999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

斜發(fā)沸石對干濕交替稻田土壤速效鉀和產(chǎn)量的影響

2019-11-08 00:53:20夏桂敏劉光輝陳濤濤
農(nóng)業(yè)工程學報 2019年18期
關鍵詞:沸石水稻產(chǎn)量

夏桂敏,劉光輝,沙 炎,趙 清,張 豐,陳濤濤

斜發(fā)沸石對干濕交替稻田土壤速效鉀和產(chǎn)量的影響

夏桂敏,劉光輝,沙 炎,趙 清,張 豐,陳濤濤※

(沈陽農(nóng)業(yè)大學水利學院,沈陽 110866)

為了進一步探究斜發(fā)沸石在干濕交替稻田中的應用潛力,設置不同灌溉模式(淹灌和干濕交替灌溉)和不同斜發(fā)沸石用量(0、5、10 t/hm2)的大田裂區(qū)試驗,對2017-2018年稻田土壤速效鉀動態(tài)變化和產(chǎn)量進行了研究。結果表明:稻田增施斜發(fā)沸石顯著提高了水稻產(chǎn)量,在10 t/hm2水平下產(chǎn)量最高,增產(chǎn)率達8.7%~22.3%。斜發(fā)沸石對稻田表層土壤速效鉀含量和植株地上部鉀素積累的提高有顯著正效應,干濕交替灌溉顯著提高了各生育期植株地上部鉀素積累量,提高幅度分別為11.81%~21.42%(2017年)、9.69%~23.79%(2018年)。通徑分析表明,斜發(fā)沸石增產(chǎn)是因為其顯著增加了分蘗肥期和穂肥期土壤速效鉀含量,提高了抽穗開花期和黃熟期地上部鉀素積累。研究可為揭示干濕交替灌溉下提高鉀肥利用效率的應用潛力,并一定程度上緩解稻田缺鉀的局面提供依據(jù)。

沸石;鉀;灌溉;水稻;干濕交替;產(chǎn)量

0 引 言

鉀素作為植物生長發(fā)育的必要養(yǎng)分,在植物生長過程中起著至關重要的作用。中國土壤全鉀質(zhì)量分數(shù)一般在16.6 g/kg左右,但能被植物直接吸收利用的速效鉀質(zhì)量分數(shù)一般不超過全鉀的2%[1]。為了實現(xiàn)水稻高產(chǎn),人們常采用高產(chǎn)作物品種或增加化肥施用量,導致土壤鉀素流失量逐年增加,土壤供鉀量顯著降低,缺鉀農(nóng)田面積逐漸增大。因此,發(fā)展與研究新的農(nóng)業(yè)生產(chǎn)策略來提高農(nóng)田鉀量和保鉀能力是當前迫切的需求。

水稻是中國主要的糧食作物,65%的人口將米飯作為主食[2-3],而其耗水量占全國總用水量的50%左右,占農(nóng)業(yè)總用水量的65%以上[4],同時水稻水分利用效率也極低,僅為40%左右[5]。為了提高稻田水分利用效率,國內(nèi)外提出了大量的水稻節(jié)水灌溉模式,如干濕交替灌溉[6]、能量調(diào)控灌溉[7]、控制灌溉[8]等。其中,干濕交替灌溉是應用最廣的一種灌溉模式,在世界各地已得到普遍應用和推廣。干濕交替灌溉技術可顯著降低水資源消耗、提高或維持水稻產(chǎn)量,進而提高水分生產(chǎn)率。但在干濕交替條件下,稻田土壤始終處于有氧-厭氧快速交替的狀態(tài),導致稻田土壤速效鉀含量顯著降低并阻礙緩效鉀釋放[9-10]。因此,應用干濕交替灌溉在實現(xiàn)水稻節(jié)水增產(chǎn)(或穩(wěn)產(chǎn))的同時,有必要研究土壤中鉀養(yǎng)分的動態(tài)變化,探究其在土壤中的變化規(guī)律,以充分發(fā)揮稻田土壤供鉀潛力、有效提高鉀肥利用率。

斜發(fā)沸石作為多孔礦物質(zhì),因其內(nèi)部具有較高陽離子交換位點和比表面積,而具有保水、陽離子交換及吸附選擇性等特性[11-12]。一般沸石全鉀質(zhì)量分數(shù)在3%~5%之間,且可溶性鉀占了全鉀的一半,可為水稻提供豐富的鉀源[13-14]。斜發(fā)沸石內(nèi)部豐富交換位點的存在,決定了其極強陽離子交換能力[15-16]。施入鉀肥后,土壤鉀離子急劇上升,斜發(fā)沸石內(nèi)部豐富交換位點處的陽離子(如Ca2+、Mg2+和Na+等)迅速與鉀離子交換;而隨著水稻對土壤養(yǎng)分的不斷吸收,土壤中離子濃度不斷降低,通過“吸附”和“釋放”的雙重作用,延長肥效[17],而且緩釋效果在干濕交替稻田下效果更為明顯[18]。近年來,許多學者對斜發(fā)沸石在干濕交替稻田中應用潛力進行了較為深入的研究,分別揭示了其在干濕交替稻田中可顯著提高水稻產(chǎn)量、水氮利用率、土壤持水特性和保肥能力,降低氨揮發(fā)和氮素淋失等氮素流失,且對水稻品質(zhì)沒有明顯的影響[19-22]。然而,其對土壤速效鉀含量變化及植株對鉀素吸收利用的影響如何尚不清楚。因此,本文擬通過向干濕交替灌溉稻田增施斜發(fā)沸石,明晰斜發(fā)沸石對常規(guī)淹水和干濕交替稻田土壤速效鉀含量的動態(tài)調(diào)節(jié)和產(chǎn)量的影響及其差異,揭示干濕交替灌溉下提高鉀肥利用效率的應用潛力,并一定程度上緩解稻田缺鉀的局面。

1 材料與方法

1.1 試驗區(qū)概況

試驗于2017-2018年在沈陽農(nóng)業(yè)大學農(nóng)學院教學試驗基地進行(123°33'E,41°49'N)。基地土質(zhì)為棕壤土,有機質(zhì)23.17 g/kg,速效磷24.27 mg/kg,速效鉀169.98 mg/kg,全氮0.89 g/kg,土壤pH值為5.61。2 a間水稻生育期內(nèi)的逐日降水和平均溫度如圖1所示。

圖1 水稻生長季日平均氣溫與降雨量

1.2 試驗材料

供試品種為“沈稻529”,分別于2017年5月28日和2018年5月29日插秧,行距為30 cm,株距為14 cm,每穴插3株,全生育期分別為131和136 d。本試驗氮、磷、鉀肥分別采用尿素、磷酸二銨和硫酸鉀。氮肥(N,150 kg/hm2)以5:4:1的比例分別于移栽前1天、分蘗始期及穗分化始期施入土壤;磷肥(P2O5,112.5 kg/hm2)于移栽前1天全部施入土壤;鉀肥(K2O,150 kg/hm2)以3:2的比例分別于移栽前1天和穗分化始期施入土壤。供試沸石為斜發(fā)沸石(粒徑為0.18~0.38 mm),其陽離子交換量(cation exchange capacity,CEC)為135~200 cmol/kg,比表面積為670 m2/g,主要成分如下:SiO265.56%、Al2O310.62%、H2O 8.16%、K2O 2.87%、CaO 2.59%。

1.3 試驗設計

本試驗采用裂區(qū)設計,包括灌溉模式和沸石量2因素,主區(qū)為淹灌(ICF)和干濕交替灌溉(IAWD)2個水平;子區(qū)斜發(fā)沸石添加量為0(Z0)、5 t/hm2(Z5)和10 t/hm2(Z10)3個水平。本試驗設置6個處理,3次重復,共18個小區(qū),南北方向布置。為了探索沸石增產(chǎn)保肥的后效性,2018年重復 2017年試驗,但不施沸石,且2018年各試驗小區(qū)的布局和2017年完全一致。主區(qū)由80 cm寬的土埂完全隔開,通過埋設塑料池埂(40 cm高)將各小區(qū)隔開,將池埂埋入30 cm土層深度,以防止水分和養(yǎng)分的側向橫流。每個小區(qū)面積為12 m2且肥處理一致。由水銀負壓計(南京土壤所研制)和自制水位計觀測土壤水勢與田間水位。淹灌和干濕交替灌溉處理下返青期水層深度均為1~3 cm,之后分別采用不同的控水標準,淹灌處理其余生育期水層深度均為3~7 cm,直至落干;干濕交替灌溉處理控水標準參考陳濤濤等(2016年)。稻田病、蟲、草等管理均參照當?shù)貥藴省?/p>

1.4 測定指標

1.4.1 水稻產(chǎn)量與鉀素吸收量

收獲前,于各小區(qū)中間1 m×1 m范圍內(nèi)隨機挑選2穴稻株,齊地面剪下,按莖、葉、穗分解后分別裝入牛皮紙袋中,于70 ℃烘干至恒質(zhì)量,并稱質(zhì)量。之后,對烘干樣品進行粉碎,并采用濃H2SO4-H2O2法消煮,采用火焰光度計(M410,英國Sherwood公司產(chǎn))測定各部分鉀含量,各部分干質(zhì)量與鉀素含量乘積之和即為植株地上部鉀素積累量。各小區(qū)單打單收,以測定水稻產(chǎn)量。

1.4.2 稻田土壤速效鉀含量

翻地前與秋收后土壤按0~10 cm和35~45 cm 2個土層取樣。生育期內(nèi)土樣均采集于表層土壤(0~10 cm),返青期到拔節(jié)孕穗期每隔1周取1次土樣,拔節(jié)孕穗期到黃熟期2周取1次土樣。每次施肥前后加測1次。采集的土樣風干后粉碎至粉狀用于土壤速效鉀的測定。土壤速效鉀用1 mol/L中性NH4OAc浸提-火焰光度計法對土壤速效鉀進行測定。

1.5 數(shù)據(jù)分析

2 a數(shù)據(jù)分別采用多層次的裂區(qū)試驗設計模型單獨進行方差分析,使用R軟件實現(xiàn)。該模型中灌溉模式(I)和沸石用量(Z)為固定因子,區(qū)組(B)為隨機因子。主區(qū)和子區(qū)的誤差項分別為:B×I和B×I×Z。采用Tukey’s HSD方法對主因子和交互因子進行顯著性檢測,顯著性水平為0.05。

2 結果與分析

2.1 灌溉模式和斜發(fā)沸石對水稻產(chǎn)量及產(chǎn)量構成的影響

2 a試驗結果一致表明斜發(fā)沸石(Z)對水稻產(chǎn)量均有顯著影響,但灌溉模式的主效應及交互效應(I×Z)不顯著(表1)。與無沸石相比,2 a間水稻產(chǎn)量均隨沸石施用量的增多有提高的趨勢,在沸石施用量為10 t/hm2時均達到了顯著性水平(<0.05),提高幅度為8.7%~22.3%(表2)。干濕交替稻田增施10 t/hm2斜發(fā)沸石的增產(chǎn)效果最為明顯,2 a較常規(guī)處理(ICFZ0)增產(chǎn)12.5%~27.2%(圖2)。產(chǎn)量構成因子分析結果表明,斜發(fā)沸石顯著增產(chǎn)主要由于其顯著影響了單位面積的有效穗數(shù)(表1),與Z0相比,稻田增施10 t/hm2斜發(fā)沸石, 2 a可顯著提高單位面積有效穗數(shù)17.56%~22.39%(表2)。

表1 水稻產(chǎn)量及產(chǎn)量構成的方差分析

注:I:灌溉模式;Z:斜發(fā)沸石;“*”表示在<0.05 水平下影響顯著,“**” 表示在<0.01水平下影響極顯著。

Note: I: irrigation regimes; Z: zeolite application rates; “*”indicates significant effect at<0.05 level, “**”, extremely significant at<0.01.

表2 各主因子不同水平下水稻產(chǎn)量及產(chǎn)量構成指標多重均值對比(Tukey’s HSD test)

注:ICF:淹水灌溉;IAWD:干濕交替灌溉;Z0:不施沸石;Z5:5 t·hm-2沸石;Z10:10 t·hm-2沸石,同一列不同字母表示具有顯著的差異,下同。

Note: ICF: continuously flooded irrigation; IAWD: alternate wetting and drying irrigation; Z0: no zeolite; Z5: 5 t·hm-2zeolite; Z10: 10 t·hm-2zeolite, Different lowercase letters in columns are significantly different at 0.05 probability level, the same below.

圖2 不同灌溉模式和沸石用量對水稻產(chǎn)量的影響

2.2 灌溉模式和斜發(fā)沸石對水稻地上部干質(zhì)量的影響

灌溉模式和斜發(fā)沸石對水稻各生育期地上部干物質(zhì)量的影響如圖3所示。2 a試驗結果表明,灌溉模式和斜發(fā)沸石對各生育期干物質(zhì)量均有顯著影響,交互效應在拔節(jié)孕穗期和抽穗開花期有顯著影響。分析表明(圖3),2種灌溉模式下,水稻各生育期地上部干物質(zhì)量均隨沸石施用量的增多而有提高的趨勢,在沸石施用量為10 t/hm2時顯著高于不添加沸石處理(<0.05)。10 t/hm2斜發(fā)沸石較之無沸石處理,地上部干物質(zhì)量2 a平均值在分蘗后期、拔節(jié)孕穗期、抽穗開花期、乳熟期、黃熟期分別顯著提高44.52%、34.12%、20.72%、17.10%和18.13%(淹水灌溉),31.29%、35.29%、39.03%、20.88%和22.51%(干濕交替灌溉)。由此可見,斜發(fā)沸石可提高水稻全生育期地上部干物質(zhì)質(zhì)量。

2.3 灌溉模式和斜發(fā)沸石對地上部鉀素積累的影響

灌溉模式和斜發(fā)沸石對水稻各生育期鉀素積累量的影響如表3所示。2 a試驗結果表明,灌溉模式和斜發(fā)沸石對植株鉀素積累量均有顯著影響。由表可知,干濕交替灌溉顯著提高了各生育期植株地上部鉀素積累量,提高幅度分別為11.81%~21.42%(2017)、9.69%~23.79%(2018)。與無沸石相比,2 a間不同生育期地上部鉀素積累量均隨沸石施用量的增多而有提高的趨勢,在沸石施用量為10 t/hm2時均達到了顯著性水平(<0.05),各生育期地上部鉀素積累量提高幅度分別為24.67%、14.61%、31.48%、25.76%及35.84%。交互分析表明(圖4),干濕交替稻田增施10 t/hm2斜發(fā)沸石對于地上部鉀素積累量提升效果最為明顯,并且達到顯著性水平(<0.05),2 a結論完全一致。由此可見,應用干濕交替灌溉和斜發(fā)沸石均可提高水稻全生育期地上部鉀素積累量。

注:T,分蘗后期;J,拔節(jié)孕穗期; FH,抽穗開花期; M,乳熟期;D,黃熟期,下同。

表3 各主因子不同水平下水稻各生育期地上部分鉀素積累的均值比較

圖4 不同灌溉模式和沸石用量對地上部分鉀素積累量的影響

2.4 灌溉模式和斜發(fā)沸石對土壤速效鉀含量的影響

不同灌溉模式和斜發(fā)沸石水平下稻田全生育期土壤速效鉀含量動態(tài)變化曲線如圖5所示。2017年和2018年,土壤速效鉀含量動態(tài)變化曲線基本一致,均出現(xiàn)3次峰值和2次谷值。第1次、第2次峰值分別出現(xiàn)在施分蘗肥后、施穗肥后的第4天;第3次峰值出現(xiàn)在生殖生長階段,植株吸收養(yǎng)分的速度大于施穗肥后K+濃度上升速度,隨著生育進程的遞進,植株吸收養(yǎng)分的速度又小于K+濃度上升速度。2種灌溉模式下,土壤速效鉀含量均隨著沸石施用量的增加而增加,并達到顯著性水平(<0.05),這種規(guī)律從水稻返青一直持續(xù)到水稻黃熟收獲,持續(xù)了整個水稻生育期。在干濕交替灌溉下施用斜發(fā)沸石,土壤速效鉀含量始終高于淹水灌溉(表4)。這表明斜發(fā)沸石在干濕交替灌溉下提高速效鉀含量的效果更為明顯,且2 a結論完全一致。

各處理不同施肥階段土壤速效鉀平均含量如表4所示。2種灌溉模式下,3個施肥階段土壤速效鉀平均含量均隨著沸石施用量的增加呈現(xiàn)增加趨勢。交互效應分析表明,2 a試驗期間,斜發(fā)沸石在干濕交替灌溉下,對于不同施肥階段土壤速效鉀平均含量的提升更為明顯。如在分蘗-穗肥時期,ICFZ10處理土壤速效鉀平均含量較ICFZ0高15.86%、55.73%(2017)和31.96%、62.61%(2018);IAWDZ5、IAWDZ10處理土壤速效鉀平均含量較IAWDZ0高44.01%、83.65%(2017)和50.18%、91.35%(2018)。斜發(fā)沸石在不同施肥階段對土壤速效鉀平均含量增效也有所不同。在速效鉀含量高時(基肥-分蘗肥)最為明顯,在速效鉀含量低時(穗肥-收獲)其增效也有所降低。

2.5 土壤速效鉀、鉀積累及產(chǎn)量關聯(lián)分析

為了明晰水稻產(chǎn)量同階段土壤速效鉀平均含量和地上部鉀素積累量的響應關系,進一步揭示斜發(fā)沸石增產(chǎn)機理,分別對5個生育期地上部鉀素積累量與水稻產(chǎn)量以及3個施肥階段土壤速效鉀平均含量與水稻產(chǎn)量進行了通徑分析(以2 a均值作分析),分析結果如表5所示。由表5可知,抽穗開花期和黃熟期的地上部鉀素積累量對產(chǎn)量貢獻最大,其貢獻率所占比例分別為:55%(抽穗開花期)、40%(黃熟期)。而在產(chǎn)量貢獻率最大的2個生育期,斜發(fā)沸石對地上部鉀素積累的作用極為明顯,增施10 t/hm2斜發(fā)沸石,分別提高地上部鉀素積累31.5%、35.8%(表3)。由此可知,斜發(fā)沸石增產(chǎn)是由于其顯著增加了水稻抽穗開花期與黃熟期地上部鉀素積累。乳熟期和分蘗后期對產(chǎn)量的負貢獻率可能是由于基肥和穗肥后,土壤鉀肥營養(yǎng)充足,植株地上部分鉀素積累并不會對產(chǎn)量產(chǎn)生直接正效應(圖5)。同樣由表5可知,分蘗肥-穗肥、穗肥-收獲期2階段的土壤速效鉀平均含量對產(chǎn)量貢獻率分別為40%、39%。在分蘗-穗肥、穗肥-收獲施肥階段中沸石對于不同灌溉模式下土壤速效鉀含量的提高極為顯著。可見,斜發(fā)沸石能夠顯著提高分蘗-穗肥、穗肥-收獲期2階段土壤速效鉀含量是其使水稻增產(chǎn)的另一個原因。由此可知,斜發(fā)沸石顯著提高了K+敏感時期土壤速效鉀含量,增加植株關鍵時期的地上部分鉀素積累量,最終實現(xiàn)水稻增產(chǎn)。

圖5 不同灌溉模式和沸石用量對土壤速效鉀含量動態(tài)變化的影響

表4 不同處理對稻田階段土壤速效鉀平均含量的影響

表5 不同生育期植株鉀積累和階段土壤速效鉀平均含量對產(chǎn)量的通徑分析

注:18分別表示分蘗后期、拔節(jié)孕穗期、抽穗開花期、乳熟期、黃熟期地上部分鉀素積累量、基肥-分蘗肥、分蘗肥-穗肥、穗肥-收獲階段土壤速效鉀平均含量。

Note:18respectively indicates the above-ground K accumulation of plants in later tillering stage, jointing-booting stage, heading-flowering stage, milky ripening stage, yellow ripening stage, the soil available potassium content in base-tillering fertilizer, tillering-spike fertilizer, spike fertilizer-harvest.

3 討 論

3.1 灌溉模式與斜發(fā)沸石對水稻地上部鉀積累及產(chǎn)量的影響

鉀素作為植物生長發(fā)育的必需元素,在作物增產(chǎn)方面起著關鍵性作用[23-24]。鉀素充足有利于作物各生長階段器官的生長,尤其是對水稻更為重要,而稻田植株地上部鉀素積累量是產(chǎn)量形成的表現(xiàn)[25]。相關研究表明,干濕交替灌溉可促進水稻深層根系的生長,進而提高根系吸收水分和養(yǎng)分的能力,改善水稻植株的生長發(fā)育[26]。本研究表明,干濕交替灌溉顯著提高了水稻各生育期地上部分鉀素積累量,與其結論一致。水分狀況影響植株對養(yǎng)分的吸收利用,進而影響水稻的生長發(fā)育和產(chǎn)量的形成[27],斜發(fā)沸石因具有較高的比表面積,能夠顯著改善土壤的保水能力和水分狀況[20],不僅能為作物生長提供充足的水分,還能緩解干旱脅迫對產(chǎn)量的負效應[28];另外,斜發(fā)沸石極強的陽離子交換能力,還能提高稻田保肥能力和土壤中可交換鉀的數(shù)量,進而提高稻田土壤鉀素的有效性,為作物生長提供良好的營養(yǎng)條件[29-31]。Chen等[19,21,29,32]研究表明,斜發(fā)沸石顯著提高了水稻植株地上部氮積累量和增加了單位面積的有效穗數(shù),從而使水稻增產(chǎn)4.7%~16.8%。本研究表明,稻田增施斜發(fā)沸石(5~10 t/hm2)可提高產(chǎn)量,提高水稻各生育期植株地上部鉀素積累,尤其是10 t/hm2的斜發(fā)沸石同干濕交替灌溉模式結合效果最好,較之淹水無沸石處理,可顯著提高鉀素積累量。斜發(fā)沸石顯著提高了K+敏感時期土壤速效鉀含量,增加植株關鍵時期的地上部分鉀素積累量,從而提高水稻產(chǎn)量。

3.2 灌溉模式和斜發(fā)沸石對土壤速效鉀含量的影響

是所需的重要元素,限制著植物的生長發(fā)育,而速效鉀更是一個衡量土壤肥力的重要指標[33]。干濕交替灌溉不僅能夠影響植物對養(yǎng)分的吸收,同時還能夠影響土壤速效鉀含量,從而間接或直接的影響作物的生長發(fā)育。李夢尋等[9]研究表明,干濕交替灌溉能夠顯著降低速效鉀的含量,土壤中的交換性鉀進入黏土礦物的晶體層之間,從而轉換成非交換型鉀,最終降低鉀的有效性。而叢日環(huán)等[34]研究表明,在土壤速效鉀水平不高的條件下,頻繁的干濕交替會使土壤發(fā)生釋鉀現(xiàn)象,導致土壤速效鉀含量增加。本研究表明,2 a試驗下,干濕交替灌溉降低了稻田土壤速效鉀含量,在水稻生育前期,土壤速效鉀含量較高。同時,在前期干濕交替次數(shù)較少,此時干濕交替灌溉會降低土壤速效鉀含量,之后隨著生育進程的遞進,土壤速效鉀逐漸被植株吸收,速效鉀含量降低,之后頻繁的干濕交替灌溉又會促進土壤釋鉀,導致土壤速效鉀含量升高,使之接近淹水灌溉水平,但始終沒有超過,與其結論一致。這是因為當土壤水分含量較低時,土壤溶液中的K+濃度就會增加,礦物層之間的空隙就會收縮或閉合,K+就會被束縛無法釋放出來導致速效鉀含量降低,在濕潤條件下時,土壤溶液中的K+濃度就會降低,被固定在土壤中的鉀素就會從新被釋放出來[35]。在土壤中添加天然沸石有助于保持土壤養(yǎng)分和改善土壤質(zhì)地。它影響著土壤中許多用于植物吸收利用的營養(yǎng)元素,如N、K、Ca和Mg等[16]。周恩湘等[36]研究表明,土壤添加沸石能夠提高土壤速效鉀含量,較之無沸石處理,可提高鹽化土壤速效鉀含量5%~25%。本研究表明,稻田增施沸石能夠顯著增加全生育期土壤中速效鉀含量,尤其是斜發(fā)沸石同干濕交替灌溉模式結合效果更好,兩者表現(xiàn)出協(xié)同作用。這是因為在沸石中含有大量的可溶性鉀溶于水中[13],使得速效鉀含量大幅度提升,在后期效果也非常顯著,并且在2018年具有相同的試驗結果,可見斜發(fā)沸石具有后效性[37]。斜發(fā)沸石增產(chǎn)效應是因為斜發(fā)沸石提高了K+敏感時期的土壤速效鉀含量。

4 結 論

本文以淹灌為對照,研究斜發(fā)沸石對干濕交替稻田土壤速效鉀動態(tài)變化和產(chǎn)量的影響。主要結論如下:

1)稻田增施斜發(fā)沸石可顯著提高水稻產(chǎn)量,在10 t/hm2水平下產(chǎn)量最高,增產(chǎn)率達22.3%,其增產(chǎn)原因是斜發(fā)沸石提高了全生育土壤速效鉀含量,促進植株地上部分干物質(zhì)和鉀素積累量。從產(chǎn)量構成上分析是斜發(fā)沸石顯著增加了單位面積的有效穗數(shù)。

2)淹灌和干濕交替稻田增施斜發(fā)沸石均顯著提高土壤速效鉀含量,可提高基肥期、分蘗肥期和穗肥期表層土壤速效鉀含量,且在干濕交替灌溉下提升效果更為明顯。

3)斜發(fā)沸石在淹灌和干濕交替灌溉下對土壤鉀肥、干物質(zhì)、鉀素積累和產(chǎn)量等多重正效應至少可持續(xù)2 a。當然,稻田斜發(fā)沸石增產(chǎn)不能完全歸結于其對提高表層土壤速效鉀含量和地上部分鉀素積累提升的正效應,還與斜發(fā)沸石提高土壤持水性能及對土壤氮含量的影響等有一定的關系。有關斜發(fā)沸石對土壤水分和多種溶質(zhì)運移的綜合調(diào)控機制仍需進一步研究。

[1] 占麗平,李小坤,魯劍巍,等. 土壤鉀素運移的影響因素研究進展[J]. 土壤,2012,44(4):548-553.

Zhan Liping, Li Xiaokun, Lu Jianwei, et al. Research advances on influence factors of soil potassium movement[J]. Soil, 2012, 44(4): 548-553. (in Chinese with English abstract)

[2] Zhou Qun, Ju Chengxin, Wang Zhiqin, et al. Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation[J]. Journal of Integrative Agriculture, 2017, 16(5): 1028-1043.

[3] 朱德峰,張玉屏,陳惠哲,等. 中國水稻高產(chǎn)栽培技術創(chuàng)新與實踐[J]. 中國農(nóng)業(yè)科學,2015,48(17):3404-3414.

Zhu Defeng, Zhang Yuping, Chen Huizhe, et al. Innovation and practice of high-yield rice cultivation technology in China[J]. Scientia Agricultura Sinica, 2015, 48(17): 3404-3414. (in Chinese with English abstract)

[4] 姚林,鄭華斌,劉建霞,等. 中國水稻節(jié)水灌溉技術的現(xiàn)狀及發(fā)展趨勢[J]. 生態(tài)學雜志,2014,33(5):1381-1387.

Yao Lin, Zheng Huabin, Liu Jianxia, et al. Current situation and prospect of rice water-saving irrigation technology in China[J]. Chinese Journal of Ecology, 2014, 33(5): 1381-1387. (in Chinese with English abstract)

[5] 陳琳. 黑土區(qū)水稻調(diào)虧灌溉模式的研究[D]. 哈爾濱:東北農(nóng)業(yè)大學,2010.

Chen Lin. The Studies on Effects of Regulated Deficit Irrigation of Paddy Rice in The Phaeozem[D]. Harbin: Northeast Agricultural University, 2010. (in Chinese with English abstract)

[6] Norton G J, Shafaei M, Travis A J, et al. Impact of alternate wetting and drying on rice physiology, grain production, and grain quality[J]. Field Crops Research, 2017, 205: 1-13.

[7] 遲道才,王殿武. 北方水稻節(jié)水理論與實踐[M]. 北京:中國農(nóng)業(yè)科學技術出版社,2003.

[8] 彭世彰,徐俊增,黃乾,等. 水稻控制灌溉模式及其環(huán)境多功能性[J]. 沈陽農(nóng)業(yè)大學學報,2004,35(6):443-445.

Peng Shizhang, Xu Junzeng, Huang Qian, et al. Controlled irrigation of paddy rice and environmental multifunctionality[J]. Journal of Shenyang Agricultural University, 2004, 35(6): 443-445. (in Chinese with English abstract)

[9] 李夢尋,王冬梅,任遠,等. 不同干濕交替頻率對土壤速效養(yǎng)分、水溶性有機碳的影響[J]. 生態(tài)學報,2018,38(5):1542-1549.

Li Mengxun, Wang Dongmei, Ren Yuan, et al. Influence of different drying-rewetting frequencies on available soil nutrients and DOC[J]. Acta Ecologica Sinica, 2018, 38(5): 1542-1549. (in Chinese with English abstract)

[10] 朱詠莉,劉軍,王益權,等. 干濕交替過程對黃土高原幾種主要土壤鉀有效性的影響[J]. 土壤通報,2002,33(6):435-437.

Zhu Yongli, Liu Jun, Wang Yiquan, et al. Effect of alternation of drying and wetting on K fixation capacity of soils in loess plateau[J]. Chinese Journal of Soil Science, 2002, 33(6): 435-437. (in Chinese with English abstract)

[11] Azarpour E, Motamed M K, Moraditochaee M, et al. Effects of zeolite application and nitrogen fertilization on yield components of cowpea (L.)[J]. World Applied Sciences Journal, 2011, 14(5): 687-692.

[12] Ozbahce A, Tari A F, G?nülal E, et al. The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress[J]. Archives of Agronomy and Soil Science, 2015, 61(5): 615-626.

[13] Pi?ón-Villarreal A R, Bawazir A S, Shukla M K, et al. Retention and transport of nitrate and ammonium in loamy sand amended with clinoptilolite zeolite[J]. Journal of Irrigation and Drainage Engineering, 2013, 139(9): 755-765.

[14] Andronikashvili T G, Urushadze T F, Eprikashvili L G, et al. Use of natural zeolites in plant growing-transition to biological agriculture[J]. Bull. of the Georgian National Academy of Science, 2007, 175(4): 112-117.

[15] Sepaskhah A R , Yousefi F. Effects of zeolite application on nitrate and ammonium retention of a loamy soil under saturated conditions[J]. Australian Journal of Soil Research, 2007, 45(5): 368.

[16] Li J, Wee C, Sohn B. Effect of ammonium-and potassium-loaded zeolite on kale (Brassica alboglabra) growth and soil property[J]. American Journal of Plant Sciences, 2013, 4(10): 1976.

[17] 劉愛平,馮啟明,王維清,等. 斜發(fā)沸石對鉀肥的吸附性能及緩釋效果[J]. 非金屬礦,2011,34(3):58-60.

Liu Aiping, Feng Qiming, Wang Weiqing, et al. Adsorption property and slow-releasing effect of clinoptilotite to potash fertilizer[J]. Non-Metallic Mines, 2011, 34(3): 58-60. (in Chinese with English abstract)

[18] 化全縣,李見云,周健民. 天然沸石對磷、鉀在紅壤中遷移影響的室內(nèi)模擬研究[J]. 農(nóng)業(yè)工程學報,2006,22(9):261-263.

Hua Quanxian, Li Jianyun, Zhou Jianmin. Laboratory simulation of effects of native clinoptilolite on phosphorus and potassium mobilization in red soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(9): 261-263. (in Chinese with English abstract)

[19] Chen T, Wilson L T, Liang Q, et al. Influences of irrigation, nitrogen and zeolite management on the physicochemical properties of rice[J]. Archives of Agronomy and Soil Science, 2017, 63(9): 1210-1226.

[20] 陳濤濤,吳奇,鄭俊林,等. 基于斜發(fā)沸石的水氮耦合效應對水稻產(chǎn)量影響研究[J]. 灌溉排水學報,2014,33(4):71-76.

Chen Taotao, Wu Qi, Zheng Junlin, et al. Effect of water and nitrogen coupling on rice yield based on clinoptilolite[J]. Journal of Irrigation and Drainage, 2014, 33(4): 71-76. (in Chinese with English abstract)

[21] 陳濤濤,孫德環(huán),張旭東,等. 干濕交替灌溉下水氮耦合對沸石處理稻田產(chǎn)量和水氮利用的影響[J]. 農(nóng)業(yè)工程學報,2016,32(22):154-162.

Chen Taotao, Sun Dehuan, Zhang Xudong, et al. Impact of water-nitrogen coupling on grain yield, water and nitrogen usage in zeolite-amended paddy field under alternate wetting and drying irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 154-162. (in Chinese with English abstract)

[22] Wu Qi, Xia Guimin, Chen Taotao, et al. Effects of nitrogen and zeolite on rice grain yield, water and nitrogen use, and soil total nitrogen in coastal region of northeast china[J]. Communications in Soil Science and Plant Analysis, 2016, 47(18): 2103-2114.

[23] 侯云鵬,張磊,孔麗麗. 施鉀對不同肥力土壤玉米鉀素吸收、分配及產(chǎn)量的影響[J]. 中國生態(tài)農(nóng)業(yè)學報,2013,21(11):1333-1339.

Hou Yunpeng, Zhang Lei, Kong Lili. Effect of potassium application rate on potassium absorption, distribution and yield of spring maize under different soil fertilities[J]. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1333-1339. (in Chinese with English abstract)

[24] 張洋洋,魯劍巍,王友珠. 鉀肥施用方式對直播和移栽水稻產(chǎn)量和鉀肥利用效率的影響[J]. 作物雜志,2016(1):110-114.

Zhang Yangyang, Lu Jianwei, Wang Youzhu. Effects of potassium fertilizer application method on yield and potassium apparent efficiency of direct-sowing rice and transplanting rice[J]. Crops, 2016(1): 110-114. (in Chinese with English abstract)

[25] 潘廣平. 不同鉀素運籌對鉀素利用率與水稻產(chǎn)量的影響[J]. 現(xiàn)代化農(nóng)業(yè),2018(12):15-16.

Pan Guangping. Effects of different potassium operation on potassium utilization rate and rice yield[J]. Modern Agriculture, 2018(12): 15-16. (in Chinese with English abstract)

[26] 褚光,展明飛,朱寬宇,等. 干濕交替灌溉對水稻產(chǎn)量與水分利用效率的影響[J]. 作物學報,2016,42(7):1026-1036.

Chu Guang, Zhan Mingfei, Zhu Kuanyu, et al. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice[J]. Acta Agronomica Sinica, 2016, 42(7): 1026-1036. (in Chinese with English abstract)

[27] Liu Lijun, Chen Tingting, Wang Zhiqin, et al. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice[J]. Field Crops Research, 2013, 154: 226-235.

[28] Xiubin H, Zhanbin H. Zeolite application for enhancing water infiltration and retention in loess soil[J]. Resources, conservation and recycling, 2001, 34(1): 45-52.

[29] Chen Taotao, Xia Guimin, Wu Qi, et al. The influence of zeolite amendment on yield performance, quality characteristics, and nitrogen use efficiency of paddy rice[J]. Crop Science, 2017, 57(5): 2777-2787.

[30] Zheng Junlin, Chen Taotao, Wu Qi, et al. Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress[J]. Agricultural Water Management, 2018, 206: 241-251.

[31] Sun Yidi, Xia Guimin, He Zhenli, et al. Zeolite amendment coupled with alternate wetting and drying to reduce nitrogen loss and enhance rice production[J]. Field Crops Research, 2019, 235: 95-103.

[32] 遲道才,孫一迪,吳奇,等. 肥與沸石對節(jié)水稻作產(chǎn)量及氮素吸收利用的影響[J]. 沈陽農(nóng)業(yè)大學學報,2015,46(5): 588-595.

Chi Daocai, Sun Yidi, Wu Qi, et al. Effect of fertilizer and zeolite on rice yield and nitrogen utilization under water saving irrigation[J]. Journal of Shenyang Agricultural University, 2015, 46(5): 588-595. (in Chinese with English abstract)

[33] 從懷軍,張展,徐斌,等. 黃土高原溝壑區(qū)不同施肥條件下土壤速效鉀含量研究[J]. 水土保持研究,2018,25(4):129-133.

Cong Huaijun, Zhang Zhan, Xu Bin, et al. Study on available potassium contents in soils under different fertilization conditions in highland and gully region of the loess plateau[J]. Research of Soil and Water Conservation, 2018, 25(4): 129-133. (in Chinese with English abstract)

[34] 叢日環(huán),李小坤,魯劍巍. 土壤鉀素轉化的影響因素及其研究進展[J]. 華中農(nóng)業(yè)大學學報,2007,26(6):907-913.

Cong Rihuan, Li Xiaokun, Lu Jianwei. Advances in research on influence factors of soil potassium transformation[J]. Journal of Huazhong Agricultural University, 2007, 26(6): 907-913. (in Chinese with English abstract)

[35] Wicklander L. Cation and exchange phenomena[J]. Chemistry of the Soil, 1969, 2: 163-205.

[36] 周恩湘,張桂銀. Ca—K型斜發(fā)沸石對鹽化土壤速效鉀的影響[J]. 河北農(nóng)業(yè)大學學報,1999(4):10-14.

Zhou Enxiang, Zhang Guiyin. The effect of Ca-K clinoptilolite on available potassium in salinized soil[J]. Journal of Agricultural University of He Bei, 1999(4): 10-14. (in Chinese with English abstract)

[37] 陳濤濤. 斜發(fā)沸石對濱海稻田水氮耦合效應的影響研究[D]. 沈陽:沈陽農(nóng)業(yè)大學,2016.

Chen Taotao. Effects of Irrigation, Nitrogen and Zeolite Management on Grain Yield, Water and Nitrogen Utilization in Paddy Field in Coastal China[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese with English abstract)

Impact of zeolite on dynamic of soil available potassium and grain yield in alternate wetting and drying rice system

Xia Guimin, Liu Guanghui, Sha Yan, Zhao Qing, Zhang Feng, Chen Taotao※

(,,110866)

The impact of zeolite (Z) on the dynamic of soil available potassium in the rice production system remains unknown, especially in the alternate wetting and drying (AWD) irrigation rice production system. To explore the application potential of zeolite in alternate wetting and drying rice system, a 2-year experiment was conducted to determine the effects of Z on grain yield and soil available potassium under different Z application rates and irrigation methods using the split plot design. A Japonica rice (cv. Shen Dao 529) was cultivated in brown loam soil. Treatments included 2 irrigations methods (CF: continuously flooded irrigation, AWD: alternate wetting and drying irrigation) as main plots and 3 zeolite application rates (0, 5, and 10 t/hm2) as sub-plots within each of main plots. The experiment was repeated in 2018 but Z was not applied, and the plots in 2018 experiment were same as 2017 experiment. The results showed that Z application at the rate of 10 t/hm2significantly increased grain yield as compared with no zeolites, in particular Z application at the rate of 10 t/hm2in the AWD rice production system, of which the yield was 8.7%-22.3% higher than the zeolite-free treatment in the CF rice production system. Zeolite had a significant positive effect on the surface soil available potassium content, and above-ground dry matter accumulation as well as the K accumulation of rice plants in the rice field. Z application at the rate of 5-10 t/hm2increased the surface soil available potassium content in the basel fertilizer stage, tiller fertilizer stage and panicle fertilizer stages, above-ground dry matter accumulation in later tillering stage, jointing-booting stage, heading-flowering stage, milky ripening stage, and yellow ripening stage and improved the aboveground K accumulation of rice plant in the later tillering stage, jointing-booting stage, heading-flowering stage, milky ripening stage, yellow ripening stage. The positive effects of Z observed were even more obvious when applied into the AWD rice production systems relative to the CF one. Compared with the most commonly used treatment (CF and Z-free treatment), the AWD irrigation in combination with 10 t/hm2Z application average increased the surface soil available potassium content in the basal fertilizer stage, tiller fertilizer stage and panicle fertilizer stages, above-ground dry matter accumulation in Jointing-booting stage, heading-flowering stage, milky ripening stage, Yellow ripening stage (except later tillering stage) and improved the aboveground K accumulation of rice plant in the later tillering stage, jointing-booting stage, heading-flowering stage, milky ripening stage, yellow ripening stage by 11.81%-21.42% in 2017 and 9.69%-23.79% in 2018. The rice yield component results revealed the increased yield in Z treatment was mainly caused by increased effective tiller number at harvest, while path analysis of dynamics in average soil available potassium at different fertilization stages and above-ground K accumulation of rice plants at different growth stages further suggested that the increased grain yield in zeolite treatment was mainly due to increase of soil available potassium content in tiller-panicle fertilizer stage and panicle fertilizer-harvest stage caused by increased zeolite, and increased aboveground K accumulation of rice plant in the heading-flowering stage and yellow ripening stage. In addition, these positive residual activities could maintain for at least 2 years after initial application in both the CF and AWD rice production systems.

zeolite; potassium; irrigation; rice; alternate wetting and drying; yield

夏桂敏,劉光輝,沙 炎,趙 清,張 豐,陳濤濤. 斜發(fā)沸石對干濕交替稻田土壤速效鉀和產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學報,2019,35(18):101-109.doi:10.11975/j.issn.1002-6819.2019.18.013 http://www.tcsae.org

Xia Guimin, Liu Guanghui, Sha Yan, Zhao Qing, Zhang Feng, Chen Taotao. Impact of zeolite on dynamic of soil available potassium and grain yield in alternate wetting and drying rice system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 101-109. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.013 http://www.tcsae.org

2019-03-14

2019-08-10

國家自然科學基金(51709173、51679142);遼寧省自然基金(2019-MS-277、20180550819);國家公益性行業(yè)(農(nóng)業(yè))科研專項項目(201303125)

夏桂敏,副教授,博士,主要從事農(nóng)業(yè)與生態(tài)節(jié)水理論及技術研究。Email:xiagm1229@126.com

陳濤濤,博士,講師,主要從水肥調(diào)控與高效利用研究。Email:taotao-chen@syau.edu.cn

10.11975/j.issn.1002-6819.2019.18.013

S274.3; O614.113

A

1002-6819(2019)-18-0101-09

猜你喜歡
沸石水稻產(chǎn)量
什么是海水稻
2022年11月份我國鋅產(chǎn)量同比增長2.9% 鉛產(chǎn)量同比增長5.6%
沸石分子篩發(fā)展簡述
云南化工(2021年10期)2021-12-21 07:33:24
今年前7個月北海道魚糜產(chǎn)量同比減少37%
水稻種植60天就能收獲啦
軍事文摘(2021年22期)2021-11-26 00:43:51
5種沸石分子篩的吸附脫碳對比實驗
煤氣與熱力(2021年9期)2021-11-06 05:22:56
海水稻產(chǎn)量測評平均產(chǎn)量逐年遞增
一季水稻
文苑(2020年6期)2020-06-22 08:41:52
水稻花
文苑(2019年22期)2019-12-07 05:29:00
2018上半年我國PVC產(chǎn)量數(shù)據(jù)
聚氯乙烯(2018年9期)2018-02-18 01:11:34
主站蜘蛛池模板: 毛片久久网站小视频| 日韩天堂视频| 蜜桃视频一区| 亚洲伦理一区二区| 国产成人综合日韩精品无码不卡| 亚洲人在线| 偷拍久久网| 国产精品香蕉| 亚洲高清日韩heyzo| 国产精品无码AV中文| 亚洲无码电影| 亚洲综合经典在线一区二区| 亚洲系列无码专区偷窥无码| 国产精品久久久久久久伊一| 无码电影在线观看| 69国产精品视频免费| 在线综合亚洲欧美网站| 国产精品亚洲五月天高清| 日韩精品专区免费无码aⅴ| 影音先锋丝袜制服| 真人高潮娇喘嗯啊在线观看| 青青国产成人免费精品视频| 国产午夜不卡| 国产香蕉一区二区在线网站| 久久亚洲国产一区二区| 久久91精品牛牛| 色婷婷电影网| 91精品国产91久久久久久三级| 成人国产精品2021| 中文纯内无码H| 在线观看免费人成视频色快速| 国产精品永久免费嫩草研究院| а∨天堂一区中文字幕| 午夜综合网| 成人午夜亚洲影视在线观看| 天天躁日日躁狠狠躁中文字幕| 国产精品性| 久久一色本道亚洲| 四虎精品国产AV二区| 久久免费看片| 国产精品视频猛进猛出| 国产成人免费手机在线观看视频| 97无码免费人妻超级碰碰碰| 国产亚洲欧美在线视频| 欧美一级大片在线观看| 国产色婷婷视频在线观看| 国产欧美在线观看一区| 精品国产网| 自拍偷拍一区| 黄片在线永久| 一本大道无码高清| 亚洲日韩精品综合在线一区二区| 美女免费黄网站| 玖玖精品视频在线观看| 71pao成人国产永久免费视频| 欧美三级不卡在线观看视频| 99热国产这里只有精品9九| 亚洲精品视频免费观看| 欧美日韩国产综合视频在线观看 | 久久婷婷六月| 免费毛片全部不收费的| 毛片网站在线看| 亚洲无限乱码| 丰满人妻被猛烈进入无码| www.精品国产| 亚洲资源站av无码网址| 理论片一区| 日本五区在线不卡精品| 欧洲高清无码在线| 中文字幕无码中文字幕有码在线| 欧美在线三级| 91黄视频在线观看| 中文字幕在线一区二区在线| 欧美在线三级| 91精品小视频| 中文字幕无码中文字幕有码在线| 久久国产精品夜色| 女高中生自慰污污网站| 午夜视频免费试看| 国产91av在线| 在线观看免费AV网| 婷婷六月综合网|