陳成崗
一、引言
應該說,我們的中學數學教學是一種“目標教學”。一方面,我們一直想教給學生有用的數學,但學生高中畢業后如不攻讀數學專業,就覺得數學除了高考拿分外別無它用;另一方面,我們的“類型十方法”的教學方式的確是提高了學生的應試“能力”,但是學生一旦碰到陌生的題型或者聯系實際的問題卻又不會用數學的方法去解決它。大部分同學學了十二年的數學,卻沒有起碼的數學思維,更不用說用創造性的思維自己去發現問題,解決問題了。由此看來,中學數學教與學的矛盾顯得特別尖銳。
二、構建數學建模意識的基本途徑。
1.數學建模教學還應與現行教材結合起來研究
教師應研究在各個教學章節中可引入哪些模型問題,如講立體幾何時可引入正方體模型或長方體模型把相關問題放入到這些模型中來解決;又如在解幾中講了兩點間的距離公式后,可引入兩點間的距離模型解決一些具體問題,而儲蓄問題、信用貸款問題則可結合在數列教學中。要經常滲透建模意識,這樣通過教師的潛移默化,學生可以從各類大量的建模問題中逐步領悟到數學建模的廣泛應用,從而激發學生去研究數學建模的興趣,提高他們運用數學知識進行建模的能力。
2.注意與其它相關學科的關系
由于數學是學生學習其它自然科學以至社會科學的工具而且其它學科與數學的聯系是相當密切的。因此我們在教學中應注意與其它學科的呼應,這不但可以幫助學生加深對其它學科的理解,也是培養學生建模意識的一個不可忽視的途徑。例如教了正弦型函數后,可引導學生用模型函數y=Asin(wx+Φ)寫出物理中振動圖象或交流圖象的數學表達式。又如當學生在化學中學到CH4CL4,金剛石等物理性質時,可用立幾模型來驗證它們的鍵角為109°28′……可見,這樣的模型意識不僅僅是抽象的數學知識,而且將對他們學習其它學科的知識以及將來用數學建模知識探討各種邊緣學科產生深遠的影響。
3.在教學中還要結合專題討論與建模法研究
我們可以選擇適當的建模專題,如“代數法建模”、“圖解法建模”、“直(曲)線擬合法建模”,通過討論、分析和研究,熟悉并理解數學建模的一些重要思想,掌握建模的基本方法。甚至可以引導學生通過對日常生活的觀察,自己選擇實際問題進行建模練習,從而讓學生嘗到數學建模成功的“甜”和難于解決的“苦”借亦拓寬視野、增長知識、積累經驗。這亦符合玻利亞的“主動學習原則”,也正所謂“學問之道,問而得,不如求而得之深固也”。
三、把構建數學建模意識與培養學生創造性思維過程統一起來
在諸多的思維活動中,創新思維是最高層次的思維活動,是開拓性、創造性人才所必須具備的能力。麻省理工大學創新中心提出的培養創造性思維能力,主要應培養學生靈活運用基本理論解決實際問題的能力。由此,我認為培養學生創造性思維的過程有三點基本要求。第一,對周圍的事物要有積極的態度;第二,要敢于提出問題;第三,善于聯想,善于理論聯系實際。因此在數學教學中構建學生的建模意識實質上是培養學生的創造性思維能力,因為建模活動本身就是一項創造性的思維活動。它既具有一定的理論性又具有較大的實踐性;既要求思維的數量,還要求思維的深刻性和靈活性,而且在建模活動過程中,能培養學生獨立,自覺地運用所給問題的條件,尋求解決問題的最佳方法和途徑,可以培養學生的想象能力,直覺思維、猜測、轉換、構造等能力。而這些數學能力正是創造性思維所具有的最基本的特征。
1.發揮學生的想象能力,培養學生的直覺思維
眾所周知,數學史上不少的數學發現來源于直覺思維,如笛卡爾坐標系、費爾馬大定理、歌德巴赫猜想、歐拉定理等,應該說它們不是任何邏輯思維的產物,而是數學家通過觀察、比較、領悟、突發靈感發現的。通過數學建模教學,使學生有獨到的見解和與眾不同的思考方法,如善于發現問題,溝通各類知識之間的內在聯系等是培養學生創新思維的核心。
2.構建建模意識,培養學生的轉換能力
恩格斯曾說過:“由一種形式轉化為另一種形式不是無聊的游戲而是數學的杠桿,如果沒有它,就不能走很遠。”由于數學建模就是把實際問題轉換成數學問題,因此如果我們在數學教學中注重轉化,用好這根有力的杠桿,對培養學生思維品質的靈活性、創造性及開發智力、培養能力、提高解題速度是十分有益的。
3.以“構造”為載體,培養學生的創新能力
“一個好的數學家與一個蹩腳的數學家之間的差別,就在于前者有許多具體的例子,而后者則只有抽象的理論。”
我們前面講到,“建模”就是構造模型,但模型的構造并不是一件容易的事,又需要有足夠強的構造能力,而學生構造能力的提高則是學生創造性思維和創造能力的基礎:創造性地使用已知條件,創造性地應用數學知識。
四、總結
綜上所述,在數學教學中構建學生的數學建模意識與素質教學所要求的培養學生的創造性思維能力是相輔相成,密不可分的。要真正培養學生的創新能力,光憑傳授知識是遠遠不夠的,重要的是在教學中必須堅持以學生為主體,不能脫離學生搞一些不切實際的建模教學,我們的一切教學活動必須以調動學生的主觀能動性,培養學生的創新思維為出發點,引導學生自主活動,自覺的在學習過程中構建數學建模意識,只有這樣才能使學生分析和解決問題的能力得到長足的進步,也只有這樣才能真正提高學生的創新能力,使學生學到有用的數學。我們相信,在開展“目標教學”的同時,大力滲透“建模教學”必將為中學數學課堂教學改革提供一條新路,也必將為培養更多更好的“創造型”人才提供一個全新的舞臺。