王喜蓮 程迪 王順



關鍵詞:并網逆變器;諧波交互;諧波預測;阻抗模型;諧振
DOI:10.15938/j.emc.2019.06.000
中圖分類號文獻標志碼:A 文章編號:1007 -449X(2019)06 -0000 -00
Abstract:Aimed at harmonic prediction of gridconnected systems, a harmonic impedance modeling scheme was proposed based on output harmonic current of inverter. The gridconnected system harmonic resonance theory was analyzed for impedance modeling of singlephase LCL gridconnected inverter. The low frequency characteristic of inverter was analyzed. Further, the harmonic current of single LCL gridconnected inverter was considered to obtain the harmonic impedance model, which is in good agreement with the simulation results of circuit model. The harmonic impedance model was used for harmonic interaction analysis and harmonic prediction modeling of multiinverter gridconnected systems. An example of eight gridconnected inverters was proposed, and the resonance effect was analyzed for harmonic current and harmonic voltage over point of common coupling(PCC). This harmonic prediction model was compared with circuit model to prove its effectiveness and accuracy.
Keywords:gridconnected inverters;harmonics interactions;harmonics prediction;impedance model;resonance
0 引 言
隨著新能源發電技術的進步,越來越多的并網逆變器接入到分布式發電系統中,這些并網逆變器不僅提供了諧波源,還與電網形成了分布式阻抗網絡,可能產生諧振,對系統的安全和穩定造成影響。建立較為準確的并網系統諧波預測模型,既給并網操作的可行性提供了參考,也對經濟合理地治理微網系統諧波有重要的指導意義。
在分布式發電系統和大型新能源發電站中,長距離輸電線和變壓器導致電網阻抗不可忽略[1-2],特別是在偏遠地區,此時電網為感性弱電網。諧波源和阻抗網絡的存在會使并網系統發生諧波交互[3]。
文獻[4]提出了基于阻抗模型的諧波分析方法,對逆變器側和電網側諧波進行交互分析,但其阻抗模型是在理想狀態下建立的。文獻[5-6]將死區效應引入到并網系統阻抗模型中對系統進行分析,提高了阻抗模型的精度。文獻[7-8]將實際數字控制系統的延時引入到阻抗模型中,使并網逆變器阻抗模型更加精確。國內外學者對諧波預測方面做了大量的研究。文獻[9-11]分別提出了三種針對電網公共接入點(point of common coupling,PCC)諧波電流的預測模型。預測模型建立的形式和方法均不同,但模型建立的過程都需要測量或者收集大量數據來進行分析和計算,模型的建立過程復雜、工作量大。因此,建立較為簡單準確的微網系統諧波預測模型有很強的實際意義。
實際數字控制的并網逆變器系統包含許多非線性因素,并且有的非線性因素很難定量表達出來。為使逆變器阻抗模型更加符合實際情況,只考慮諧波結果不考慮諧波產生的過程,本文提出將逆變器實際輸出諧波電流引入到模型中來,建立諧波阻抗模型。考慮到并網系統主要含有低次諧波,用諧波阻抗模型對多逆變器并網系統建模,進行諧波交互分析。以單相LCL型并網逆變器為例,推導了其阻抗模型,分析了其低頻特性;在阻抗模型中引入實際諧波電流,建立多逆變器并網系統諧波預測模型,最后結合理論分析和電路仿真對模型進行了驗證。
5 結 論
本文以單相并網逆變器為研究對象,分析了其低頻特性,提出將并網逆變器諧波電流考慮到阻抗模型中,建立諧波阻抗模型。利用提出的諧波阻抗模型對多逆變器并網系統進行諧波交互分析,推導了多逆變器并網電流耦合矩陣,建立了多逆變器并網系統諧波預測模型,得出以下結論:
1)建立的諧波阻抗模型較好的體現了逆變器的低頻特性,提高了逆變器阻抗建模的準確性。
2)多逆變器并網系統中各逆變器并網電流相互耦合,每個逆變器并網電流不僅與其自身參數有關,還與其他所有逆變器參數及電網參數有關。
3)逆變器在低頻段的幅頻特性為低次諧波的分析及預測提供了理論依據。諧波預測模型可以較準確、快速地定量分析系統的諧振情況,預測PCC端各次諧波電流和諧波電壓的幅值及THD。
4)諧波預測模型可以較好的預測系統截止頻率fc以下的低次諧波幅值,甚至可以對轉折頻率ft以下的各次諧波進行矢量預測。
參 考 文 獻:
[1] LISERRE M, TEODORESCU R, BLAABJERG F.Stability of photovoltaic and wind turbine gridconnected inverters for a large set of grid impedance values[J].IEEE Transactions on Power Electronics, 2006,21(1):263.
[2] 王寶忠,王志兵.基于模糊控制的光伏系統最大功率點跟蹤[J].哈爾濱理工大學學報,2012,17(4):13.
WANG Baozhong, WANG Zhibing. Maximum power point tracking by using fuzzy control for photovoltaic power system[J]. Journal of Harbin University of Science and Technology, 2012,17(4):13.
[3] 謝文浩,王建賾,紀延超,等.一種LCL型并網逆變器的復合阻抗重塑方法[J].電機與控制學報,2018,22(10):35.
XIE Wenhao, WANG Jianze, JI Yanchao, et al. Composite impedance reshaping method for LCLtype gridtied inverter[J]. Electric Machines and Control, 2018,22(10):35.
[4] WANG Fei, LDUARTE J, AMHENDRIX M,et al. Modeling and analysis of grid harmonic distortion impact of aggregated DG inverters[J].IEEE Transactionson Power Electronics,2011,26(3):786.
[5] XU Dezhi,Wang Fei,Ruan Yi,et al.Output impedance modeling of gridconnected inverters considering nonlinear effects[C]//Control and Modeling for Power Electronics,June 10-13,2012,Kyoto,Japan. 2012:1-7.
[6] 許德志,汪飛,毛華龍,等.多并網逆變器與電網的諧波交互建模與分析[J].中國電機工程學報,2013,33(12):64.
XU Dezhi,WANG Fei,MAO Hualong,et al.Modeling and analysis of harmonic interaction between multiple gridconnected inverters and the utility grid[J]. Proceedings of the CSEE,2013,33(12):64.
[7] 許德志,汪飛,阮毅,等.多逆變器并網系統輸出阻抗建模與諧波交互[J].電機與控制學報,2014,18(2):1.
XU Dezhi,WANG Fei,RUAN Yi,et al.Output impedance modeling and harmonic interactions of multiple inverters gridconnected system[J]. Electric Machines and Control,2014,18(2):1.
[8] 張興,余暢舟,劉芳,等.光伏并網多逆變器并聯建模及諧振分析[J].中國電機工程學報,2014,34(3):336.
ZHANG Xing, YU Changzhou, LIU Fang, et al. Modeling and resonance analysis of multiparalleled gridtied inverters in PV systems[J]. Proceedings of the CSEE, 2014, 34(3):336.
[9] AU T M, MILANOVIC V J.Development of stochastic aggregate harmonic load model based on field measurements[J].IEEE Transactions on Power Delivery, 2007, 22(1):323.
[10] VASANASONG E, SPOONSER E D. The prediction of net harmonic currents produced by large numbers of residential PV inverters:Syndney Olympic Village case study[C]// 9th International Conference on Harmonics and Quality of Power,October 1-4,2000,Orlando,USA. 2000: 116–121.
[11] YAHYAIE F, LEHN W P.Using frequency coupling matrix techniques for the analysis of harmonic interactions[J].IEEE Transactions on Power Delivery, 2016,31(1):112.
[12] 汪飛,馮夏云,吳春華,等.多反激式微型逆變器并網諧波交互研究[J].中國電機工程學報,2016,36(3):712.
WANG Fei, FENG Xiayun, WU Chunhua, et al. Research on grid harmonic interaction of multiple flyback microinverters[J].Proceedings of the CSEE,2016,36(3):712.
[13] 鮑陳磊,阮新波,王學華,等.基于PI調節器和電容電流反饋有源阻尼的LCL型并網逆變器閉環參數設計[J].中國電機工程學報,2012,32(25):135.
BAO Chenlei, RUAN Xinbo, WANG Xuehua,et al.Design of gridconnected inverters with LCL filters based on PI regulator and capacitor current feedback active damping[J].Proceedings of the CSEE,2012,32(25):135.
[14] AGORRETA J L, BORREGA M, LOPEZ J, et al.Modeling and control of Nparalleled gridconnected inverters with LCL filter coupled due to grid impedance in PV plants[J].IEEE Transactionson Power Electronics,2011,26(3):774.
[15] SUN J. Impedancebased stability criterion for gridconnected inverters[J].IEEE Transactions on Power Electronics,2011,26(11):3075.
[16] CESPEDES M,SUN J.Impedance modeling and analysis of gridconnected voltagesource converters[J]. IEEE Transactions on Power Electronics, 2014, 29(3):1254.
(編輯:邱赫男)