zeta電位的影響
此外,在pH=2~12范圍內,通過對Zn/Ni/Cu- BTC表面的Zeta電位進行測試,結果如圖6所示.剛果紅的酸度系數pa=4.1[2],屬于中強度酸較容易電離出H+.在pH值小于4時,剛果紅染料在Zn/Ni/Cu- BTC表面上的吸附除了受到以上3種吸附效應影響外,還受到Zn/Ni/Cu-BTC表面帶少量正電荷與陰離子型的剛果紅染料分子間產生靜電吸附作用的影響;隨著pH值的增加,Zn/Ni/Cu-BTC表面為負電荷,與陰離子型剛果紅產生靜電排斥作用,降低了剛果紅染料分子在Zn/Ni/Cu-BTC表面上的吸附作用強度,因此吸附量隨著pH值的增加明顯降低,從pH=2時的1250mg/g降低到pH=12時的950mg/g(圖7),但是仍然具備一定的吸附容量.

圖7 pH值對剛果紅染料分子在Zn/Ni/Cu-BTC上吸附量的影響
Zn/Ni/Cu-BTC樣品在合成過程中,由于空間位阻等原因,金屬離子除了與均苯三甲酸配體配位以外,還會結合一些小的溶劑分子來滿足其配位數的要求,如水和DMF等.當合成的樣品Zn/Ni/Cu-BTC在真空氛圍下加熱一段時間后,這些小分子就會從骨架中排出,金屬離子的配位就成不飽和狀態,骨架結構仍然穩定,這意味著Zn/Ni/Cu-BTC材料具有發生陰陽電荷作用的吸附位[1-2].圖8為常溫常壓條件下(25℃和1atm),剛果紅染料分子在Cu-BTC、Ni/Cu-BTC和Zn/Ni/Cu-BTC上的吸附等溫線.由圖8可知,由于金屬間的協同作用, 剛果紅在三金屬吸附材料Zn/Ni/Cu-BTC的吸附容量為1250mg/g,比單金屬和雙金屬吸附材料Cu-BTC(630mg/g)和Ni/Cu- BTC(1065mg/g)分別高98.4%和17.2%.3種材料吸附容量的順序為Zn/Ni/Cu-BTC>Ni/Cu-BTC>Cu-BTC.采用Langmuir和Freundlich等溫吸附模型對圖6數據擬合.Langmuir等溫吸附模型公式見表3[10-11].
為進一步分析Langmuir等溫吸附模型,引入一個無量綱的常數–分離因數(L).L利用公式(2)計算[11]:

式中:0為模型廢水中剛果紅的初始濃度,mg/L.根據L的數值大小,可將Langmuir等溫吸附模型分為4類:(i)0

表3 不同的吸附等溫模型及其線性形式
注:e為平衡吸附容量,mg/g;L為Langmuir常數,L/mg;f為與吸附容量有關的Freundlich常數;1/為與吸附強度有關的經驗系數;e為平衡濃度,mg/L.

表4 3種MOMs吸附剛果紅的等溫吸附模型參數
由表4可知,其中Langmuir等溫吸附模型可以很好地描述Zn/Ni/Cu-BTC對剛果紅的吸附行為(相關系數2大于0.99).計算得到的L值均大于0小于1,1/值均大于0.1小于1,這說明了3種材料對剛果紅的吸附是優惠吸附.根據相關文獻報道[16-18]運用惰性氣體(氦氣)保護,高溫(400℃)吹掃,再用有機溶劑(乙醇)洗滌的方法,吸附飽和的吸附劑可以實現再生,再生容量RC大于92%.

式中RC代表再生容量,%;qr代表再生后的材料對剛果紅的吸附容量; qL代表材料的吸附容量.
由圖9可知,3種吸附材料對剛果紅的吸附量首先是一個迅速上升,之后達到吸附平衡.在相同的吸附時間條件下,Zn/Ni/Cu-BTC材料的吸附容量最大,1.5h基本達到平衡.3種MOFs材料對剛果紅是一個較快的吸附過程,多金屬的吸附速率大約是雙金屬的4倍、單金屬的10倍,雙金屬的吸附速率大約是單金屬的2.5倍.

圖9 Cu-BTC、Ni/Cu-BTC和Zn/Ni/Cu-BTC對剛果紅的吸附動力學
采用準一級和準二級動力學吸附模型對圖9的實驗數據進行擬合.準一級動力學模型的數學方程可表達為[19]:

式中:1為準一級動力學速率常數,1/min;為反應時間,min;t和e分別為時刻和平衡時刻吸附劑對吸附質的吸附量,mg/g.準二級動力學模型的數學方程可表達為[12]:

式中:2為準二級動力學速率常數;g/(mg·min).分別以ln(e-t)對和/t對作圖,由直線的斜率和截距可以求出動力學的理論平衡吸附容量e,cal和速率常數1、2的值,e,exp為實驗測得的平衡吸附量,結果見表5.由表5可見,準二級動力學模型比準一級動力學更適合用于描述3種材料對剛果紅的吸附過程.

表5 不同初始濃度條件下Cu-BTC、Ni/Cu-BTC和Zn/Ni/Cu-BTC吸附剛果紅的動力學參數
此外,采用顆粒內擴散模型識別擴散機制是否為吸附過程的速率限制步驟.顆粒內擴散模型的數學方程可表達為[20]:

式中:C為截距;ki為顆粒內擴散速率常數,mg/ (g·min0.5).通過qt對t0.5的曲線是否線性并且通過原點來判斷顆粒內擴散機制是否唯一速率限制步驟 [21].圖10為Cu-BTC、Ni/Cu-BTC和Zn/Ni/ Cu-BTC吸附剛果紅的qt對t0.5曲線.由圖可見,3種材料對剛果紅的吸附過程可以分為3個階段:第1階段為快速的外表面吸附階段;第2階段為逐漸吸附階段,顆粒內擴散是該階段吸附過程的速率限制步驟;第3階段為最終平衡階段.第2階段的擬合曲線不通過原點,這說明顆粒內擴散不是逐漸吸附階段唯一的速率限制步驟,逐漸吸附階段的速率限制步驟既包括液膜擴散也包括顆粒內擴散[21].




式中:L為化學反應平衡常數,L/mol:是溶液體積, L;吸附劑質量,g.根據公式(7)、(8)和(9)計算得到Zn/Ni/Cu-BTC吸附剛果紅的熱力學參數(表6).

表6 Zn/Ni/Cu-BTC吸附剛果紅的熱力學參數
由表6可知,當反應溫度為25,35,45℃時,計算得到的Δo為負值,這說明Zn/Ni/Cu-BTC吸附剛果紅的過程是熱力學自發過程.Δo為正值,這說明Zn/Ni/Cu-BTC吸附剛果紅的過程是吸熱過程. 正值的Δo說明Zn/Ni/Cu-BTC吸附剛果紅增加了固/液界面上物質的無序程度[7-8,15].
3.1 采用水熱合成法成功制備出三金屬單配體的多孔材料Zn/Ni/Cu-BTC.掃描電鏡、XRD和氮氣吸脫附證明了其結構與單雙金屬Cu-BTC和Ni/Cu- BTC基本一致.
3.2 具有多金屬協同效應的Zn/Ni/Cu-BTC對剛果紅的吸附容量高于雙金屬和單金屬的Ni/Cu-BTC和Cu-BTC吸附劑.
3.3 準二級動力學模型和Langmuir吸附等溫模型較好描述了Zn/Ni/Cu-BTC對剛果紅的吸附過程.
[1] Gong R, Ye J J, Dai W, et al. Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue- based activated carbon [J]. Industrial and Engineering Chemistry Research, 2013,52(39):14297–14303.
[2] Hu J, Yu H J, Dai W, et al. Enhanced adsorptive removal of hazardous anionic dye “Congo red” by a Ni/Cu mixed-component metal-organic porous material [J]. RSC Advances, 2014,4(66):35124–35130.
[3] Ahmad N M, Ram R N. Removal of basic dye from wastewater using silica as adsorbent [J]. Environmental Pollution, 1992,77(1):79–86.
[4] Sepulveda L A, Santana C C. Effect of solution temperature, pH and ionic strength on dyes adsorption onto magellanic peat [J]. Environmental Technology, 2013,34(8):967–977.
[5] Dai W, Yu H J, Ma N, et al. Adsorption equilibrium and kinetic studies of crystal violet and naphthol green on torreya-grandis-skin-based activated carbon [J]. Korean Journal of Chemical Engineering, 2015,32(2):335–341.
[6] Liu Z, Zhou A, WangG, et al.Adsorption behavior of methyl orange onto modified ultrafine coal powder [J].Chinese Journal of Chemical Engeering, 2009,17(6):942–948.
[7] Hu J, Dai W, Yan X Y. Comparison study on the adsorption performance of methylene blue and congo red on Cu-BTC [J]. Desalination and Water Treatment, 2016,57(9):4081–4089.
[8] Wang T T, Fang Y Y, Dai W, et al. The remarkable adsorption capacity of zinc/nickel/copper-based metal-organic frameworks for thiophenic sulfurs [J]. RSC Advances, 2016,6(107):105827–105832.
[9] Wang T T, Li X X, Dai W, et al. Enhanced adsorption of dibenzothiophene with zinc/copper-based metal-organic porous material [J]. Journal of Materials Chemistry A, 2015,3(42):21044– 21050.
[10] Langmuir I. The constitution and fundamental properties of solids and liquids [J]. Journal of the American Chemical Society, 1916,38:2221– 2295.
[11] 林建偉,詹艷慧,陸 霞,等.鋯改性沸石對水中磷酸鹽和銨的吸附特性 [J]. 中國環境科學, 2012,32(11):2023–2031.Lin J W, Zhan Y H, Lu X, et al. Adsorption characteristics of zirconium modified zeolite for phosphate and ammonium in water [J]. China Environmental Science, 2012,32(11):2023-2031.
[12] Freundlich H M F. Uber die adsorption in losungen [J]. Zeitschrift fur Physikalische Chemie, 1906,57:385–470.
[13] Haque E, Jun J W, Jhung S H. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal?organic framework material, iron terephthalate (MOF-235) [J]. Journal of Hazardous Materials, 2011,185(1):507–511.
[14] Annadurai G, Juang R S, Lee D J. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions [J]. Journal of Hazardous Materials, 2002,92(3):263–274.
[15] Liu Z, Zhou A, Wang G, et al. Adsorption behavior of methyl orange onto modified ultrafine coal powder [J].Chinese Journal of Chemical Engeering, 2009,17(6):942–948.
[16] Royer B, Cardoso N F, Lima E C, et al. Applications of Brazalin pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions: kinetics and equilibrium study [J]. Journal of Hazardous Materials, 2009,164: 1213–1222.
[17] Juang L C, Wang C C, Lee C K. Adsorption of basic dyes onto MCM-41 [J]. Chemosphere, 2006,64(11):1920–1928.
[18] Haque E, Jun J W, Jhung S H. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235) [J]. Journal of Hazardous Materials, 2011,185(1):507–511.
[19] Yang J, Qiu K. Preparation of activated carbons from walnut shell via vacuum chemical activation and their application for methylene blue removal [J]. Chemical Engineering Journal, 2010,165(1):209–217.
[20] Vinoth M, Lim H Y, Xavier R, et al. Removal of methyl orange from solutions using yam leaf fibers [J]. International Journal of Chem Tech Research. 2010,2(4):1890–1900.
[21] Karagoz S, Tay T, Ucar S, et al. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption [J]. Bioresource Technology, 2008,99(14):6214–6222.
[22] Jalil A A, Triwahyono S, Adam S H, et al. Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud [J]. Journal of Hazardous Materials, 2010,181(1-3):755–762.
[23] Cheah W, Hosseini S, Khan M A, et al. Acid modified carbon coated monolith for methyl orange adsorption [J]. Chemical Engineering Journal, 2013,215-216:747–754.
Enhanced adsorptive performance of Congo red by Zn/Ni/Cu-BTC.
ZHOU Yi-tian, XU Lu-yi, XU Li-wei, DAI Wei*
(College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China)., 2019,39(5):2021~2027
Zn/Ni/Cu-BTC, a new porous material with three metals and one single-ligand, was synthesized by a hydrothermal synthesis method. The material was characterized by N2adsorption-desorption, SEM and XRD methods. Its adsorptive performance for anion Congo red was investigated at the normal pressure and temperature (25℃, 1ATM) with batch experiments. The result showed that the Congo red uptake capacity increased more than 98% from 630mg/g to 1250mg/g. The adsorption process of Congo red onto Zn/Ni/Cu-BTC could be effectively described by the pseudo-second-order kinetic model and Langmuir adsorption model.
three metallic;Congo red;adsorption;Zn/Ni/Cu-BTC
X703.5
A
1000-6923(2019)05-2021-07
周溢甜(1997-),女,浙江杭州人,浙江師范大學應用化學(國際化專業)本科生,主要從事環境吸附材料的制備及其性能研究.
2018-10-22
浙江省自然科學基金資助項目(LY19B060014);國家大學生創新創業訓練計劃項目(201910345029)
*責任作者, 教授, daiwei@zjnu.cn