孫艷芳,趙 麗,羅紹河,張 壘,孫 超,李博文
?
不同地質年代煤矸石中有機質的溶出特征對比
孫艷芳1,2,3,趙 麗1,2,3,羅紹河1,2,3,張 壘1,孫 超1,李博文1
(1. 河南理工大學資源環境學院,河南 焦作 454000; 2. 礦山地質災害成災機理與防控重點實驗室,陜西 西安 710054;3. 中原經濟區煤層(頁巖)氣河南省協同創新中心,河南 焦作 454000)
分別以神東礦區補連塔礦侏羅紀煤矸石和保德礦二疊紀煤矸石為研究對象,通過浸泡實驗,結合三維熒光光譜測試技術及平行因子分析法,對比研究2種煤矸石中有機質的溶出特征,這對于開展煤礦區地下水庫水處理機理研究具有重要意義。研究結果表明:由于煤矸石自身礦物組成不同,補連塔礦煤矸石浸泡液中總離子質量濃度高于保德礦,且2種煤矸石浸泡液均呈弱堿性;其中補連塔礦煤矸石溶解性有機質(DOM)中含有較多的共軛雙鍵或苯環類簡單芳香族化合物,以富里酸和分子量較大的陸源類腐殖質為主,且含量普遍高于保德礦,而保德礦煤矸石中富里酸和酪氨酸類有機質較多。根據DOM樣品熒光指數(FI)、生物源指數(BIX)、腐殖化指數(HIX)的計算結果,2種煤矸石中DOM主要為內源有機質,并具有較強的自生源特征,且煤矸石形成地質年代越早,煤矸石DOM樣品的“微生物源”特征越明顯。
煤矸石;溶解性有機質;三維熒光;平行因子分析
據報道,我國每年煤炭開采過程中產生的煤矸石量約為1×108t[1],為產生量最大的工業固廢之一。目前,人們對煤矸石的研究多集中在煤矸石的綜合利用[2-3]、煤矸石中有機、無機及微量元素的淋溶特性[4-7]及其對周圍環境的影響[8-9]。由于煤矸石形成的地質年代及區域性差異,導致其中各類污染物的溶出特征有較大差別。如J. S. Fan等[10]對葛泉石炭–二疊紀煤田產生的煤矸石堆中有機物組成進行研究,發現樣品中飽和烴基化合物含量較高。J. J. Li等[11]以河北開灤煤礦為例,分析了石炭–二疊紀煤田新鮮矸石、風化矸石和養殖場土壤中有機碳和腐殖酸的含量和組成,研究結果表明,樣品中的腐殖質碳由脂肪族碳和芳香族碳組成。截至目前,人們對二疊紀煤田及侏羅紀煤田煤矸石中有機質的來源及其溶出規律研究報道甚少[12-13]。
本研究以在補連塔礦22308綜采面采空區取得的侏羅系延安組煤層煤矸石及保德礦8號煤層采空區取得的二疊系山西組煤田煤矸石為研究對象,以三維熒光光譜(3D-EEM)技術為主要研究手段,開展煤矸石中有機質溶出特征的對比研究,并通過平行因子分析法(Parallel factor analysis, PARAFAC)[14],在確定煤矸石中各類熒光有機質的組成及含量基礎之上,探討不同地質年代煤矸石中有機質的成因。研究結果可為有效評價煤矸石對周圍環境的影響提供理論依據,并且對于目前在補連塔煤礦及保德煤礦實施的地下水庫開展水質凈化機理研究具有重要意義。
實驗樣品分別取自補連塔礦及保德礦煤層采空區未風化的煤矸石,補連塔礦煤矸石主要為侏羅系中下統延安組灰白色細粒泥巖、粗粒泥巖、砂巖、砂泥巖互層,保德礦煤矸石主要為二疊系下統山西組灰黑色泥巖。首先將煤矸石進行破碎,過2 mm篩備用。采用XRD/XRF分析法測得補連塔礦煤矸石中主要礦物的質量分數:石英30%、高嶺石12.7%、白云母19.3%、伊利石19.3%、綠泥石 11.3%、長石6.3%以及磁鐵礦0.7%等;保德礦煤矸石的主要礦物質量分數:高嶺石64.5%、鋁礦石17.5%、石英18%。其主要化學成分見表1、表2。

表1 保德礦煤矸石樣品化學成分

表2 補連塔礦煤矸石樣品化學成分
2組浸泡實驗均將以水巖質量比為4∶1配置好的混合溶液密封避光置于25℃恒溫震蕩箱內震蕩,震速為120 r/min,分別在1 h、6 h、12 h、24 h、48 h、96 h、144 h、192 h、240 h、288 h、336 h、384 h、432 h和480 h進行取樣分析。測樣前首先將混合溶液過0.45 μm的玻璃纖維濾膜進行抽濾,裝置如圖1所示。對過濾后的水樣進行酸堿度(pH)、電導率(EC)、254 nm處的紫外吸收(UV254)、溶解性有機碳(DOC)的測定及三維熒光光譜掃描。
水樣pH、電導率采用瑞士梅特勒公司的 FG2- FK型pH計及FG3-FK型電導率儀進行測試,實驗用水為去離子水(電導率小于 8 μS/cm)。水樣DOC的測試采用日本島津TOC-L CSH/CSN分析儀。UV254采用日本島津UV1800紫外–可見分光光度計進行測定。

圖1 煤矸石浸泡實驗裝置圖
溶解性有機質(Dissolved Organic Matter,簡稱DOM)的三維熒光光譜采用Hitachi F-7000 熒光光度計測定,儀器光源為150 W氙燈;光電倍增管(PMT)電壓為400 V;激發和發射單色器均為衍射光柵;激發和發射狹縫寬均為 10 nm;掃描間隔為5 nm;掃描速度為 12 000 nm/min;激發波長(Ex)為 200~ 400 nm、發射波長(Em)為 200~550 nm。以二次去離子水作為空白校正水的拉曼散射,同時將瑞利散射上方及二級瑞利散射下方的數據用缺失值代替,以消除瑞利散射的影響[15]。
PARAFAC是基于三維線性分解理論,采用交替最小二乘算法實現的一種數學模型,PARAFAC將預處理好的三維數據矩陣分解為3個矩陣,即相對熒光強度(Scores)矩陣以及載荷矩陣和,當多個樣本的 EEMs 應用于平行因子分析時即可構成三維數據矩陣[16-17]。其數學模型如下:

式中為樣本數;為激發波長數;為發射波長數;X為第個樣品在激發波長、發射波長處的熒光強度值;為模型中熒光組分的個數;a為相對熒光強度,第組分的含量占樣品含量的比例;b為載荷,與第組分在激發波長處的熒光量子效率線性相關;c為載荷,與第組分在發射波長處的特定吸收系數線性相關;為殘差矩陣,表示模型未解釋部分的可變性。
保德礦及補連塔礦煤矸石浸泡液的pH及電導率的變化情況分別如圖2a、圖2b所示。由圖2a知,保德礦煤矸石浸泡液的pH為7.61~8.33,補連塔礦煤矸石浸泡液的pH在7.39~8.59之間波動,并有明顯上升趨勢,2種煤矸石浸泡液均呈弱堿性。由圖2b知,2種煤矸石浸泡液的電導率均隨浸泡時間的增加而逐漸上升,并且補連塔礦煤矸石浸泡液的總離子含量高于保德礦,這與補連塔礦煤矸石礦物組分較為復雜及較高的金屬氧化物含量有關。補連塔礦煤矸石浸泡液的電導率在上升過程中存在較大的波動,并在384 h達到最高值438.7 μS/cm,之后逐漸趨于穩定。保德礦煤矸石浸泡液的電導率與浸泡時間呈現顯著的對數增長關系:EC= 12.619ln() + 49.471,2= 0.982 4。

圖2 煤矸石浸泡液中pH及電導率(EC)變化規律
圖3為2種煤矸石浸泡液中DOC的含量變化,保德礦煤矸石浸出液中DOC平均含量為4.64 mg/L,溶出量最大值為7.95 mg/L(96 h),而補連塔礦煤矸石浸出液中DOC的平均含量為19.01 mg/L,最大值為55.62 mg/L(384 h),且2種煤矸石浸泡液中有機質含量在384 h后均呈下降狀態,說明煤矸石中有機質溶解至水環境的同時也會伴隨著吸附降解,且吸附降解的量逐漸大于溶出量,以至于水體中的有機質含量降低。由于補連塔礦位于鄂爾多斯盆地,該區是由三角洲朵體上發育的泥炭沼澤沉積而成[18],而保德礦山西組則是辮狀河沉積相,并經過多次海侵事件,植物化石豐富[19-20],補連塔礦的砂泥混合巖煤矸石要比保德礦的泥巖煤矸石固結性弱,孔隙率大,所以更易于煤矸石中物質的溶出,從而導致補連塔礦煤矸石浸出液中DOC及電導率要普遍高于保德礦煤矸石。
從圖4可以看出,補連塔礦煤矸石的UV254與DOC具有良好的相關性,兩者之間滿足:DOC= 110.68UV254+1.083,2=0.657 7;由此可以認為,補連塔礦煤矸石浸泡液的溶解性有機質中含有一定量的共軛雙鍵或苯環類簡單芳香族化合物[21]。而保德礦煤矸石的UV254與DOC相關性不大。

圖3 煤矸石浸泡液中DOC的變化規律

圖4 補連塔礦煤矸石浸泡液中DOC與UV254相關性
2.3.1 三維熒光光譜的PARAFAC分析
通過三維熒光光譜技術對煤矸石浸泡液中的溶解性有機質進行分析,根據得出的熒光數據,結合Stedmon的平行因子分析法[16],利用 Matlab軟件中DOMFluor工具包對2種煤矸石的各14個浸泡液水樣的三維熒光光譜進行平行因子法分析,通過載荷、杠桿和殘差分析來縮小組分范圍,最后通過折半分析驗證來確定最佳組分數。
基于PARAFAC模型分析,扣除288 h處的異常樣品,確定保德礦煤矸石浸泡液中DOM具有2種熒光組分,具體熒光峰特征和各組分的激發波長En、發射波長En載荷如圖5所示。組分1和組分2均具有1個激發峰2個發射峰,其中245/295 nm和255/ 280 nm 2處的熒光峰表示氨基酸類,其游離或結合在蛋白質中,熒光特征類似于酪氨酸[22]。245/390 nm處的熒光峰表示分子量較低的短波類腐殖質,海洋中較常見并與生物活動有關[22-23];255/420 nm處的熒光峰則表征分子量較高的芳香氨基酸類,熒光特征與富里酸類似[22,24]。
去除240 h處的異常樣品后,補連塔礦煤矸石浸泡液中DOM樣品的PARAFAC的分析結果呈現3種組分,如圖6所示。組分1 (245/390 nm)與保德礦的組分1相似,組分2具有1個激發峰和2個發射峰,而270/270 nm處的熒光峰之前并未有報道,但其發射波長跨度在250~330 nm,可視其為發生過紅移的類酪氨酸類物質[22];270/425 nm處的熒光峰則代表分子量較大的陸源腐殖質,較普遍且在濕地和森林環境中含量最高[23,25-26]。組分3具有1個發射峰和2個激發峰,其所代表的分別是低激發態酪氨酸(225/305 nm)和高激發態酪氨酸(285/305 nm)類物質[24]。

圖5 保德礦煤矸石浸泡液中DOM的熒光組分及其激發/發射波長分布

圖6 補連塔礦煤矸石浸泡液中DOM的熒光組分及其激發/發射波長分布
2.3.2 煤矸石中DOM的熒光指數特征
各取樣點DOM樣品的FI、BIX及HIX指數計算結果匯總于表3,其中熒光指數FI(470/520)反映了芳香氨基酸與非芳香物對DOM熒光強度的相對貢獻率,可作為物質來源及DOM降解程度的指示指標;FI指數的2個端源值1.4和1.9分別表征了陸源 DOM 和內源DOM[27]。由表3看出,2種煤矸石的FI指數取值范圍分別為2.634~2.972、2.167~2.437,均大于1.9,所以煤矸石中DOM以內源輸入為主,主要源于微生物活動。生物源指數BIX反映DOM 自生源相對貢獻率,當BIX大于1.0時為生物或細菌活動產生,且有機質為新近產生[28]。表3中2種煤矸石DOM的BIX指數平均值分別為1.128和0.964,說明其有機質主要為生物或細菌活動新近產生,且保德礦煤矸石中DOM的自生源程度比補連塔礦的要強。腐殖化指數HIX可反應DOM中腐殖化程度,當HIX<4時,表示DOM為生物或水生細菌來源;在4~6時為弱腐殖質和近期重要的原生組分;在6~10 時為強腐殖質和近期原生組分[29]。而表3中2種煤矸石DOM的HIX指數最大值分別為1.365和1.90,均小于4,進一步說明煤矸石中DOM的來源為生物或細菌產生。
由表3可知,保德礦煤矸石FI、BIX指數高于補連塔礦,而HIX指數則相反。由于補連塔礦煤矸石形成于侏羅紀時期,要晚于保德礦煤矸石的二疊紀時期,所以保德礦煤矸石DOM樣品的FI和BIX指數略高于補連塔礦煤矸石DOM樣品,這說明地質年代越早,煤矸石DOM樣品的“微生物源”特征越明顯,而補連塔礦煤矸石DOM樣品HIX指數較高,說明地質年代越晚,煤矸石DOM樣品受“外源”的影響就越大。
a. 2種煤矸石浸泡液均呈弱堿性,保德礦煤矸石浸泡液的電導率隨時間呈對數增長趨勢:EC= 12.619ln+ 49.471,2= 0.982 4。補連塔礦煤矸石浸泡液的電導率在第384 h達到最高值438.7 μS/cm,之后逐漸趨于穩定。由于煤矸石自身物質含量及礦物結構不同,補連塔礦煤矸石浸泡液的總離子含量高于保德礦。

表3 2種煤矸石中DOM的FI、BIX、HIX指數
b. 補連塔礦煤矸石浸泡液中DOM含量普遍高于保德礦,補連塔礦煤矸石的UV254與DOC具有一定的相關性:DOC=110.68UV254+1.083,2=0.657 7。三維熒光光譜結合平行因子分析法發現,保德礦煤矸石溶出DOM可分解出2種組分,分別表征著富里酸、酪氨酸和微生物活動相關的短波腐殖質類有機質;補連塔礦煤矸石溶出DOM分解得出3種組分,除酪氨酸和富里酸類物質外,還含有一定分子量較大的陸源腐殖質。
c. 通過對2種煤矸石DOM的FI、BIX、HIX 3種熒光指數分析可得,2種煤矸石中DOM均以內源有機質為主,且具有較強的自生源特征,這與生物或細菌活動密切相關。保德煤礦煤矸石FI、BIX指數高于補連塔礦,而HIX指數則相反,這說明地質年代越早,煤矸石DOM樣品的“微生物源”特征越明顯,受“外源”的影響也就越小。
[1] 楊婭,季宏兵. 新化礦區煤矸石中微量元素賦存形態及浸出特征[J]. 地球與環境,2016,44(1):36–46. YANG Ya,JI Hongbing.A study on chemical forms and leaching characteristics of trace elements in coal gangue from Xinhua coal mine in Guizhou Province,China[J]. Earth and Environment,2016,44(1):36–46.
[2] 郭洋楠,李能考,何瑞敏. 神東礦區煤矸石綜合利用研究[J]. 煤炭科學技術,2014,42(6):144–147. GUO Yangnan,LI Nengkao,HE Ruimin. Study on comprehensive utilization of coal refuse in Shendong mining area[J].Coal Science and Technology,2014,42(6):144–147.
[3] 左鵬飛. 煤矸石的綜合利用方法[J]. 煤炭技術,2009,28(1):186–189. ZUO Pengfei. Comprehensive utilization of coal gangue[J]. Coal Technology,2009,28(1):186–189.
[4] ZHOU C,LIU G,WU D,et al.Mobility behavior and environmental implications of trace elements associated with coal gangue:A case study at the Huainan coalfield in China[J]. Chemosphere,2014,95(1):193–199.
[5] 鄭劉根,丁帥帥,劉叢叢,等. 不同類型煤矸石中環境敏感性微量元素淋濾特性[J]. 中南大學學報(自然科學版),2016,47(2):703–710. ZHENG Liugen,DING Shuaishuai,LIU Congcong,et al.Leaching characteristics of environmentally sensitive trace elements in different types of coal gangue[J]. Journal of Central South University(Science and Technology),2016,47(2):703–710.
[6] 劉欽甫,鄭麗華,張金山,等. 煤矸石中氮溶出的動態淋濾實驗[J]. 煤炭學報,2010,35(6):1009–1014. LIU Qinfu,ZHENG Lihua,ZHANG Jinshan,et al.Continuous leaching experiments of nitrogen from coal gangue[J]. Journal of China Coal Society,2010,35(6):1009–1014.
[7] 趙洪宇,李玉環,宋強,等. 煤矸石動態循環淋溶液的特性[J]. 環境工程學報,2017,11(2):1171–1177. ZHAO Hongyu,LI Yuhuan,SONG Qiang,et al. Characteristics of dynamic cyclic percolation solution from coal gangue[J]. Chinese Journal of Environmental Engineering,2017,11(2):1171–1177.
[8] TANG Q,LI L,ZHANG S,et al.Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area[J]. Journal of Geochemical Exploration,2018,186:1–11.
[9] 王念秦,賀磊,湯廉超,等. 陜北礦區煤矸石淋濾試驗研究[J]. 煤田地質與勘探,2017,45(1):110–113. WANG Nianqin,HE Lei,TANG Lianchao,et al. Coal gangue leaching experiment of mining area in northern Shaanxi[J]. Coal Geology & Exploration,2017,45(1):110–113.
[10] FAN J S,SUN Y Z,LI X Y. Pollution of organic compounds and heavy metals in a coal gangue dump of the Gequan coal mine,China[J]. Chinese Journal of Geochemistry,2013,32(3):241–247.
[11] LI J J,TANG Y G,MA J T,et al.The variation of organic matter in the weathering of coal gangue and process soil forming[J]. The Society for Organic Petrology,2006,23:15–22.
[12] 王明仕,劉琳瑤,宋黨育.煤矸石–粉煤灰燒結磚中微量元素的浸出特征研究[J]. 河南理工大學學報(自然科學版),2016,35(6):823–827. WANG Mingshi,LIU Linyao,SONG Dangyu. Leaching characteristics of trace elements in the sintered brick made from coal gangue and fly ash[J]. Journal of Henan Polytechnic University(Natural Science),2016,35(6):823–827.
[13] 趙麗,田云飛,王世東,等. 煤矸石中溶解性有機質(DOM)溶出的動力學變化[J]. 煤炭學報,2017,42(9):2457–2463. ZHAO Li,TIAN Yunfei,WANG Shidong,et al. Dynamic changes of dissolved organic matter(DOM) from coal gangue[J]. Journal of China Coal Society,2017,42(9):2457–2463.
[14] STEDMON C A,MARKAGER S.Tracing the production and degradation of autochthonous fractions of dissolved organic matter by ?uorescence analysis[J]. Limnology and Oceanography,2005,50(5):1415–1426.
[15] 訾園園,孔范龍,郗敏,等. 膠州灣濱海濕地土壤溶解性有機質的三維熒光特性[J]. 應用生態學報,2016,27(12):3871–3881. ZI Yuanyuan,KONG Fanlong,XI Min,et al. Three dimensional fluorescent characteristics of soil dissolved organic matter(DOM) in Jiaozhou bay coastal wetlands,China[J]. Chinese Journal of Applied Ecology,2016,27(12):3871–3881.
[16] STEDMON C A,BRO R.Characterizing dissolved organic matter fluorescence with parallel factor analysis:A tutorial[J]. Limnology and Oceanography,2008,6:1–6.
[17] MURPHY K R,STEDMON C A,GRAEBER D,et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC? [J]. Analytical Methods,2013,5(23):6557–6566.
[18] 王東東. 鄂爾多斯盆地中侏羅世延安組層序—古地理與聚煤規律[D]. 北京:中國礦業大學(北京),2012.
[19] 徐良才,鄒勇軍,郭英海. 河東煤田北部地區山西組沉積相研究[J]. 中國煤炭地質,2013,25(9):18–24. XU Liangcai,ZOU Yongjun,GUO Yinghai. Study on Shanxi Formation sedimentary facies in northern part of Hedong coalfield[J]. Coal Geology of China,2013,25(9):18–24.
[20] 李明培,邵龍義,董大嘯,等. 鄂爾多斯盆地東緣泥質巖黏土礦物特征及其地質意義[J]. 煤田地質與勘探,2017,45(2):39–44. LI Mingpei,SHAO Longyi,DONG Daxiao,et al. Clay mineral characteristics and its geological significance in argillaceous rock in eastern margin of Ordos basin[J]. Coal Geology & Exploration,2017,45(2):39–44.
[21] 蔣紹階,劉宗源. UV254作為水處理中有機物控制指標的意義[J]. 重慶建筑大學學報,2005,24(2):61–65. JIANG Shaojie,LIU Zongyuan. The meaning of UV254as an organic matter monitoring parameter in water supply & wastewater treatment[J]. Journal of Chongqing Jianzhu University,2005,24(2):61–65.
[22] FELLMAN J B,HOOD E,SPENCER R G. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems:A review[J]. 2010,55(6):2452–2462.
[23] 劉麗貞,黃琪,吳永明,等. 鄱陽湖CDOM三維熒光光譜的平行因子分析[J]. 中國環境科學,2018,38(1):293–302. LIU Lizhen,HUANG Qi,WU Yongming,et al. Fluorescent characteristics of CDOM in Poyang Lake analyzed by three-dimensional excitation-emission matrix spectroscopy and parallel factor analysis[J]. China Environmental Science,2018, 38(1):293–302.
[24] 祝鵬,廖海清,華祖林,等. 平行因子分析法在太湖水體三維熒光峰比值分析中的應用[J]. 光譜學與光譜分析,2012(1):152–156. ZHU Peng,LIAO Haiqing,HUA Zulin,et al. Parallel factor analysis as an analysis technique for the ratio of three-dimensional fluorescence peak in Taihu Lake[J]. Spectroscopy and Spectral Analysis,2012(1):152–156.
[25] TEDETTI M,CUET P,GUIGUE C,et al. Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures(La Réunion Island,Indian Ocean) using multi-dimensional fluorescence spectroscopy[J]. Science of The Total Environment,2011,409(11):2198–2210.
[26] 馮偉瑩,朱元榮,吳豐昌,等. 太湖水體溶解性有機質熒光特征及其來源解析[J]. 環境科學學報,2016,36(2):475–482. FENG Weiying,ZHU Yuanrong,WU Fengchang,et al. The fluorescent characteristics and sources of dissolved organic matter in water of Tai Lake,China[J]. Acta Scientiae Circumstantiae,2016,36(2):475–482.
[27] HASSOUNA M,MASSIANI C,DUDAL Y,et al. Changes in water extractable organic matter(WEOM) in a calcareous soil under field conditions with time and soil depth[J]. Geoderma,2010,155:75–85.
[28] HUGUET A,VACHER L,RELEXANS S,et al.Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry,2009,40(6):706–719.
[29] ZHANG Yunlin,ZHANG Enlou,YIN Yan,et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau,China,differing in trophic state and altitude[J]. Limnol Oceanogr,2010,55(6):2645–2659.
Comparison of dissolution characteristics of organic matter in coal gangue of different geological time
SUN Yanfang1,2,3, ZHAO Li1,2,3, LUO Shaohe1,2,3, ZHANG Lei1, SUN Chao1, LI Bowen1
(1. Department of Resource & Environmental Engineering, Henan Polytechnic University, Jiaozuo 454000, China; 2. Key Laboratory of Mine Geological Hazards Mechanism and Control, Xi’an 710054, China ; 3. Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo 454000, China)
Taken the unweathered coal gangues obtained from the Jurassic coalbed of Bulianta mine and the Carboniferous-Permian coalbed of Baode mine located in Shendong mining area as the research subjects, the dissolution characteristics of organic matter in two kinds of coal gangues were studied comparatively through soaking experiments, and combined with three-dimensional fluorescence spectrometry and parallel factor analysis. It is significant for the underground reservoir to study mechanism of water treatment in coal mining areas. These results indicate that the total ion concentration in DOM sample of coal gangue of Bulianta mine is higher than that of Baode mine due to the different mineral constituents, and the two kind of DOM samples of coal gangue are all weakly alkaline. Among them, the DOM of Bulianta mine contains more conjugated double bonds or benzene ring simple aromatic compounds, more fulvic acid and the terrestrial humus with larger molecular weight, and the content of DOM is generally higher than that of Baode mine. But the fulvic acid and tyrosine organic matter content in Baode mine coal gangue are relatively high. According to the calculation results of FI, BIX and HIX indices of DOM samples, the DOM in two kinds of coal gangues is mainly endogenous organic matter, and it has strong spontaneous source characteristics. The earlier the geological time of coal gangue formation is, the more obvious the “microorganism source” feature of coal gangue of DOM samples are.
coal gangue; dissolved organic matter; three-dimensional fluorescence; parallel factor analysis
National Natural Science Foundation of China(41402216);Key Research Project of Henan Province Higher Education Institutions in 2019(19A170008);Funding of Key Laboratory of Mine Geological Hazards Mechanism and Control(KF2018-06)
孫艷芳,1993年生,女,河南鄲城人,碩士研究生,從事地下水污染與防治研究. E-mail:1679674807@qq.com
趙麗,1977年生,女,河南平輿人,博士,副教授,從事地下水污染與防治研究. E-mail:zhaoli@hpu.edu.cn
孫艷芳,趙麗,羅紹河,等. 不同地質年代煤矸石中有機質的溶出特征對比[J]. 煤田地質與勘探,2019,47(3):172–178.
SUN Yanfang,ZHAO Li,LUO Shaohe,et al. Comparison of dissolution characteristics of organic matter in coal gangue of different geological time[J]. Coal Geology & Exploration,2019,47(3):172–178.
1001-1986(2019)03-0172-07
X752
A
10.3969/j.issn.1001-1986.2019.03.027
2018-06-16
國家自然科學基金項目(41402216);2019年河南省高等學校重點科研項目(19A170008);礦山地質災害成災機理與防控重點實驗室開放課題項目(KF2018-06)
(責任編輯 張宏 周建軍)