張 賢, 遲長春
(上海電機學院 電氣學院, 上海 201306)
據(jù)統(tǒng)計資料表明,大部分斷路器的故障來源于機械故障,對斷路器故障診斷的研究主要集中在機械故障。在對斷路器機械故障研究中,最重要的成果是與智能算法結(jié)合產(chǎn)生的故障診斷方法,例如模糊理論[1]、專家系統(tǒng)[2]、支持向量機[3-4]、BP神經(jīng)網(wǎng)絡[5-6]等。
反向傳播(Back Propagation, BP)神經(jīng)網(wǎng)絡故障診斷模型準確率低,穩(wěn)定性差,收斂速度慢;基于徑向基函數(shù)(Radial Basis Function, RBF)神經(jīng)網(wǎng)絡的故障診斷方法訓練速度緩慢,收斂性不太理想[7]。基于概率神經(jīng)網(wǎng)絡(Probabilistic Neural Network, PNN),以三相不同期故障為對象,研究小型斷路器故障診斷方法。通過Matlab仿真,驗證了PNN相較于BP網(wǎng)絡在準確率、診斷速度、樣本追加能力上的優(yōu)越性。由此證明將PNN和斷路器振動信號結(jié)合構(gòu)成的診斷模型,具有很好的診斷效果[8-10]。
PNN結(jié)構(gòu)上類似反向傳播網(wǎng)絡,采用貝葉斯判定策略進行分類。當這種網(wǎng)絡用于檢測和模式分類時,可得到貝葉斯最優(yōu)結(jié)果[11]。它通常由4層組成,其基本結(jié)構(gòu)如圖1所示,從左到右分別為輸入層、模式層、求和層和決策層。

圖1 PNN基本結(jié)構(gòu)圖
輸入層把輸入值傳遞給所有的模式單元,神經(jīng)元個數(shù)等于輸入特征向量的長度。輸入的特征向量X先與加權(quán)系數(shù)Wj相乘得標量積Zi,即Zi=XWj,然后輸入到模式層中進行計算。
計算輸出的概率是在模式層發(fā)生的,該層采用代替S型函數(shù)的非線性運算exp[(Zi-1)/σ2]作為激活函數(shù),該層中第i類的第j個神經(jīng)元輸出的概率為
i=1,2,…,M;j=1,2,…,Li
(1)
式中:P為訓練樣本的維度;σ為平滑因子;Xij為第i類的第j個隱中心矢量;M為類別數(shù);Li為類別i的訓練樣本數(shù)。
第i類類別的概率密度函數(shù)為
(2)
決策層的神經(jīng)元輸出1或者0,分別代表著輸入層中輸入樣本模式的類別,將密度最大的神經(jīng)元輸出為1,表示為對應的模式,其余神經(jīng)元全部輸出為0。
斷路器三相不同期故障指的是其三相動靜觸頭沒有在允許的誤差內(nèi)同時完成斷路器的閉合與關斷動作,該故障會影響斷路器的壽命和性能,并且對配電網(wǎng)的安全穩(wěn)定運行也有影響[12]。實驗所用的斷路器為正泰ZS系列小型斷路器,其規(guī)定標準為合閘不同期時間不高于5 ms。
圖2所示為模擬斷路器4種故障狀態(tài)下的合閘振動信號,總體分為3部分,第1段嚴重波動部分為操作機構(gòu)動作信號;第2段嚴重波動部分為觸頭接觸信號;第3段變緩的部分為合閘動作結(jié)束信號。4種狀態(tài)下的振動信號雖然有所區(qū)別但是很難在時域上進行識別判斷。
只有選取正確的特征量才能準確地診斷出斷路器的故障,由于三相不同期故障在時域上識別困難,故采用經(jīng)驗模態(tài)分解和分形理論結(jié)合的方法,提取振動信號的關聯(lián)維數(shù)作為特征量。
經(jīng)驗模態(tài)分解是一種自適應的信號處理方法,能夠?qū)⒎蔷€性的復雜信號分解為若干個相對簡單的本征模函數(shù)(Intrinsic Mode Function, IMF),每一IMF所包含的頻率成分與分析頻率有關,最重要的是該頻率成分隨信號本身變化而變化。在故




圖2 小型斷路器4種狀態(tài)下的合閘振動信號
障診斷領域該方法已經(jīng)得到廣泛應用,并取得很好的效果。
關聯(lián)維數(shù)是分形維數(shù)中的一種,其最大的優(yōu)點就是對混沌吸引子具有很高的靈敏度,能夠反映一個復雜混沌系統(tǒng)的特征,因此,其在分形理論中占有重要的地位。在復雜振動機械系統(tǒng)中,不同的動力學機理會表現(xiàn)出不同的故障特征,通過頻譜分析的方法對振動信號的故障特征進行分析時,很難得到有用的信息。而關聯(lián)維數(shù)可以作為復雜振動系統(tǒng)中信號的特征量,作為機械故障的判斷依據(jù)。
在計算關聯(lián)維數(shù)時,使用G_P算法計算空間中各矢量的相互距離得到關聯(lián)函數(shù)[13]為
(3)

根據(jù)G_P算法,關聯(lián)維數(shù)的定義為
(4)
由式(4)可知,關聯(lián)維數(shù)即為lnC(r)對lnr的導數(shù)。在實際計算這類復雜求導問題時,只需畫出其函數(shù)曲線,從中選取線性度較好的部分進行最小二乘法擬合[13],得到的斜率即為所求的關聯(lián)維數(shù)。斷路器4種狀態(tài)的IMF分量關聯(lián)維數(shù)如表1所示。

表1 4種狀態(tài)下斷路器振動信號及其IMF分量的關聯(lián)維數(shù)
基于PNN的小型斷路器故障診斷過程分為兩個階段:訓練階段和診斷階段。其流程如圖3所示。

圖3 故障診斷流程圖實驗
分別模擬了小型斷路器在正常狀態(tài)、A、B、C相故障4種模式下各30組數(shù)據(jù),并對每組信號進行去噪分解等處理,提取出相應的關聯(lián)維數(shù)作為相應關聯(lián)維度的判斷依據(jù)。將其中20組作為訓練樣本,剩余10組作為為測試樣本對網(wǎng)絡診斷的準確性進行驗證。其中部分訓練樣本如表2所示。
Matlab仿真工具箱中調(diào)用PNN的程序格式為[15]

表2 網(wǎng)絡部分訓練樣本
net=newpnn(P,T,vspread)
式中:P為輸入向量;T為目標向量;vspread為PNN的擴散速度,默認值為0.1。vspread值的選取會對診斷的準確率產(chǎn)生很大的影響,其取值越大,函數(shù)選取的中心向外散布的距離越大。在建立網(wǎng)絡時,需要嘗試不同的vspread值來確定一個最優(yōu)值。
通過實驗得出,vspread設置為1.5時效果最佳。訓練結(jié)果如圖4所示。


圖4 PNN神經(jīng)網(wǎng)絡訓練結(jié)果
訓練完成后就可以用測試樣本測試網(wǎng)絡的準確率和診斷速度,部分測試樣本及其仿真結(jié)果如表3和圖5所示。
同時通過BP網(wǎng)絡和在Matlab開發(fā)環(huán)境下對小型斷路器三相不同期故障診斷進行仿真,結(jié)果如圖6所示。
通過對比得出表4所示結(jié)果。
由仿真結(jié)果和數(shù)據(jù)對比得出如下結(jié)論。
(1) PNN收斂速度快。PNN的運行時間極短,解決了BP神經(jīng)網(wǎng)絡收斂速度慢的問題,非常適用于實時處理。

表3 PNN測試樣本

圖5 PNN神經(jīng)網(wǎng)絡預測仿真結(jié)果

圖6 BP預測結(jié)果
(2) PNN準確率高。PNN的分類規(guī)則很明確,即按照貝葉斯最小風險準則進行分類,只要有

表4 兩種算法下仿真數(shù)據(jù)對比
足夠多的訓練樣本,無論分類有多復雜,都可以獲得最優(yōu)解。BP神經(jīng)網(wǎng)絡由于極易陷入局部最優(yōu)值,因此,診斷誤差較大。
為驗證PNN的樣本追加能力,又取了20組特征值樣本,分別用PNN與BP算法對其進行診斷仿真,結(jié)果如表5所示。

表5 兩種算法20組仿真數(shù)據(jù)對比
由表可知,在新增樣本之后,BP網(wǎng)絡診斷正確率有所下降,而PNN依然保持100%的正確率,因此得出,PNN對于樣本的追加能力更強。
在實際工程應用中,往往需要通過采集各種斷路器故障數(shù)據(jù),建立起公司的產(chǎn)品故障樣本庫。而各類故障的數(shù)據(jù)并不是一成不變的,樣本會增加、改變或者減少,此時PNN在樣本追加能力上的優(yōu)越性就得以充分體現(xiàn)。
綜上所述,基于PNN的小型斷路器故障診斷系統(tǒng)在診斷準確率、診斷速度、樣本追加能力等方面的性能都優(yōu)于傳統(tǒng)BP神經(jīng)網(wǎng)絡。
以小型斷路器三相不同期故障為對象,研究了基于PNN的小型斷路器故障診斷方法。通過仿真實驗表明:PNN較BP網(wǎng)絡具有更高的準確率和更快的診斷速度,且對于新增的樣本能夠一直擴張學習,使得診斷準確度不斷提升。本次實驗主要針對小型斷路器三相不同期故障,但是也可將其應用于其他各類故障識別,具有良好的應用前景和工程價值,更深入的研究工作還有待進一步開展。