陳英杰 楊耕 劉旭



關鍵詞:鋰離子電池;熱模型;參數估計;內阻;開路電壓;熱容;換熱系數
DOI:10.15938/j.emc.2019.06.000
中圖分類號文獻標志碼:A 文章編號:1007 -449X(2019)06 -0000 -00
Abstract:Internal resistance(R), open circuit voltage(Uocv), heat capacity(mCH) and heat transfer coefficient(k) are key parameters of lithiumion battery thermal model based on simplified Bernardi equation. R and Uocv are nonlinear functions of state of charge(SOC), current(I) and battery temperature(Tbat) and mCH and k are constants. Since the hidden battery properties behind these parameters are different, existing estimation methods usually conduct different tests to excite corresponding properties respectively, resulting in massive test time and labor. This paper proposes a thermal parameters estimation method only consisting of constant current tests and corresponding data dealing procedures. The constant current tests are conducted under various ambient temperatures to provide necessary data within short test time. The battery mechanism based data dealing procedures consider the parameters nonlinear characteristics and solve the SOC and Tbat coupling variation problem. Compared with existing method, the proposed method can provide accurate R(SOC,I,Tbat), Uocv(SOC,Tbat), mCH and k estimation results simultaneously within short test time, thus more engineering applicable. Test results have verified the advantages.
Keywords:lithiumion batteries; thermal model; parameter estimation; internal resistance; open circuit voltage; heat capacity; heat transfer coefficient
0 引 言
鋰離子電池的功率和能量輸出能力[1]、老化速率[2]、安全性[3]等指標均與電池溫度(Tbat)密切相關。而在電池工作過程中,電池不斷產熱/吸熱,并與周圍環境發生熱交換,Tbat不斷變化,需要熱模型描述Tbat的變化規律,并依此進行熱管理工作。本文的目的即在于提出一種簡便的熱模型參數估計方法。
4 結 論
本文提出了一種僅僅基于恒電流實驗的估計鋰離子電池的熱模型參數的工程性方法。模型參數有:開路電壓Uocv(SOC,Tbat)、直流內阻R(SOC,I,Tbat)和mCH、k。
方法的核心是一組含典型Tamb和典型恒流的實驗設計和一套基于鋰離子電池的電化學機理的模型參數估計算法。據此,方法解決了恒流放電過程中SOC與Tbat同時耦合變化以及U-I非線性關系等問題。由于本方法僅需要一組恒流實驗以及相關數據處理算法,與需要進行多組實驗分別估計上述參數的現有方法相比,方法的實驗時間縮短了50%以上。同時,方法具有足夠的精確度。實驗驗證了方法的上述特征。
目前,方法基于對電池各部分溫度一致的假設。這一假設在大電流條件下對于一些結構的電池而言誤差較為明顯,因此還需進一步改進。
參 考 文 獻:
[1] WAAG W, KBITZ S, SAUER D U. Experimental investigation of the lithiumion battery impedance characteristic at various conditions and aging states and its influence on the application[J]. Applied Energy, 2013, 102(2):885.
[2] BIOOM I, COLE B W, SOHN J J, et al. An accelerated calendar and cycle life study of Liion cells [J]. Journal of Power Sources, 2001, 101(2):238.
[3] LU L, HAN X, LI J, et al. A review on the key issues for lithiumion battery management in electric vehicles [J]. Journal of Power Sources, 2013, 226(3):272.
[4] BEERNARDI, PAWLIKOWSKI, NEWMAN. A general energybalance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1).
[5] ONDA K, OHSHIMA T, NAKAYAMA M, et al. Thermal behavior of small lithiumion battery during rapid charge and discharge cycles [J]. Journal of Power Sources, 2006, 158(1):535.
[6] KIM U S, YI J, SHIN C B, et al. Modeling the dependence of the discharge behavior of a lithiumion battery on the environmental temperature[J]. Journal of the Electrochemical Society, 2011, 158(5):A611.
[7] GUO M, KIM G H, WHITE R E. A threedimensional multiphysicsmodel for a Liion battery [J]. Journal of Power Sources, 2013, 240:80.
[8] HALLAJ S A,PRAKASH J,SELMAN J R. Characterization of commercial Liion batteries using electrochemical calorimetric measurements [J]. Journal of Power Sources, 2000, 87(1):186.
[9] BANG H, HUI Y, YANG K S, et al. In situ studies of LixMn2O4 and LixAl0.17Mn1.83O3.97S0.03 cathode by IMC[J]. Journal of the Electrochemical Society, 2005, 152(2):A421.
[10] VAIDYANATHAN H, KELLY W H, RAO G. Heat dissipation in a lithium ion cell [J].Journal of Power Sources,2001,93(1-2):112-122.
[11] LIN R,NEWMAN J. Heatgeneration rate and general energy balance for insertion battery systems [J]. Journal of the Electrochemical Society, 1997, 144(8):2697.
[12] THOMAS K E, NEWMAN J. Thermal modeling of porous insertion electrodes[J]. Journal of the Electrochemical Society, 2003, 150: A176.
[13] BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithiumion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3):R1.
[14] BARD, ALLEN J.Electrochemical methods: fundamentals and applications[M]. New York, USA: Wiley, 1980.
[15] BARAI A, WIDANAGE W D, MARCO J,et al. A study of the open circuit voltage characterization technique and hysteresis assessment of lithiumion cells[J]. Journal of Power Sources, 2015, 295:99-107.
[16] 何耀, 曹成榮, 劉新天,等. 基于可變溫度模型的鋰電池SOC估計方法[J]. 電機與控制學報, 2018, 22(1):43.
HE Yao, CAO Chengrong, LIU Xintian, et al. SOC estimation method for lithium battery based on variable temperature model[J]. Electric Machines & Control, 2018, 22(1):43.
[17] 何朕, 王廣雄. 基于廣義系統觀測器的電池荷電狀態估計[J]. 電機與控制學報, 2016, 20(1):94.
HE Zhen, WANG Guangxiong. Descriptor system observerbased stateofcharge estimation for batteries[J]. Electric Machines & Control, 2016, 20(1):94.
[18] ZHE Li, JUN Huang, BOR YANN LIAW, et al. On stateof charge determination for lithiumion batteries [J]. Journal of Power Sources, 2017, 348:281.
[19] USABC MANUALS.Battery test manual for electric vehicles, Revision 3[S]. U.S. Department of Energy, 2015.
[20] 何志超, 楊耕, 盧蘭光, 等. 基于恒流外特性和SOC的電池直流內阻測試方法[J]. 清華大學學報(自然科學版),2015, 55(5): 532.
HE Zhichao, YANG Geng, LU Languang, et al. Battery DC internal resistance test method based on the constant current external characteristics and SOC [J]. Journal of Tsinghua University (Sci & Tech), 2015, 55(5):532.
[21] ZHANG J, HUANG J, LI Z, et al. Comparison and validation of methods for estimating heat generation rate of largeformat lithiumion batteries[J]. Journal of Thermal Analysis & Calorimetry, 2014, 117(1):447.
[22] 陳英杰, 楊耕, 祖海鵬, 等. 基于恒流實驗的鋰離子電池開路電壓與內阻估計方法. 電工技術學報, 2018, 33(17): 3976.
CHEN Yingjie, YANG Geng, ZU Haipeng, et al. An open circuit voltage and internal resistance estimation method of lithiumion batteries with constant current tests[J].Transactions of China Electrotechnical society, 2018, 33(17): 3976.
[23] PATTIPATI B, BALASINGAM B,et al. Open circuit voltage characterization of lithiumion batteries[J]. Journal of Power Sources, 2014, 269:317.
[24] GRZEGORA PIATOWICZ, MARONGIU A, DRILLKENS J,et al. A critical overview of definitions and determination techniques of the internal resistance using lithiumion, leadacid, nickel metalhydride batteries and electrochemical doublelayer capacitors as examples[J]. Journal of Power Sources, 2015,296:365.
(編輯:賈志超)