999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

植物ABI5轉錄因子的研究進展

2019-09-12 11:37:20李魯華王忠妮王文新王懷玉任明見徐如宏
關鍵詞:植物研究

李魯華,王忠妮,王文新,王懷玉,任明見,徐如宏*

植物ABI5轉錄因子的研究進展

李魯華1,2,王忠妮3,王文新1,王懷玉1,任明見1,2,徐如宏1,2*

1. 貴州大學農學院, 貴州 貴陽 550025 2. 貴州大學國家小麥改良中心貴州分中心, 貴州 貴陽 550025 3. 貴州省農業科學院水稻研究所, 貴州 貴陽 550006

植物脫落酸不敏感蛋白5(Abscisic acid-insensitive 5, ABI5)為堿性亮氨酸拉鏈類型(Basic leucine zipper, bZIP)的轉錄因子,在ABA信號途徑中起著重要作用。目前已經報道的ABI5功能研究主要是以模式植物擬南芥()為研究對象,而在小麥()、水稻()等農作物中的研究報道極少。本文概述了植物中ABI5在種子發育、植物生長(特別是蔗糖信號途徑和蛋白質泛素化過程)、花青素積累等生物學過程以及植物對干旱、低氮等逆境脅迫響應方面的最新研究進展,闡明在農作物中開展ABI5分子網絡調控解析工作的重要性,以期為選育具有種子萌發可控(如抗穗發芽)、抗逆性強(如低氮)以及高產量等優良性狀的作物品種提供理論基礎,對作物分子育種具有指導意義。

ABI5轉錄因子; 研究進展

植物激素脫落酸(Abscisic acid, ABA)廣泛參與植物生長發育的調控以及植物對逆境脅迫的響應過程。Finkelstein借助遺傳學和分子生物學手段鑒定得到了一系列與ABA響應有關的組分如ABI1(Abscisic acid-insensitive 1)、ABI2、ABI3、ABI4、ABI5。其中,ABI5為堿性亮氨酸拉鏈(Basic leucine zipper, bZIP)類型的轉錄因子[1]。ABI5含有C1-C4 4個保守的結構域和1個bZIP結構域[2](圖1),其中bZIP結構域中含有分別與泛素化和蘇素化有關的賴氨酸殘基(分別為K344和K391),而C1-C4結構域中含有與磷酸化有關的絲氨酸殘基(S42、S145和S439)和蘇氨酸殘基(T201)[3]。

圖 1 ABI5保守結構域示意圖

近年來研究發現,ABI5在種子休眠和萌發[4]、植物的生長發育[5]、植物對逆境脅迫的響應[6]、花青素的積累[7]以及26S蛋白酶體降解途徑[8]等生物學過程起著重要的作用。本文對近年來ABI5的研究進展進行了梳理和歸納,以期為培育具有優良性狀的農作物提供一定的思路。

1 ABI5與種子發育

ABA參與種子發育過程的調控,而在該生物學過程中ABI5起著重要的作用[1]。

1.1 通過對ABI5的轉錄調控

擬南芥中的研究發現,轉錄中介體(Mediator 25, MED25)和MADS-box轉錄因子AGL21(MADS-box transcription factor AGL21)能夠結合到ABI5的啟動子區域,分別負調控/正調控ABI5的表達進而參與種子發育過程的調控[9,10];ABI5也能夠直接結合到過氧化氫酶1(Catalase 1, CAT1)基因和SHB1(Short hypocotyl under blue 1, SHB1)基因的啟動子區域,分別通過激活CAT1進而影響活性氧簇的動態平衡[11]和負調控SHB1[12]的表達進而調控ABI5下游信號組分的表達參與種子發育過程的調控。ABI5還能夠直接靶向編碼晚期胚胎豐富蛋白(Late embryogenesis abundant, LEA)的Em1和Em6基因并負調控兩者的表達[13];擬南芥核因子Y家族蛋白(Nuclear factor Y family protein, NF-YC9)能夠直接與ABI5結合,進而使其結合并激活靶基因EM6的表達,實現對ABI5轉錄活性的正調控作用,從而參與種子萌發對ABA的響應[14]。小麥中的研究發現,ABI5基因的表達量隨著小麥種子成熟度的增加而增加,表明其參與種子發育過程的調控[15]。

此外,擬南芥SAG(A protein containing the midasin homologue 1 domain)[16]、萌發延遲基因1(Delay of Germination 1, DOG1)[17]、DELLA蛋白RGL2[4]以及轉錄因子AtMyb7[18]和RAV1[19]等都通過調控ABI5,進而參與ABA對種子萌發的調控。

1.2 通過對ABI5的穩定性調控

研究發現擬南芥BIN2(Brassinazole insensitive 2)[20]、SOS2類似的蛋白激酶5(SOS2-like protein kinase 5, PSK5)[21]和蛋白磷酸化2A相關蛋白(Protein phosphatase2A (PP2A)-associated protein, TAP46)[22]通過磷酸化作用穩定ABI5,維持種子中較高含量的ABI5水平從而抑制種子萌發。相反地,擬南芥光敏色素相關的絲氨酸/蘇氨酸蛋白磷酸酶(Phytochrome associated serine/threonine protein phosphatase, FyPP)與SnRK2激酶拮抗作用調控ABI5的磷酸化,通過去磷酸化降低ABI5蛋白的穩定性,降低種子中ABI5的含量進而促進種子的萌發[23]。

擬南芥小泛素相關修飾物(Small ubiquitin-related modifier, SUMO)E3連接酶SIZ1通過SUMO修飾保護ABI5免受蛋白酶的降解,進而負調控ABA對種子萌發的調控[24]。相反,研究發現擬南芥CRWN(Crowded nuclei)蛋白家族通過調控ABI5的降解參與ABA控制的種子萌發,CRWN突變體對ABA超敏感并積累更高水平的ABI5蛋白[25]。此外,NO對ABI5蛋白153位半胱氨酸的S-亞硝基化有利于ABI5通過KEG(Keep on going)E3連接酶的生物學降解,從而促進種子的萌發。而ABI5蛋白153位半胱氨酸的突變能夠引起NO失去對ABI5蛋白穩定性的調控,進而表現出抑制種子萌發的表型[26]。

綜上可知,ABI5在種子發育過程中有著極其重要的作用,ABI5基因的表達水平及ABI5蛋白的穩定性直接影響種子的萌發和/或休眠等生物學過程。因此,在小麥、大豆、高粱等作物開展ABI5基因的研究是必要的,進而為種業技術的發展提供一定的理論基礎。

2 ABI5與植物的生長

蔗糖具有類生長素信號分子的功能,在擬南芥生長發育過程中起著重要的調控作用[27]。研究發現,ABI5能夠通過抑制生長素運輸載體PIN1的積累引起根中生長素水平的降低,通過調節根中生長素的水平進而參與蔗糖介導的對根分生組織區的抑制過程[28]。過表達ABI5能夠造成開花轉變過程的延遲,染色質免疫沉淀發現ABI5通過結合到花發育基因FLC(Flowering locus c)的啟動子元件參與植物的花發育過程,進一步研究發現蔗糖非發酵1型相關蛋白激酶2(Sucrose nonfermenting 1-related protein kinase2, SnRK2)介導的ABI5的磷酸化在該過程中起著重要的作用,SnRK2通過調控ABI5的磷酸化能夠促進FLC基因的表達,進而實現擬南芥中ABA對開花轉變過程的抑制作用[29]。

此外,ABI5還參與植物子葉變綠[30]以及黑暗誘導葉片衰老[31]的生物學過程,但具體的作用機理仍有待于進一步的研究。

3 ABI5與逆境脅迫的響應

ABA與植物對逆境脅迫的響應過程緊密相關。對擬南芥突變體hls1(HOOKLESS1)進行研究,發現突變體中ABA介導的抗真菌侵染的現象消失,進一步研究發現HSL1介導的ABI5表達水平降低與該過程具有相關性[6]。低氮脅迫處理發現,擬南芥ABI5的表達水平受到顯著誘導,上調表達超過100倍[32]。在棉花中共表達擬南芥ABI3/Viviparous1(命名為AtRAV2)和ABI5能夠通過調節活性氧簇清除以及滲透調節marker基因的表達提高棉花對干旱脅迫的抗性[33]。此外,水稻[34]、水曲柳[35]等中的研究也發現ABI5與植物對逆境脅迫的響應有關。此外,ABI5還參與逆境脅迫下三酰基甘油(triacylglycerol, TAG)的積累。研究發現逆境脅迫條件下,擬南芥abi5中TAG合成途徑的限速酶二酰基甘油轉移酶(diacylglycerol acyltransferase 1, DGAT1)基因的表達水平以及TAG的積累量均降低;相反地,ABI5過表達轉基因株系中DGAT1的表達水平以及TAG的積累量均升高[36]。ABI5參與植物對逆境脅迫響應的生物學過程,并在植物對逆境脅迫的響應過程中起著重要作用。

4 ABI5與花青素的積累

對擬南芥abi5-4進行研究,發現3%蔗糖處理使得突變體中花青素的積累量高于野生型[7]。對擬南芥絲氨酸/精氨酸豐富(serine/arginine-rich, SR)蛋白SR45的研究發現,3%蔗糖處理能夠顯著誘導sr45中花青素合成基因APL3(ADP-Glc pyrophosphorylase, large subunit)、CHS以及ABI5的表達[37]。此外,擬南芥中的研究發現外源蔗糖和葡萄糖處理能夠誘導調控花青素合成途徑的花色苷色素產生基因(Production of anthocyanin pigment, PAP)PAP1和PAP2的表達,而突變體abi5-1能夠減弱該處理對PAP1和PAP2表達的誘導作用[38],進而調節花青素的積累。可知,ABI5能夠通過影響花青素合成相關基因的表達實現對花青素的生物學調控,但其作用機制仍需要進一步闡明。

5 ABI5與26S蛋白酶體降解途徑

蛋白的泛素化過程在植物生長過程中具有廣泛而重要的生物學功能,該過程一般由泛素激活酶(Ubiquitin-activating enzymes, E1)、泛素結合酶(Ubiquitin-conjugating enzymes, E2)和E3催化的級聯反應完成[39]。26S蛋白酶體能夠識別泛素化的蛋白,經過去泛素化酶(Deubiquitinating enzymes, DUBs)去泛素化后被26S蛋白酶體中的蛋白酶降解[40]。擬南芥中研究發現定位于細胞質和內膜系統的泛素化E3連接酶KOG能夠通過泛素化作用抑制ABI5的積累水平[8],進一步研究發現泛素化的ABI5通過26S蛋白酶體進行降解,從而實現KOG對ABI5蛋白表達水平的調控[3]。此外,Cullin4 E3復合體底物受體DWA1/DWA2(DWD hypersensitive to ABA1/2)和ABD1(ABA-hypersensitive DCAF1)也能夠通過26S蛋白酶體途徑調控細胞核中ABI5的水平[41]。總之,植物可以通過26S蛋白酶體降解途徑實現對細胞核和細胞質中ABI5表達水平的調節,進而對ABA信號通路進行調控。

目前,對農作物中ABI5的功能報道較少,然而由于該蛋白是ABA信號途徑中重要的轉錄因子,闡明農作物中ABI5的調控網絡為最終應用于分子育種具有指導性的意義。

6 總結與展望

植物ABI5是ABA信號通路中重要的轉錄因子,參與種子發育、植物生長、花青素積累等生物學過程,并在植物對逆境脅迫如干旱、低氮等的響應方面起著重要的作用。目前擬南芥中ABI5的功能研究已有較多的報道,而對小麥、水稻等農作物中的研究報道極少。綜上可知,ABI5在種子發育、植物生長(特別是蔗糖信號途徑和蛋白質泛素化過程)、植物對逆境脅迫的響應以及花青素積累等生物學過程中起重要作用,在農作物中可以重點開展該蛋白在上述方面的研究。然而,農作物中ABI5具有的生物學功能是否與擬南芥中的功能相同?哪些蛋白(靶向或者非靶向)參與調控ABI5的生物學功能?ABI5又能夠通過調控哪些蛋白實現上游信號的傳遞?在某一特定生物學過程中ABI5分子調控網絡是如何協同的?等問題仍需要進行系統深入的研究和探討。對小麥、水稻、玉米等重要農作物中ABI5進行深入的研究,有助于人們深入了解ABI5的分子調控網絡,為培育具有抗穗發芽、抗逆性強、延緩衰老等優良性狀的品種提供一定的理論基礎。綜上所述,在農作物中開展闡明ABI5分子調控網絡的相關研究是必要可行的。

[1] Finkelstein RR, Lynch TJ. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor[J]. Plant Cell, 2000,12(4):599-609

[2] Bensmihen S, Rippa S, Lambert G,. The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis[J]. Plant Cell, 2002,14(6):1391-403

[3] Liu HX and Stone SL. Regulation of ABI5 turnover by reversible post-translational modifications[J]. Plant Signaling & Behavior, 2014,9:e27577

[4] Ibarra SE, Tognacca RS, Dave A,. Molecular mechanisms underlying the entrance in secondary dormancy of Arabidopsis seeds[J]. Plant Cell & Environment, 2016,39(1):213-221

[5] Yang X, Bai Y, Shang J,. The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1[J]. Plant Cell & Environment, 2016,39(9):1994-2003

[6] Liao CJ, Lai Z, Lee S,. Arabidopsis HOOKLESS1 regulates responses to pathogens and abscisic acid through interaction with MED18 and acetylation of WRKY33 and ABI5 chromatin[J]. Plant Cell, 2016,28(7):1662-1681

[7] Hoth S, Niedermeier M, Feuerstein A,. An ABA-responsive element in the AtSUC1 promoter is involved in the regulation of AtSUC1 expression[J]. Planta, 2010,232(4):911-923

[8] Liu HX, Stone SL. Cytoplasmic degradation of the Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 5 is mediated by the RING-type E3 ligase KEEP ON GOING[J]. The Journal of Biological Chemistry, 2013,288(28):20267-20279

[9] Chen R, Jiang H, Li L,The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors[J]. Plant Cell, 2012,24(7):2898-2916

[10] Yu LH, Wu J, Zhang ZS,. Arabidopsis MADS-box transcription factor AGL21 acts as environmental surveillance of seed germination by regulating ABI5 expression[J]. Molecular Plant, 2017,10(6):834-845

[11] Bi C, Ma Y, Wu Z,. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination[J]. Plant Molecular Biology, 2017,94(1-2):197-213

[12] Cheng ZJ, Zhao XY, Shao XX,. Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1[J]. Plant Cell, 2014,26(3):1053-1068

[13] Tezuka K, Taji T, Hayashi T,. A novel abi5 allele reveals the importance of the conserved Ala in the C3 domain for regulation of downstream genes and salt tolerance during germination in Arabidopsis[J]. Plant Signaling & Behavior, 2013,8(3):e23455

[14] Bi C, Ma Y, Wang XF,. Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis[J]. Plant Molecular Biology, 2017,95(4-5):425-439

[15] 孫曉燕.ABI5基因在不同休眠特性小麥中的鑒定和表達特異性研究[D].呼和浩特:內蒙古農業大學,2016:3-4

[16] Chen C, Wu C, Miao J,. Arabidopsis SAG protein containing the MDN1 domain participates in seed germination and seedling development by negatively regulating ABI3 and ABI5[J]. Journal of Experimental Botany, 2014,65(1):35-45

[17] Dekkers BJ, He H, Hanson J,. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development[J]. Plant Journal, 2016,85(4):451-465

[18] Kim JH, Hyun WY, Nguyen HN,. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5[J]. Plant Cell & Environment, 2014,38(3):559-571

[19] Feng CZ, Chen Y, Wang C,. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development[J]. Plant Journal, 2014,80(4):654-668

[20] Hu Y, Yu D. BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis[J]. Plant Cell, 2014,26(11):4394-4408

[21] Zhou X, Hao H, Zhang Y,. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-type protein kinase, is important for abscisic acid responses in Arabidopsis through phosphorylation of ABSCISIC ACID-INSENSITIVE5[J]. Plant Physiology, 2015,168(2):659-676

[22] Hu R, Zhu Y, Shen G,. TAP46 plays a positive role in the ABSCISIC ACID INSENSITIVE5-regulated gene expression in Arabidopsis[J]. Plant Physiology, 2014,164(2):721-734

[23] Dai M, Xue Q, Mccray T,. The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis[J]. Plant Cell, 2013,25(2):517-534

[24] Miura K, Lee J, Jin JB,. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(13):5418-5423

[25] Zhao W, Guan C, Feng J,. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein[J]. Journal of Integrative Plant Biology, 2015,58(7):669-678

[26] Albertos P, Romero-Puertas MC, Tatematsu K,. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth[J]. Nature Communications, 2015,6:8669

[27] Karve A, Xia X, Moore B. Arabidopsis Hexokinase-Like1 and Hexokinase1 form a critical node in mediating plant glucose and ethylene responses[J]. Plant Physiology, 2012,158:1965-1975

[28] Yuan T, Xu H, Zhang K,. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis[J]. Plant Cell & Environment, 2014,37(6):1338-1350

[29] Wang Y, Li L, Ye T,. The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis[J]. Journal of Expereimental Botany, 2013,64(2):675-684

[30] Guan C, Wang X, Feng J,. Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of abscisic acid insensitive5 protein in Arabidopsis[J]. Plant Physiology, 2014,164(3):1515-1526

[31] Su M, Huang G, Zhang Q,. The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana[J]. Plant Scince, 2016,247:93-103

[32] Yang X, Yang YN, Xue LJ,. Rice ABI5-Like1 regulates abscisis acid and auxin responses by affecting the expression of ABRE-containing genes[J]. Plant Physiology, 2011,156(3):1397-1409

[33] Mittal A, Gampala SS, Ritchie GL,Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation[J]. Plant Biotechnology Journal, 2014,12(5):578-589

[34] Yang Y, Yu X, Song L,. ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency[J]. Plant Physiology, 2011,156(2):873-883

[35] 孫爽,趙興堂,梁楠松,等.水曲柳FmABI5基因非生物脅迫及信號誘導的表達模式分析[J].植物研究,2017,37(3):453-460

[36] Kong Y, Chen S, Yang Y,. ABA-insensitive (ABI) 4 and ABI5 synergistically regulate DGAT1 expression in Arabidopsis seedlings under stress[J]. FEBS Letters, 2013,587(18):3076-3082

[37] Carvalho RF, Carvalho SD, Duque P. The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis[J]. Plant Physiology, 2010,154(2):772-783

[38] Luo QJ, Mittal A, Jia F, et al. An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis[J]. Plant Molecular Biology, 2012,80(1):117-129

[39] Vierstra RD. The expanding universe of ubiquitin and ubiquitin-like modifiers[J]. Plant Physiology, 2012,160(1):2-14

[40] Isono E, Nagel MK. Deubiquitylating enzymes and their emerging role in plant biology[J]. Frontier in Plant Science, 2014,5:56

[41] Seo KI, Lee JH, Nezames CD,. ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling[J]. Plant Cell, 2014,26(2):695-711

Research Advances of Plant ABI5 Transcription Factors

LI Lu-hua1,2, WANG Zhong-ni3, WANG Wen-xin1, WANG Huai-yu1, REN Ming-jian1,2, XU Ru-hong1,2*

1.550025,2.550025,3.550006,

Plant abscisic acid insensitive 5 (ABI5) protein is transcription factors of basic leucine zipper (bZIP) type and plays an important role in ABA signaling pathway. Currently, the functional research of ABI5 in plant mainly focused on, while few studies have been reported on crops such as wheat () and rice (). In this paper, we summarized the advanced researches of ABI5 in biological process such as seed development, plant growth (especially the sucrose signaling pathway and protein ubiquitination process), anthocyanin accumulation and in stress responses such as drought and low nitrogen, and elucidated the importance of carrying out the molecular regulation research of ABI5 in crops, which would provide theoretical basis for crop varieties with excellent traits, such as controllable seed germination (e.g. preharvest sprouting resistance), strong stress resistance (e.g. low nitrogen) and high yield, and has instructive significance of molecular breeding in crops.

ABI5 transcription factors; research advance

Q7

A

1000-2324(2019)04-0537-05

2018-08-22

2018-10-10

貴州省科技計劃項目(黔科合基礎[2019]1073號);國家自然科學基金項目(31660390); 貴州省農業成果轉化計劃項目(黔科合成果(2016)4022號);貴州大學引進人才科研項目(貴大人基合字2017(49號))

李魯華(1985-),男,博士,講師,主要從事作物遺傳育種工作. E-mail:luhua_li@163.com

Author for correspondence. E-mail:xrhgz@163.com

猜你喜歡
植物研究
FMS與YBT相關性的實證研究
2020年國內翻譯研究述評
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
EMA伺服控制系統研究
新版C-NCAP側面碰撞假人損傷研究
植物的防身術
把植物做成藥
哦,不怕,不怕
將植物穿身上
主站蜘蛛池模板: 国产欧美日韩专区发布| 日韩av电影一区二区三区四区| 欧美成一级| 亚洲成网777777国产精品| 国产乱论视频| 欧美色图久久| 日韩国产亚洲一区二区在线观看| 亚洲精品在线影院| 99视频精品在线观看| 国产日产欧美精品| 精品视频福利| 亚洲欧美成人在线视频| 国产91av在线| 国产激爽爽爽大片在线观看| 亚洲天堂精品在线观看| 亚洲V日韩V无码一区二区| 亚洲第一成人在线| 激情六月丁香婷婷| 国产精品视频观看裸模| 在线毛片网站| 亚洲一级色| 韩日午夜在线资源一区二区| 99精品视频九九精品| 黄片一区二区三区| 国产一区二区三区夜色| 在线综合亚洲欧美网站| 国产成人h在线观看网站站| 国产午夜福利亚洲第一| 国产在线观看一区二区三区| 国产在线视频福利资源站| 国产9191精品免费观看| 亚洲天堂2014| 欧美一区精品| 亚洲国产精品久久久久秋霞影院 | 久久久久亚洲Av片无码观看| 日韩在线播放中文字幕| 91精品国产麻豆国产自产在线| 久久久久无码精品国产免费| 99r在线精品视频在线播放| 伊人国产无码高清视频| 最新国产成人剧情在线播放| 人妻无码中文字幕第一区| 91综合色区亚洲熟妇p| 午夜国产在线观看| 99这里只有精品免费视频| 91午夜福利在线观看精品| 欧美色视频在线| 国产美女精品一区二区| 国产性生大片免费观看性欧美| 97se亚洲| 99精品国产高清一区二区| 青青网在线国产| 操美女免费网站| 欧美va亚洲va香蕉在线| 亚洲毛片网站| 欧美激情伊人| 国产91蝌蚪窝| 国产在线一二三区| 亚洲精品无码高潮喷水A| 国产精品亚洲va在线观看| 尤物特级无码毛片免费| 重口调教一区二区视频| 国产福利影院在线观看| 久99久热只有精品国产15| 国产免费一级精品视频 | 国内精品免费| 久久综合丝袜日本网| 色欲不卡无码一区二区| 有专无码视频| 亚洲天堂网2014| 伊人久久精品无码麻豆精品| 亚洲欧美日韩久久精品| 国产日本欧美在线观看| av性天堂网| 国产乱子精品一区二区在线观看| 中文字幕色在线| 亚洲无码高清一区二区| 国产一级在线观看www色| 97影院午夜在线观看视频| 伊人成人在线视频| 日本欧美视频在线观看| 亚洲综合第一页|