付政超 呼群
【摘要】 肺癌發病率高、預后差,其發生過程涉及多個信號通路的異常改變,其中Hedgehog通路在肺癌中的作用逐漸被發現,Hedgehog通路最早發現于果蠅胚胎發育過程,近來發現其涉及了肺、消化等多個組織器官的發育及癌變過程,特別是肺癌中發現,Hedgehog通路的異常激活參與了肺癌的耐藥、增殖、轉移等過程。本文從Hedgehog信號通概述、Hedgehog在小細胞肺癌中的作用、非小細胞肺癌增殖、耐藥中的作用進行綜述分析,旨在為Hedgehog通路在肺癌的研究提供新的思路及尋找肺癌治療的新靶點。
【關鍵詞】 Hedgehog信號通路; 肺癌
Advances in Hedgehog Signaling Pathway in Lung Cancer/FU Zhengchao,HU Qun.//Medical Innovation of China,2019,16(06):-172
【Abstract】 Lung cancer has a high incidence and poor prognosis,its occurrence process involves abnormal changes of multiple signaling pathways,the role of Hedgehog signaling pathway in lung cancer has been gradually discovered.Hedgehog signaling pathway was the first found in the embryonic development of Drosophila melanogaster.Recently,it has been found that Hedgehog signaling pathway involves the development and canceration of lung,digestion and other tissues and organs,in particular.It is found that the abnormal activation of Hedgehog signaling pathway is involved in the process of drug resistance,proliferation and metastasis of lung cancer.This article reviews the role of Hedgehog signaling pathway in small cell lung cancer,proliferation and drug resistance of non-small cell lung cancer,in order to provide new ideas for the study of Hedgehog signaling pathway in lung cancer,path and search for new targets for lung cancer treatment.
【Key words】 Hedgehog signaling pathway; Lung cancer
First-authors address:Inner Mongolia Medical University,Hohhot 010110,China
doi:10.3969/j.issn.1674-4985.2019.06.045
肺癌是最常見的惡性腫瘤之一,預后差、致死率高。2018年全球肺癌新發病例210萬人,死亡病例180萬人,占癌癥死亡人數的近1/5(18.4%),并且在中國仍是男性腫瘤死亡的主要原因[1-2],有數據提示57%的非小細胞肺癌患者診斷時已有遠端轉移[3-5]。而肺癌的發生、轉移及耐藥等過程涉及了包括Hedgehog、Went等多個信號傳導調控過程,但具體調控機制尚未清晰。本文從Hedgehog信號通路的概述,小細胞肺癌中Hedgehog的作用,非小細胞肺癌增殖、耐藥中Hedgehog的作用進行綜述分析,從而發現目前研究Hedgehog信號通路在肺癌中調控的新觀點。
1 Hedgehog信號通路概述
Hedgehog信號通路首次發現并證實參與了果蠅胚胎的發育過程,經典的Hedgehog信號通路組成包括配體蛋白Indian Hedgehog(IHh)、Desert Hedgehog(DHh)和Sonic Hedgehog(SHh);膜受體蛋白Patched(Ptch)和Smoothened(Smo)和目前發現的核內轉錄因子Ci/Gli、SuFu、COX2、PKA和cAMP等。
1.1 Hedgehog配體 經典的Hedgehog配體主要有IHh、DHh和SHh。人類SHh由位于7q36.3的SHh基因編輯,已證實參與了胚胎發育時候誘導如中樞神經、肺、腸道等組織器官的發育。上述三種Hedgehog同源基因分別在細胞膜上表達其對應的糖蛋白,糖蛋白的N端具有信號活性,C端具有蛋白水解酶活性,C端通過共價鍵結合膽固醇分子并轉移到N端,在酰基轉移酶催化后使N端的半胱氨酸發生棕櫚酰化,進而獲得信號傳導活性[6-7]。
1.2 Hedgehog膜受體 經典Hedgehog信號通路的膜受體包括Ptch和Smo兩類膜蛋白。Ptch蛋白在哺乳動物中分為Ptch1和Ptch2兩種,接受SHh、IHh和DHh的信號。雖然Ptch1和Ptch2均是Hedgehog的受體,但是功能和表達部位略有不同,Ptch1多表達在間質細胞,而Ptch2則在皮膚和睪丸上皮細胞中表達,近來有研究提示Ptch2亦參與了胰腺神經內分泌腫瘤、遺傳性疾病的發生發展,且在基底細胞癌中Ptch2有抑制腫瘤的作用[8-12]。Smoothened蛋白屬于7跨膜G蛋白偶聯受體蛋白,C端位于胞內,而N端7跨膜區富含半胱氨酸在細胞膜外接受信號[13]。Smo的第二個信號結合位點是其異辛基鏈上攜帶的具有一個羥基的膽固醇氧化衍生物,在沒有Hedgehog配體的情況下可通過特定的固醇氧化物激活Hedgehog信號通路,并誘導Smoothened蛋白向細胞膜上的原纖毛堆積,并激活下游通路[14-15]。雖然Smo激活Gli的機制目前尚不清楚,但Chong等[16]發現Smo和Dlg5相互作后可使得Gli激活,當沒有Dlg5時Smo可抑制Gli抑制形成。目前認為Smo是Hh通路中的激動性受體,而Ptch是抑制性受體。經典的Hedgehog信號通路通過SHh配體結合Ptch1發揮作用,但是近來發現細胞膜蛋白GAS1、CDO和BOC也可能是Shh的受體,在胚胎發育早起起著決定性作用,而胚胎發育后期起著維持發育的作用[17-18]。
1.3 核內轉錄因子 Hedgehog信號通路的核內轉錄因子包括Ci/Gli、SuFu、Kif7、PKA和cAMP等。
Gli家族成員包括Gli1、Gli2和Gli3,其編碼的轉錄子在C2-H2位都含有鋅指結構及組氨酸/半胱氨酸鏈,而鋅指結構也是主要的功能區域。Gli1啟動區有一處18氨基酸區域成α螺旋狀,該區域包含一個同TFIID的TATA盒綁定蛋白相關的保守因子TAFII31,可使Gli1正反饋激動Hedgehog[19]。近來有研究提示Gli1啟動區從-2192到-109這一區間能和間充質同源相關基因轉錄因子HOX2(MEOX2)及具有轉錄活性的RNA聚合酶II結合,并同具有表觀遺傳改變活性的H3K27Ac和H3K4me3相連接,從而接受表觀遺傳學調節[20]。
Sufu是Hedgehog信號通路中的負性調控因子,其N端和C端可以結合Gli蛋白形成Gli-Sufu復合物,同時PKA抑制Sufu-Gli解離并阻止Sufu-Gli復合物向細胞原纖毛富集,另外Sufu-Gli復合物亦阻礙了Gli向細胞核內轉運及同DNA中的Gli結合區結合,從而負性調節Hedgehog信號通路并穩定信號通路[21-23]。
Kif7具有正性和負性雙向調節功能,有研究提示PPFIA1和PP2A共同作用促進Kif7的去磷酸化,使得Kif7定位于原纖毛末端并促進激活Gli蛋白[24-26]。
在呼吸道細胞增殖中Kif7促進細胞從G1期進入S期進而維持氣道正常結構[27]。Kif7作為Hedgehog中的雙向調節因子,在呼吸道發育和維持細胞分化及誘導進入細胞周期起了重要的作用。
當沒有Hh配體的情況下,Smo受Ptch的抑制,Ptch結合細胞周期蛋白B1和細胞周期蛋白依賴性激酶1(CDK1)組成的成熟促進因子(MPF),并在細胞質中結合和保留MPF,阻止Hedgehog通路激活,同時PKA、GSK3和CK1可使GliFL磷酸化并被β-Trcp蛋白識別,隨后將其C-末端水解形成GliR,而GliR轉入細胞核內以后可以結合Hh的啟動區后抑制啟動區激活,從而阻止Hedgehog信號通路激活[28-29]。當Hedgehog蛋白通過自分泌、旁分泌同Ptch結合后,Ptch被降解,從而解除了對Smo的抑制,而Smo被PKA和CK1磷酸化同時阻止了Smo的降解和內吞,并通過磷酸化級聯反應將Hh配體信號傳入胞內,同時Smo促進Gli-Sufu向細胞原纖毛富集,并從Sufu-Gli中釋放Gli并形成GliA,當GliA結合到Hh啟動區后進一步激活轉錄而激活Hedgehog下游通路,同時Hedgehog蛋白結合Ptch后促進胞周期蛋白B1釋放,并通過激活細胞周期蛋白D和細胞周期蛋白E的轉錄,從而促進細胞進入分裂周期而影響細胞分裂[28-30]。
2 Hedgehog信號通路與肺癌
2.1 Hedgehog和小細胞肺癌 小細胞肺癌是一種具有原始神經內分泌特征的高度侵襲腫瘤,有研究提示小細胞肺癌可通過配體依賴Hedgehog通路的激活維持其惡性表型[31]。在小細胞肺癌侵襲增殖方面,高表達的SHh可刺激N-myc和ascl1轉錄因子表達,后者結合INSM1啟動子中的E2盒后激活內源性INSM1表達,而INSM1與PI3K/AKT和MEK/ERK1/2途徑相互作用又增強N-myc的穩定性,進一步增加了小細胞肺癌的侵襲性[32],另有研究發現小細胞肺癌SBC5細胞系中沉默RBPJ/MAML3后SMO和HES1表達降低且細胞增殖和分裂降低,上調增強RBPJ/MAML3表達后SMO和HES1表達增加,并細胞分裂增強,亦提示Hedgehog和RBJ/MAML3共同參與了小細胞肺癌的增殖[33]。Hedgehog抑制劑用于小細胞肺癌治療方面,維莫德吉(Hedgehog抑制劑)通過結合并干膜蛋白抑制Hedgehog信號傳導從而抑制腫瘤細胞生長 [34],而Hedgehog抑制劑用于小細胞肺癌廣泛期的進一步臨床試驗(E1508)中顯示順鉑聯合依托泊苷(CE)的PFS和OS分別是4.4個月和8.8個月,而CE聯合維莫德吉的PFS和CE聯合西妥珠單抗的PFS分別是4.4個月和4.6個月而OS分別是9.8個月和10.1個月,有效率分別是48%、56%和50%,但是無統計學意義[35]。綜上,Hedgehog通路參與了小細胞肺癌的侵襲、增殖過程,但在小細胞肺癌中Hedgehog通路和其他信號通路之間的交叉調節仍需要進一步研究,雖然現有研究顯示Hedgehog抑制劑聯合化療用于小細胞肺癌廣泛期治療的OS和PFS并未有明顯改善,但是能否改善小細胞肺癌化療耐藥、減少化療藥物劑量等需要進一步研究。
2.2 Hedgehog和非小細胞肺癌 非小細胞肺癌占肺癌的83%并且發病率逐年增加。多項研究發現Hedgehog信號通路參與了非小細胞肺癌的增殖、轉移及非小細胞肺癌的耐藥[36]。
非小細胞肺癌增殖轉移方面。有研究發現E-Cadherin蛋白與Gli蛋白的表達呈負相關,下調Gli和抑制SHh/Gli信號通路后,E-Cadherin蛋白表達上調,提示SHh激活促進了非小細胞肺癌上皮間質轉化,從而促進非小細胞肺癌轉移[37],并且有研究發現部分非小細胞肺癌細胞表達未見切割的全長SHh蛋白并具有腫瘤干細胞的特點,并通過旁分泌對SHh陰性細胞產生誘導增殖的作用[38]。肺鱗狀細胞癌(LSCC)方面,Gli1是關鍵的驅動因子,對數據庫分析可見Gli1的mRNA在LSCC中高度表達,且提示預后不良[39]。同時有研究發現抑制SHh/GLi通路后E-Cadherin及β-Catenin表達上調且LSCC遷移被抑制,提示SHh/GLi可通過下調E-Cadherin及β-Catenin促進細胞遷移[40]。肺腺癌方面,Gli1可以被MEK1-ERK1/2直接磷酸化而激活,并且Gli啟動區和SOX2相互結合及調節,SOX2又促進了多能因子(OCT4和NANOG)表達并抑制了分化譜系因子(HOPX和NKX2-1)表達進而促使肺腺癌細胞干細胞化及促進肺腺癌細胞增殖[41-43]。而在大細胞肺癌方面,使用Smo抑制劑BMS-833923和Gli抑制劑GANT61后細胞增殖受抑制,并且增加了大細胞肺癌細胞對順鉑的敏感性[44]。
非小細胞肺癌耐藥方面,多項研究提示Hedgehog異常激活和非小細胞肺癌化療藥物耐藥有關,并且抑制Hedgehog通路后可增加抗藥非小細胞肺癌細胞對化療藥物的敏感性[45],對36例非小細胞肺癌患者的研究中發現,12例化療耐藥患者中Gli2陽性率高于非耐藥組,同時Gli2陽性的患者PSF和OS明顯低于Gli2陰性組,順鉑耐藥非小細胞肺癌細胞中使用vismodegib,可增加順鉑的細胞毒性[46]。近來研究發現,在藥物敏感的非小細胞肺癌細胞中敲除Kif7后細胞膜原纖毛長度改變并伴有Hedgehog異常激活從而產生耐藥性,恢復Kif7后耐藥細胞恢復了對化療藥物的敏感性[47],該研究提示Kif7及細胞原纖毛的改變參與了非小細胞肺癌化療藥物耐藥過程。靶向藥物耐藥方面,雖然EGFR-TKI用于治療非小細胞肺癌取得一定進展,但是EGFR-TKI耐藥成為非小細胞肺癌治療失敗的又一原因。有研究發現非小細胞肺癌EGFR-TKI耐藥過程存在Hedgehog異常激活并通過誘導EMT通路激活引起非小細胞肺癌細胞上皮間質轉化過程,從而獲得EGFR-TKI的耐藥性,使用Smo抑制劑阻斷Hedgehog后可亦可抑制非小細胞肺癌的上皮間質轉化過程,同時原發和繼發的EGFR-TKI耐藥細胞可恢復對EGFR-TKI的敏感性,同SMO抑制劑和EGFR抑制劑可完全抑制PI3K/Akt和MAPK磷酸化,進而表現出較強的抗腫瘤活性[48-49]。同時亦有研究發現Smo抑制劑可直接結合Gli1和Gli2抑制其DNA轉錄從而抑制Hedgehog通路,使肺腺癌和鱗癌生長受抑制并出現凋亡,且在小鼠抑制瘤實驗亦證實如此[41-42]。另外T790M突變陰性的EGFR-TKI耐藥非小細胞肺癌存在Hedgehog的異常激活并伴有上皮間質轉化,而吉非替尼、阿法替尼和西莫替尼耐藥細胞系在體外可維持EGFR-TKIs耐藥性,但可使用選擇性SMO抑制劑sonidegib使得細胞系恢復對EGFR-TKI的敏感性[50]。
3 展望
Hedgehog信號通路作為重要的誘導胚胎及干細胞發育的信號通路,其異常激活參與了肺癌上皮間質轉化過程,并通過上皮間質轉化誘導了肺癌的侵襲、轉移、耐藥及肺癌細胞干細胞化過程。但是不同病理類型的肺癌中Hedgehog異常激活是否存在差異,不同病理類型的Hedgehog異常激活和生存期的關系仍需要進一步研究。其二,Hedgehog異常激活參與了EGFR-TKI及順鉑等耐藥過程,但是對于原發耐藥和誘導耐藥的差別、使用Hedgehog抑制劑后是否會對其他正常組織細胞造成影響仍需要進一步研究。其三,Hedgehog抑制劑用于小細胞肺癌廣泛期雖然沒有改善患者PSF和OS,但是在局限期能否改善需要進一步臨床研究,同時使用Hedgehog抑制劑后是否出現Hedgehog抑制劑耐藥及耐藥過程需要進一步研究及觀察。再次,有研究提示Gli啟動區和具有表觀遺傳學改變活性的H3K27Ac鏈接,而后者具有H3組蛋白27甲基轉移酶活性同表觀遺傳沉默甲基化有關,是否Hedgehog功能失調亦同其下游抑制因子表觀遺傳學沉默有關需要進一步研究。最后,Hedgehog作為胚胎發育過程中的重要通路,參與了呼吸道等發育過程,其誘導腫瘤發生過程是否存在基因差異或等位基因多態性改變,或哪種基因改變易造成肺癌發生,仍需要進一步研究。綜上所述有必要進一步研究Hedgehog及交叉調節在肺癌代謝、耐藥、轉移等的作用,才能進一步將Hedgehog抑制劑用于肺癌的治療從而為肺癌治療提供新的方向。
參考文獻
[1] Freddie Bray BSc,Jacques Ferlay M E.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].Cancer Journal for Clinicians,2018,68(6):394-424.
[2] Siegel R L,Miller K D,Jemal A.Cancer statistics,2018[J].Cancer Journal for Clinicians,2018,68(1):7-30.
[3] Rami-Porta R,Asamura H,Travis W D,et al.Lung cancer-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual[J].Cancer Journal for Clinicians,2017,67(2):138-155.
[4] Siegel R,Desantis C,Virgo K,et al.Cancer treatment and survivorship statistics,2012[J].Cancer Journal for Clinicians,2012,62(4):220-241.
[5] Miller K D,Siegel R L,Lin C C,et al.Cancer treatment and survivorship statistics,2016[J].Cancer Journal for Clinicians,2016,66(4):271-289.
[6] Rodgers U,Lanyonhogg T,Masumoto N,et al.Characterization of Hedgehog Acyltransferase InhibitorsIdentifies a Small Molecule Probe for Hedgehog Signaling by Cancer Cells[J].Chemical Biology,2016,11(12):3256-3262.
[7] Ciepla P,Konitsiotis A D,Serwa R A,et al.New chemical probes targeting cholesterylation of Sonic Hedgehog in human cells and zebrafish[J].Chem Sci,2014,5(11):4249-4259.
[8] Veenstra V L,Dingjan I,Waasdorp C,et al.Patched-2 functions to limit Patched-1 deficient skin cancer growth[J].Cellular Oncology,2018,41(4):427-437.
[9] Hoyos A C,Kaminagakura E,Rodrigues M,et al.
Immunohistochemical evaluation of Sonic Hedgehog signaling pathway proteins(Shh,Ptch1,Ptch2,Smo,Gli1,Gli2 and Gli3)in sporadic and syndromic odontogenic keratocysts[J].Clinical Oral Investigations,2019,23(1):153-159.
[10] Vandamme T,Beyens M,Boons G,Schepers A,et al.
Hotspot DAXX,PTCH2 and CYFIP2 mutations in pancreatic neuroendocrine neoplasms[J].Endocr Relat Cancer,2019,26(1):1-12
[11] Taeubner J,Brozou T,Qin N,et al.Congenital embryonal rhabdomyosarcoma caused by heterozygous concomitant PTCH1 and PTCH2 germline mutations[J].European Journal of Human Genetics,2018,26(1):137-142.
[12] Onodera S,Saito A,Hasegawa D,et al.Multi-layered mutation in hedgehog-related genes in Gorlin syndrome may affect the phenotype[J].PLoS One,2017,12(9):e0184702.
[13] Nachtergaele S,Whalen D M,Mydock L K,et al.Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling[J].Elife,2013,2(24):e01340.
[14] Bazan J F,Janda C,Garcia K C.Structural Architecture and Functional Evolution of Wnts[J].Developmental Cell,2012,23(2):227-232.
[15] Johnson J S,Meliton V,Kim W K,et al.Novel oxysterols have pro-osteogenic and anti-adipogenic effects in vitro and induce spinal fusion in vivo[J].Journal of Cellular Biochemistry,2011,112(6):1673-1684.
[16] Chong Y C,Mann R K,Zhao C,et al.Bifurcating action of Smoothened in Hedgehog signaling is mediated by Dlg5[J].Genes & Development,2015,29(3):262-276.
[17] Allen B L,Song J Y,Izzi L,et al.Overlapping roles and collective requirement for the coreceptors GAS1,CDO,and BOC in SHH pathway function[J].Developmental Cell,2011,20(6):787.
[18] Xavier G M,Seppala M,Barrell W,et al.Hedgehog receptor function during craniofacial development[J].Developmental Biology,2016,415(2):198-215.
[19] Park H L,Bai C,Platt K A,et al.Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation[J].Development,2000,127(8):1593-1605.
[20] Ooki A,Dinalankara W,Marchionni L,et al.Epigenetically regulated PAX6 drives cancer cells toward a stem-like state via GLI-SOX2 signaling axis in lung adenocarcinoma[J].Oncogene,2018,37(45):5967-5981.
[21] Chen M H,Wilson C W,Li Y J,et al.Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved[J].Genes & Development,2009,23(16):1910-1280.
[22] Hanna T,Lopez L V,Adrian S.A mechanism for vertebrate Hedgehog signaling:recruitment to cilia and dissociation of SuFu–Gli protein complexes[J].Journal of Cell Biology,2010,191(2):415-428.
[23] Liem K F,He M,Ocbina P J R,et al.Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(32):13377-13382.
[24] He M,Subramanian R,Bangs F,et al.The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment[J].Nature Cell Biology,2014,16(7):663-672.
[25] Takahashi T,Friedmacher F,Takahashi H,et al.Kif7 expression is decreased in the diaphragmatic and pulmonary mesenchyme of nitrofen-induced congenital diaphragmatic hernia[J].Journal of Pediatric Surgery,2015,50(6):904-907.
[26] Liu Y C,Couzens A L,Deshwar A R,et al.The PPFIA1-PP2A protein complex promotes trafficking of Kif7 to the ciliary tip and Hedgehog signaling[J].Science Signaling,2014,7(355):ra117-ra117.
[27] Coles G L,Baglia L A,Ackerman K G.KIF7 Controls the Proliferation of Cells of the Respiratory Airway through Distinct Microtubule Dependent Mechanisms[J].PLoS Genetics,2015,11(10):e1005525.
[28] Wang X F,Shen Y,Cheng Q,et al.Apontic directly activates hedgehog and cyclin E for proper organ growth and patterning[J].Scientific Reports,2017,7(1):12470.
[29] Humke E W,Dorn K V,Milenkovic L,et al.The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins[J].Genes & Development,2010,24(7):670-682.
[30] Han Y,Shi Q,Jiang J.Multisite interaction with Sufu regulates Ci/Gli activity through distinct mechanisms in Hh signal transduction[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(20):6383-6388.
[31] Watkins D N,Berman D M,Burkholder S G,et al.Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer[J].Nature,2003,422(6929):313-317.
[32] Chen C,Breslin M B,Lan M S.Sonic hedgehog signaling pathway promotes INSM1 transcription factor in neuroendocrine lung cancer[J].Cellular Signalling,2018,46:83-91.
[33] Onishi H,Ichimiya S,Yanai K,et al.RBPJ and MAML3:Potential Therapeutic Targets for Small Cell Lung Cancer[J].Anticancer Research,2018,38(8):4543-4547.
[34] Smaele E D,Ferretti E,Gulino A.Vismodegi,a small-molecule inhibitor of the hedgehog pathway for the treatment of advanced cancers[J].Current Opinion in Investigational Drugs,2010,11(6):707-718.
[35] Belani C P,Dahlberg S E,Rudin C M,et al.Vismodegib or cixutumumab in combination with standard chemotherapy for patients with extensive-stage small cell lung cancer:A trial of the ECOG-ACRIN Cancer Research Group(E1508)[J].Cancer,2016,122(15):2371-2378.
[36]熊歡婷.Hedgehog信號通路配體Shh在肺鱗癌中發病的分子機制[D].南昌:南昌大學,2018.
[37] Li H,Yue D,Jin J Q,et al.Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas[J].Oncotarget,2016,7(49):80415-80425.
[38] Leprieur E G,Tolani B,Li H,et al.Membrane-bound full-length Sonic Hedgehog identifies cancer stem cells in human non-small cell lung cancer[J].Oncotarget,2017,8(61):103744-103757.
[39] Kasiri S,Shao C,Chen B,et al.GLI1 blockade potentiates the antitumor activity of PI3K antagonists in lung squamous cell carcinoma[J].Cancer Research,2017,77(16):4448-4459.
[40] Yue D,Li H,Che J,et al.Hedgehog/Gli promotes epithelial-mesenchymal transition in lung squamous cell carcinomas[J].Journal of Experimental & Clinical Cancer Research Cr,2014,33(1):33-34.
[41] Huang L,Walter V,Hayes D N,et al.Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer[J].Clinical Cancer Research An Official Journal of the American Association for Cancer Research,2014,20(6):1566-1575.
[42] Po A,Silvano M,Miele E,et al.Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma[J].Oncogene,2017,36(32):4641-4652.
[43] Karachaliou N,Rosell R,Viteri S.The role of SOX2 in small cell lung cancer,lung adenocarcinoma and squamous cell carcinoma of the lung[J].Translational Lung Cancer Research,2013,2(3):172-179.
[44] Ishiwata T,Iwasawa S,Ebata T,et al.Inhibition of Gli leads to antitumor growth and enhancement of cisplatin-induced cytotoxicity in large cell neuroendocrine carcinoma of the lung[J].Oncology Reports,2018,39(3):1148-1154.
[45] Giroux-Leprieur E,Costantini A,Ding V,et al.Hedgehog Signaling in Lung Cancer:From Oncogenesis to Cancer Treatment Resistance[J].International Journal of Molecular Sciences,2018,19(9):2835.
[46] Leprieur E G,Vieira T,Antoine M,et al.Sonic Hedgehog pathway activation is associated with resistance to platinum-based chemotherapy in advanced non-small cell lung carcinoma[J].Clinical Lung Cancer,2016,17(4):301-308.
[47] Jenks A D,Vyse S,Wong J P,et al.Primary Cilia Mediate Diverse Kinase Inhibitor Resistance Mechanisms in Cancer[J].Cell Reports,2018,23(10):3042-3055.
[48] Bai X Y,Zhang X C,Yang S Q,et al.Blockade of Hedgehog Signaling Synergistically Increases Sensitivity to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer Cell Lines[J].PLoS One,2016,11(3):e0149370.
[49] Della Corte C M,Bellevicine C,Vicidomini G,et al.SMO Gene Amplification and Activation of the Hedgehog Pathway as Novel Mechanisms of Resistance to Anti-Epidermal Growth Factor Receptor Drugs in Human Lung Cancer[J].Clinical Cancer Research An Official Journal of the American Association for Cancer Research,2015,21(20):4686-4697.
[50] Corte C M D,Malapelle U,Vigliar E,et al.Efficacy of continuous EGFR-inhibition and role of Hedgehog in EGFR acquired resistance in human lung cancer cells with activating mutation of EGFR[J].Oncotarget,2017,8(14):23020-23032.